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Abstract 

It is well established that Schroeder diffusers may be used as surface treatment to promote diffuse sound 
fields in auditoria over a target frequency range. Quadratic Residue Diffusers are very effective within 
a design frequency bandwidth, and this frequency bandwidth may be significantly extended by a nested 
or fractal design. Publicly available data typically publishes diffusion coefficients separately for the 
parent diffuser and the child diffuser, with some ambiguity surrounding the effect the two levels have 
on each other, and the performance at 'crossover' frequencies. This paper uses an optimised 2D boundary 
element method to investigate the differences in results when the parent and child diffusers are modelled 
separately, and as an integrated design. It is found that the scattering properties of the child diffuser are 
significantly modified by the well of the parent diffuser in which it is placed. More interestingly, the 
excellent scattering properties of the fractal design may be achieved with only a minor loss of bandwidth 
using a far simpler and more robust geometry in which the child diffuser is replaced by a concave surface 
at the base of the well in the parent diffuser. The paper outlines the optimisation of the boundary element 
code for this task, and compares results for a variety of well bottom shapes with the fractal design. 

1. Introduction 

An acoustic diffuser is an object or surface profile designed to provide a diffuse reflection from an 
incident sound wave. While nearly every reflective surface will offer some degree of diffusion, an 
acoustic diffuser is designed to produce high levels of diffusion or specific diffusion characteristics, 
often for a design application or frequency range. Diffusion can be either temporal (time-related) or 
spatial, and is a useful tool in the acoustic treatment of spaces such as critical listening rooms and 
performance spaces, often to create a more even sound field or to avoid strong reflections [1]. Where 
traditionally acoustic absorbers have been used to avoid undesirable acoustic effects, there is a growing 
trend towards the use of diffusers instead [2], and this has increased the need to accurately model their 
performance. 

Schroeder diffusers, named after their creator Manfred Schroeder [3], are popular due to their 
predictable and desirable diffusion characteristics. While Schroeder diffusers offer high diffusion 
performance within a design bandwidth, this bandwidth is limited by the practical dimensions of the 
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diffuser and performance outside the bandwidth limits is poor. Variations to ‘traditional’ Schroeder 
diffusers including fractal designs (see Section 3.2) are used to increase this design bandwidth while 
minimising the diffuser’s physical dimensions. 

The Boundary Element Method (BEM) is an algorithm derived from Green’s Second Identity used 
for modelling and analysis of acoustic fields. The BEM is a powerful alternative to Finite Element 
Analysis (FEA), the Finite-Difference Time Domain (FDTD) and other acoustic modelling techniques, 
due to the nature of discretisation that effectively reduces the dimensions of the problem by one. The 
efficient nature of solving acoustic fields using the BEM is particularly suited to problems where the 
domain is large or considered infinite, such as external diffusion of an object in an incident sound field. 

This paper will firstly introduce optimised methods of computing an external diffusion model with 
the BEM, with particular reference to Schroeder diffusers. The BEM is based on a program initially 
written by Rocchi [4], which has been developed to achieve significant increases in speed and accuracy 
through the implementation of advanced discretisation of the diffuser shape and efficient analytic and 
numeric integrals of terms used in matrix calculations. The paper will then describe Schroeder diffusers 
and use this optimised BEM code to model performance of ‘traditional’ Schroeder diffusers, fractal 
diffuser designs and a new diffuser design that offers diffusion performance comparable with fractal 
designs but with a simpler and more robust geometry.  

2. Boundary element method development 

2.1 BEM Theory 

Extended derivations of the Boundary Element Method (BEM) may be found in several sources 
including [5] and [6], a summary will be presented here. 

Time periodic acoustic fields may be described in terms of the real part of a velocity potential 
 Φ = Φ#e%&'( governed by the Helmholtz equation 
 
∇*Φ + ,*Φ = 0, (1) 
 
in terms of which velocity . and pressure / are respectively 
 
. = ∇Φ, (2) 
 
/ = −1 23

2(
= i15Φ.  (3) 

 
Here 1 is the density of the acoustic medium, , = *6

7
= '

8
 is the wavenumber and 9, 5 and c are 

respectively the wavelength, angular frequency and speed of sound. 
Specific exterior problems are further specified by expressing the total potential as the sum of an 

incident potential : (e.g. due to an unconfined sound source, typically a plane, spherical or cylindrical 
wave) and a scattered (diffracted) wave potential ;, both satisfying a radiation condition, and the sum 
of which satisfies the body surface boundary condition. For a rigid body the latter condition is one of 
zero normal velocity, hence 
 
∇; ⋅ = = −∇: ⋅ = = −.> ⋅ =   (4) 
 
where .> is the incident wave local velocity, and = is the unit normal to the body pointing into to the 
acoustic domain (out of the body). 

The BEM solves this by discretising Green’s second identity, derived from the divergence 
theorem, which may be expressed as 
 

; ? ∇@ A, ? ⋅ =? − @ A, ? ∇; ? ⋅ =? dD? = −E; A                                                              (5) 
 
where A is an arbitrary point within the acoustic domain and ? is a point on the domain boundary and 
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the integral is evaluated over the entire domain boundary. 
Of particular interest is when A is on the boundary, in which case a choice suitable for 2D exterior 

problems of @ A, ? = &
F
G#

H (,J) (where J = ? − A  and G#
H (L) is the Hankel function of the first 

kind and order zero [7]) leads to E = H
*
. By dividing the boundary (a closed curve for 2D problems) into 

discrete small segments bounded by points ?M, over which ; and ∇; may for practical purposes be 
assumed constant and equal to the value at the centroid, this becomes a matrix equation 
 
−H
*
; = M ; + L .> ⋅ =                                                                                                              (6) 

 
where 
 
PMQ = @ AR, ? 	dT?

?U
?UVW

= &
F
G#

H (,J)	dT?
?U
?UVW

, (7) 
 
XMQ = ∇@ AR, ? ⋅ =?	dT? =

%&Y
F
GH

H ,J 	Z ⋅ =?	dT?
?U
?UVW

?U
?UVW

,  Z = ?%AR
?%AR

.                                        (8) 
 
The integrals PMQ and XMQ are not in general known in closed form and must be integrated numerically, 
which is very efficiently accomplished using Gaussian quadrature [7]. The self-influence terms ([ = \) 
can however can be evaluated analytically, and it is desirable to do so since they contain a singularity at 
J = 0. Some authors remove the singular leading term in the Taylor expansion (of order ln J or H

_
) and 

apply quadrature to the remainder, but using results in [7] it can be shown 
 

G#
H`

%` ,J 	dJ = 2b	G#
H ,b + cb d# ,b GH

H ,b − dH ,b G#
H ,b , b = ?e%?eVW

*
         (9) 

 
GH

H`
%` ,J 	dJ = − *

Y
G#

H ,b .                                                                                                           (10) 
 
The Hankel function Gf

H b  is easily evaluated using a built-in function in Matlab but the Struve 
function df b  had to be evaluated using a truncated infinite series, thus 
 

G#
H`

%` ,J 	dJ = *
Y
G#

H ,b Tf + GH
H ,b gfh

fi#
h
fi#                                                            (11) 

 
where 
 
T# = ,b,				Tf =

% Y` j

*f%H *fkH
Tf%H,				g# = ,b *,				gf =

% Y` j

*fkH j gf%H .                                                (12) 
 
These series converged rapidly with appropriate element length relative to wavelength. 

2.2 BEM optimisation techniques 

2.2.1 Gaussian quadrature rules 

As mentioned above, the integrals of equations (7) and (8) are evaluated using Gaussian quadrature. 
Integration accuracy could be arbitrarily improved, at a cost, by increasing the order of the integration 
rule. For line integrals the order of approximation is 2l − 1 where l is the number of integration points 
(i.e. a 6 point rule is equivalent to fitting an 11th order polynomial). Abcissae and weights for l=2, 4, 6 
and 10 (amongst others) are published in [7], and a good balance between efficiency and accuracy was 
found by adapting the integration rule depending on the normalised distance J of the source point ? from 
the collocation point A according to the rule in Table 1. 
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Table 1. Gauss integration points for various source-collocation distances 

 
Source-collocation distance J/9 Number of integration points N 

< 0.5 10 
0.5 – 1 6 
1 – 3 4 

> 3 2 

2.2.2 Self influence terms 

As already mentioned, @ and ∇@ have singularities at J = 0. Crude results are obtained by using a 
quadrature rule with even l, which does not include a point at J = 0 (unlike odd l, which can’t be 
evaluated at all). Substantially better results are obtained however by numerically integrating the 
desingularised forms G#

H ,J − *&
6
ln ,J  and GH

H ,J + *&
6Y_

, and adding the analytic integrals of 
*&
6
ln ,J and %*&

6Y_
, which are easily evaluated. But for relatively little additional computational cost (since 

this is only required for the diagonal elements) the full analytic integration presented in equations (9)–
(12) gave accuracy that was significantly better again. 

2.2.3 Code restructure 

The vast majority of run time is spent on computing the L  and M  matrices. Optimising the choice of 
quadrature rule clearly therefore had a big impact on run time, but further significant speed gains were 
made by restructuring code to minimise recalculation of quantities and/or to exploit Matlab’s vector 
algebra capabilities. On the other hand some Matlab functions, such as dot products of vectors with only 
two elements, could actually be performed faster by manually programming them. 

2.2.4 Treatment of sharp edges 

A major source of errors is the steep pressure gradient in the vicinity of sharp edges (corners in 2D). 
Furthermore, the coefficient E in equation (5) at the corner is not ½, but for an edge angle of o is actually 
o/2c (hence ½ for a smooth boundary, and it is noted that in the present BEM formulation the boundary 
condition is applied at the element mid-point, which is never a corner). Nevertheless this contributes to 
the abrupt change of ; (or pressure) near the edge.  
 

 
 

Figure 1. Surface pressure around an infinitely long 0.5	m×0.5	m square column due to a cylindrical 
point source at 3240 Hz. The horizontal axis represents distance around the perimeter, with edges at 0, 

0.5, 1.0, 1.5 and 2.0 m. 0–0.5 m is the side facing the source.  
 

The steep pressure gradient at the edges is clearly visible in Figure 1, showing a typical surface 
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pressure around a square object. It would not be a problem for shapes defined by smooth curves, but is 
critical for modelling any object with edges, and similar results were found with the Schroeder diffusers. 

A twofold approach has been adopted to maintain accuracy. First, a 20 point quadrature rule was 
used on all elements attached to an edge. Second, the element size was refined approaching edges. 
Elements were reduced to H

t
 times the global size at the corners, and transitioned in a geometric 

progression over 5 elements, thus adjacent elements did not differ by more than a ratio of 3#.* = 1.25. 
A substantial improvement in accuracy for a given number of elements was found from adopting both 
of these techniques, as discussed below. The authors plan to investigate this further in future work. 

2.2.5 Singular frequencies 

At particular frequencies corresponding to the eigen values of equation (6) the problem becomes poorly 
conditioned and accuracy substantially declines. This was solved by placing an additional boundary 
inside the diffuser body, creating a second acoustic domain entirely independent of the primary domain. 
As this domain is not connected to the primary domain, and all boundary and field conditions are 
enforced in both domains, it had no effect on the solution other than to change the eigen frequencies, 
hence to remove the singularity at the problem frequencies and vastly improve accuracy. Of course new 
problem frequencies are thus introduced, but the solution without the additional secondary domain is 
perfectly suitable for these frequencies. 

2.2.6 Future work 

For the problem to be well conditioned, the element size on any thin panels (such as those separating the 
diffuser wells) had to be smaller than the panel thickness. This was quite restrictive. Wu [8] has published 
a ‘thin panel’ BEM formulation that overcomes this problem. This represents the panel as a single 
surface so would not only allow larger elements, but would halve the number of elements on the panels 
(though with two equations for each). 

Further gains could also be made by use of a higher order formulation, in which ; and ∇; may 
vary linearly on each element, thus ; would be defined at element end points and would vary 
continuously around the boundary. This would be of benefit at corners in particular. 

2.3 BEM Validation and Improvement Quantification  

Initial validation of the optimised BEM code was performed for the case of an infinite cylinder in a plane 
wave acoustic field, for which there exist published solutions by Morse & Ingard [9], Kuyama [10] and 
Wiener [11]. The maximum deviation between a diffusion result from the BEM and analytic solution 
published by Morse & Ingard [9] was less than 0.003% for a cylinder of radius b = H

Y
 and observation 

radius J = *
Y
. The BEM code was further validated for the more challenging case of a QRD with the 

effects of thin panels and sharp corners, including comparisons between results gained using alternative 
methods such as the commercial Finite Element program ANSYS. Further information on the BEM code 
validation can be found in Lock [6]. 

Figure 2 shows a comparison between the BEM code published by Rocchi [4] and the BEM code 
developed in this work. The optimisations described above produced more than 240 times increase in 
solution speed while maintaining or even improving accuracy. The lower half of Figure 2 shows that for 
the test case at least 400 elements are required in the fully optimised code with edge refinement for 
reasonable convergence of results, requiring 0.25 minutes (15 sec) to solve. Without edge refinement 
more than 1000 elements are required for the same accuracy, and the solution time is increased to more 
than 1 minute. Without any optimisation 1000 elements took about 60 minutes. 

3. Diffuser design 

3.1 Schroeder Diffusers 

Manfred Schroeder is considered to have made the most substantial breakthrough in diffuser design in 
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1975, when he presented his theory of reflection phase grating diffusers [3],[12]. Schroeder diffusers 
offered a key advantage in that their performance could easily be predicted, and they are still considered 
amongst some of the most effective diffuser designs used today.  

A key feature of phase grating diffusers are regions of high sound pressure reflected in radial 
directions from the diffuser, named ‘diffusion lobes’ most prominent at multiples of the design 
frequency. These diffusion lobes give Schroeder diffusers their high diffusion properties. 

 

 
Figure 2: Comparison of solution time and convergence from 3 BEM code versions. Three repeating 

periods of an l = 7 QRD, lwT = 0.56	m, z = 2000	Hz = 4z# (symbols defined in Section 3.1). 

 
In two dimensions, Schroeder phase grating diffusers consist of wells of even width and varying 

depth separated by thin panels. Different mathematical patterns govern the depth of successive wells, 
and installations most commonly consist of multiple repeated periods of the chosen pattern. A period 
consists of l wells of width w, separated by a thin panel of width wP. The total width of a well and panel 
is represented by wT , and consequently the period width is written as lwT, shown in Figure 3. 

 

 

3.1.1 Quadratic Residue Diffusers 

The most popular Schroeder diffuser is the Quadratic Residue Diffuser (QRD), named after the pseudo-
random Quadratic Residue Sequence as first studied by Gauss and Legendre [3], which dictates 
successive relative well depths. The �th  term in the sequence, Tf, is defined as  
 
Tf = �*		modulo l 	, 
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Figure 3. (Left) One period of a QRD; (Right) Repeating periods of a QRD array. 
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where �	 = 	0, 1, 2	. . . (l − 1), and modulo(l) represents the least non-negative remainder when 
divided by l. The value l is restricted to prime numbers, and also represents the number of terms in 
each repeating sequence. The depth Ñf of the �th well in a quadratic residue diffuser for a design 
frequency of z# and prime number l are determined from the equation  
 
Ñf =

8ÖÜ
*áàâ

,                                                                                                                                              (13) 
 
where ä is the speed of sound in air. 

3.1.2 Design frequency limitations 

A design principle behind Schroeder’s theory of phase grating diffusers is that longitudinal wave 
propagation within the wells dominates transverse waves. From this, the upper frequency limit to the 
applicability of this theory can be stated as  
 
7ãåç
*
= 	w.                                                                                                                                              (14) 

 
Another limiting factor of QRDs is the period width, lwT . While even energy lobes can be expected at 
the design frequency, z#, if the period width is too small only one energy lobe is present in the specular 
reflection direction, and the diffuser displays poor diffusion characteristics [2].  
 
The effective bandwidth of a simple QRD can therefore be predicted as 
 
zmin	 = z# =

8Ömax	
*áêmax

 ,                      (15) 
 
provided that lwT > 9#, and 
 
zmax =

8
	*í

 .                        (16) 

3.2 High bandwidth diffusers 

As shown in the previous section, each diffuser design has an effective working range. In order to extend 
that range, nested or fractal designs may be used [13]. Typically a ‘child’ QRD is placed in the bottom 
of each well of a parent QRD. For a diffuser of period l the child QRD will be approximately l times 
smaller than the parent (though this is not necessarily the case for the well depth). The performance of 
the parent and child are generally published separately by manufacturers. However the child diffuser 
scatters sound within a confined space (the well), so its performance may potentially differ significantly 
from its published unconfined performance. Furthermore, there may be simpler geometries that produce 
good scattering of high frequency sound within a well. 

It is of interest to determine what if any interaction there is between parent and child that may 
enhance or degrade performance, and to further investigate alternative geometries. This paper therefore 
investigates the following four diffuser designs: 
1. The parent QRD is an l = 7 QRD of period width lwT parent = 0.85	m and design frequency 

z#,parent = 400	Hz.  
2. The child QRD is an l = 7 QRD approximately a H

ñ
	scale of the parent QRD, with 

 lwT child = wparent=10.93 cm and z#,child = 7z#,parent = 2800	Hz.  
3. The fractal diffuser is the parent QRD with a child QRD diffuser at the bottom of each well. 
4. The QRD with nested concave is the parent diffuser with a concave surface at the bottom of each 

well. The concave curve follows a quadratic profile with a maximum deviation of  1.35	cm = í
ò
.  

An array of 5 repeating periods was modelled for each diffuser design, with the exception of the child 
QRD for which an array of 35 periods was modelled. Each diffuser design is shown in Figure 4. 
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3.3 Test Details 

Each diffuser was modelled with a single cylindrical source at normal (0º) incidence at a distance of 
20 m. Diffusion coefficients were based on sound pressures at 360 receivers on a semicircle of 10 m 
radius, and 7 logarithmically spaced frequencies in each 1/3 octave bandwidth, in accordance with ISO 
17497-2 [14]. The panel thickness relative to well width was íP

íT
= 0.1. 

An accuracy study suggests the results in this paper are accurate to within ±	2% below 3 kHz, and 
within ±	4% between 3 kHz and 10 kHz [6]. Accuracy was reduced with a source location at incident 
angles to the diffuser, and therefore in this investigation the model was limited to source location at an 
angle o = 0° to the centre of the diffuser. The reduced accuracy observed at incident angles can be 
explained from the thin panel effect as described by Cox and D’Antonio [2] and mentioned in Section 
2.2.6. The implementation of the BEM thin panel solution as published by Wu [8] may resolve these 
errors, but will result in a model where thin panels are considered to have infinitely small thickness, and 
at high frequencies the model may not accurately represent the physical diffuser. 

4. Results 

 
Figure 5: (Left) Normalised diffusion coefficient of a parent, child, and corresponding fractal QRD; 

(Right) Normalised diffusion coefficient of a fractal QRD and QRD with nested concave wells. 
 
Figure 5 shows the normalised diffusion coefficient (defined above) for the four diffuser designs tested 
for the frequency range between 100 Hz – 10 kHz. Of particular interest is the comparative performance 
of each diffuser design at the crossover frequencies between 1.5 – 4 kHz, and at high frequencies above 
4 kHz. The diffusion polar pattern for each diffuser at 4 kHz is shown in Figure 6, at which frequency 
there are substantial differences in the performance of all four diffuser designs. Pressures shown in 
Figure 6 are scaled with respect to the maximum receiver pressure for each design.  
 Complex geometries, such as the fractal QRD, required over 5000 elements to obtain an accurate 
solution at high frequencies, and obtaining the results in Figure 5 required a solution at 147 frequencies 
for each the diffuser and a reference flat plate used to normalise the diffusion coefficient. For the case 
of a detailed diffuser such as a fractal QRD, a full set of results between 100 Hz – 10 kHz required 
approximately 12 hours to compute.  

(a) Parent QRD  (b) Child QRD  (c) Fractal QRD  (d) QRD with concave 
well bottoms 

Figure 4: Diagram of each diffuser modelled. 1 period of (a), (c), (d); 7 periods of (b). 
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5. Discussion 

From Figure 5 it is observed that the fractal diffuser offers slightly inferior performance when compared 
to the corresponding parent QRD at frequencies at which half the wavelength is comparable to the well 
width, or the ‘crossover’ frequencies (i.e. around 1500 Hz). One explanation for this is the effect of the 
nested child diffuser on the quadratic residue sequence interference pattern, resulting in reduced energy 
lobe behaviour. The reduction in performance at the crossover frequencies is offset by increased 
performance at high frequencies, where the fractal diffuser offers far superior diffusion to the parent or 
child diffuser when modelled individually. The superior high frequency performance and extended 
bandwidth is consistent with previous findings by Cox & D’Antonio [2].  

Figure 6 shows that at the top end of the crossover frequency band the difference in scattering 
behaviour is much more profound than is suggested by the diffusion coefficient alone. In particular, the 
reasonably good diffusion coefficient of the Child QRD hides the fact that there is significant lobing. In 
contrast both the Fractal and Concave QRD are show far better diffusion, with relatively uniform 
pressures over around 120°. Interestingly the specular reflection peak evident in the Fractal QRD is 
replaced with two individual peaks at around ±10° in the Concave QRD. 

The novel concave diffuser design modelled in this work shows almost identical performance to 
the parent diffuser until the upper limit of the parent diffuser design bandwidth (around 2 kHz). At 
frequencies at which the wavelength is smaller than the well width, the concave diffuser design offers a 
level of performance comparable with the fractal diffuser and superior to the child diffuser. While the 
performance of the concave diffuser may be considered slightly worse at mid-high frequencies than the 
fractal diffuser, the simplicity of design offers advantages including robustness, reduced production cost, 
and decreased risk of absorption. Fujiwara & Miyajima recorded absorption coefficients between 0.3 
and 1 for QRDs [15], which was later attributed to poor build quality and bonding of the tested diffusers 
[16]. The simplicity of the concave QRD design in this work offers a clear advantage in reducing the 
risk of high absorption. It is likely that optimisation of the concave curve profile incorporated in the 
diffuser may further improve the high frequency diffusion performance. 

5. Conclusion 

This investigation developed an optimised implementation of the BEM to model external diffusion from 

(a) Parent QRD  (b) Child QRD  

(c) Fractal QRD  (d) QRD with concave well bottoms 

Figure 6. Polar plot example of the four tested diffuser designs at z = 4000	Gú. Normalised 
diffusion coefficients are (a) = 0.15, (b) = 0.43, (c) = 0.65, and (d) = 0.51. 
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Schroeder diffusers. Increases in speed and accuracy gained from advanced discretisation of the diffuser 
shape and analytic integration of diagonal matrix elements, amongst other developments, allowed for 
modelling of geometries with greater levels of detail including large arrays of small QRDs, fractal QRDs, 
and a novel QRD design with concave well bottoms.  
 The diffusion performance of a fractal QRD was compared to the corresponding parent QRD, child 
QRD and QRD with concave well bottoms. Key findings from the results include: 

• The performance of the child QRD is modified, and generally enhanced, by being incorporated 
within a fractal QRD; 

• The fractal QRD exhibited strong performance over a wide frequency band, but there is a 
crossover frequency band where performance is reduced by about 50%;  

• A novel QRD design with concave well bottoms introduced in this investigation has slightly 
different characteristics at the crossover frequency band, but is generally speaking comparable 
to the fractal QRD design and incorporates a far simpler and more robust design; and 

• There is scope to optimise the curve profile of the QRD with concave well bottoms, which is 
likely to further improve performance.  
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