
Designing a Knowledge-based Schema Matching System for Schema Mapping

Sarawat Anam
1
, Yang Sok Kim

2
, Byeong Ho Kang

1
 and Qing Liu

3

1
{Sarawat.Anam,Byeong.Kang}@utas.edu.au

School of Engineering and ICT, University of Tasmania, Hobart, Australia

2
yangsokk@gmail.com

 Department of Management Information Systems, Keimyung University, Korea

3
Q.Liu@csiro.au

Autonomous Systems, CSIRO Computational Informatics, Hobart, Australia

Abstract

Schema mapping that provides a unified view to the users

is necessary to manage schema heterogeneity among

different data sources. Schema matching is a required task

for schema mapping that finds semantic correspondences

between entity pairs of schemas. Semi-automatic schema

matching systems were developed to overcome manual

works for schema mapping. However, such approaches

require a high manual effort for selecting the best

combinations of matchers and also for evaluating the

generated mappings. In order to avoid such manual

works, we propose a Knowledge-based Schema Matching

System (KSMS) that performs schema mapping both at

the element and structure level matching. At the element

level matching, the system combines different matching

algorithms using a hybrid approach that consists of

machine learning and knowledge engineering approaches.

At the structure level matching, the system considers

hierarchical structure that represents different contexts of

a shared entity. The system can update knowledge if

schema data changes over time. It also gives facilities to

the users to verify and validate the schema matching

results by incremental knowledge acquisition approach

where rules are not predefined. Our experimental

evaluation demonstrates that our system is able to

improve the performance and to generate the accurate

results.

Keywords: Schema matching, schema mapping,

knowledge-based approach, element level and structure

level matching.

1 Introduction

Schema matching is necessary to overcome semantic

heterogeneity problem as the schemas are designed by

different people. It finds mappings between semantically

related entity pairs of schemas. These mappings are used

to integrate data residing in different sources, and to make

knowledge discovery easy and systematic. Schema

Copyright (C) 2015, Australian Computer Society, Inc. This

paper appeared at the Thirteenth Australasian Data Mining

Conference, Sydney, Australia. Conferences in Research and

Practice in Information Technology, Vol. 168. Md Zahidul

Islam, Ling Chen, Kok-Leong Ong, Yanchang Zhao, Richi

Nayak, Paul Kennedy, Ed. Reproduction for academic, not-for-

profit purposes permitted provided this text is included.

matching can be done at the element level and structure

level. Element level matching only considers matching

names of the entity pairs, and it can be done by string

similarity metrics and text processing techniques.

Different string similarity metric and text processing

technique perform well for different schema data. This is

because the schema data contains different characteristics

such as identical, abbreviated, synonym and combined

words. In addition, the techniques generate schema

matching problems: false positive (if reported match by

expert is false and predicted match by algorithm is true),

and false negative (if reported match by expert is true and

predicted match by algorithm is false). Therefore, it is

necessary to combine these techniques effectively, and to

handle the matching problems.

 Some solutions have been proposed in the literature to

combine the techniques. YAM (Duchateau et al., 2009)

uses machine learning approach for combining the

techniques at the element level. The system shows if false

positives are high, then precision becomes low. If false

negatives are high, then recall becomes low. Precision can

be 1.0 if false positive becomes zero. If precision

becomes high but recall becomes very low, then overall

performance becomes very low. For this, it is very

important to increase the value of recall. The system runs

much iteration until the similarity scores between entities

become stable and it removes some incorrect mappings

(pre-defined). However, it takes much time to iterate

many times, and it needs to rebuild a training model if

schema data changes overtime.

 Incremental knowledge engineering approach,

Censored Production Rules (CPR) based Ripple-Down

Rules (RDR) has been used by (Anam et al., 2014) for

schema mapping. The approach uses the features created

by the combination of string similarity metrics and text

processing techniques for creating rules. However, the

limitation of the approach is that it is time-intensive to

create rules for mapping entity pairs one by one at the

element level. In order to overcome the limitations of the

above approaches, it is necessary to use a hybrid approach

that combines both machine learning and knowledge

engineering approaches at the element level. Element

level matching does not only give proper results for

schema mapping as it only considers matching names of

the entities. So it is important to do structure level

matching to get the accurate results. Structure level

matching uses the result of element level matching and

considers the hierarchical structure that represents

different contexts of a shared entity. In order to get the

final mapping results, it is necessary to combine the

results of the element level and structure level matching

using some aggregation functions. For determining the

best suitable aggregation function, it is necessary to

compare the performance of the functions.

 In this research, we introduce a Knowledge-based

Schema Matching System (KSMS) that matches schemas

both at the element level and structure level and produces

the final result. We use the following processes in the

system:

 We use hybrid-RDR (Anam et al., 2015) approach at

the element level matching. The approach consists of

decision tree, J48 and incremental knowledge

engineering approach, Censor Production Rules

(CPR) based Ripple-Down Rules (RDR). We

combine the similarity values of different string

similarity metrics and text processing techniques for

constructing features. These features are fed into J48

to generate matching results. If J48 generates some

wrong matchings, then CPR based RDR is used for

correcting and validating the matching results.

 We use graph matching algorithm, Similarity

Flooding (Melnik et al., 2002) that matches schemas

considering structural information to discover

additional mappings.

 We combine the results of the element level and

structure level using aggregation functions to get the

final results. We compare the performance of the

aggregation functions and choose the best one.

2 Basic Definitions

In this section, we give some basic definitions of the

foundations of schema matching and mapping.

 A schema is defined as a formal structure that

represents a set of entities. Each schema entity has a

name, a data type, a description (called annotation) as

well as instances. The kind of schemas can be database

schemas, XML-schemas, entity-relationship diagram, and

ontology description.

 Schema mapping takes as input two schemas, each

consisting of a set of discrete entities, and determines as

output the relationships holding between these entities

(Cate et al., 2013).

 Schema matching is a process that discovers mappings

between similar or same entity for a given entity using

matching algorithms. We give an example of schema

matching and mapping in the following:

Fig. 1. Example of two schemas

For illustrating schema matching and mapping problem,

we use two schemas, S1 and S2 representing the

information of purchase order domain and the schemas

are shown in Fig.1. These schemas contain different types

of characteristics such as identical, abbreviated, synonym

and combined words. Each schema consists of a set of

schema entities. Similar types of schema entities are

found in these datasets. For example, PO is an

abbreviation of PurchaseOrder and Company is synonym

of Organization. Schema matching is done at the element

and structure level.

 Element Level Matching considers only matching

names of the entities. The basic techniques of this

matching are string similarity metrics and text processing

techniques. String similarity metrics compare the names

of the schemas in order to produce a degree of similarity.

Text processing techniques such as tokenization,

abbreviation expansion and synonym lookup processes

the names of the entities before matching. For example,

PO is expanded to PurchaseOrder using abbreviation

expansion.

 Similarity measures produce numeric value ranging

from 0 to 1 in normalized similarity metrics, schema

mapping decision is Boolean – TRUE or FALSE. In order

to take decision whether or not the source and the target

entities are matched, a threshold value is specified. For

example, Levenshtein string metric produces similarity

value 0.4 between ContactName of S1 and Name of S2. If
the threshold value is 0.4 for determining correct mapping

that means the algorithm considers that all the pairs of

entities with a confidence measure greater than or equal to

0.4 as correct mapping entities. Then the matching

algorithm returns mapping decision to the user is TRUE.

Another matching algorithm matches CompanyName in

S1 and Organization in S2 using the combination of

tokenization and synonym look up. First, CompanyName

is tokenized as {Company, Name} and then Company and

Organization are matched according to the meaning of the

entities using synonym lookup and returns to the user that

mapping decision is TRUE.

 Only string similarity metrics and text processing

techniques do not produce good performance for schema

mapping. Therefore, it is necessary to use some

combination functions such as machine learning

algorithms, knowledge engineering approaches, neural

network and hybrid approaches.

 Structure level matching considers matching

hierarchical structure of a full graph. In Fig.1, the

hierarchical structure matching such as

PurchaseOrder.Contact.contactName

PO.Organization.Name is FALSE.

However, PurchaseOrder.Contact.companyName

PO.Organization.Name is TRUE. This is because

company and organization are matched according to the

hierarchical context.

3 Related Works

There are some systems for schema mapping in the

available literature. Lee and Doan developed a machine

learning based approach, eTuner (Lee et al., 2007) to

automatically tune schema matching systems to the

problems. The approach handles relational schemas and

considers only 1:1 mappings between schema pairs. It

uses name matchers such as edit-distance and q-gram as

terminological matchers. It can match source schema

against synthetic schemas, for which the ground truth

mapping is known, and can find a tuning in order to

improve the matching performance of source schema

against real schemas. It needs user assistance to improve

the tuning quality by getting suggestion about the

domain-specific perturbation rules. As the perturbation

rules are known, so the mapping between original source

and perturbed schema is also known. The approach is

used for semantic matches and maintaining wrappers.

However, the approach only considers source schema and

ignores target schema, and tunes only small to moderate

size schemas. Another problem is that the perturbation

rules are static and so for different mapping problems, the

generated gold standard does not differ much (Peukert et

al., 2012).

 Meta level learning (Eckert et al., 2009) is the first to

recognize the need to have more schema features for

creating adaptive processes. For this, the authors combine

different matchers using machine learning techniques.

They use the output of different matchers and additional

features about the nature of the entities to be matched, as

input for the learning approach. However, no suitable

gold mappings are available for learning, and for this

learned models often are not able to return results with a

good quality. Besides, the learning approach easily

overfits with the learning base, and the performance

decreases significantly with increasing sizes of decision

trees.

 Duchateau et al. present an approach, MatchPlanner

(Duchateau et al., 2008) for schema matching which uses

a decision tree to combine the best suitable match

algorithms. The approach inputs a set of schemas and a

decision tree which is composed of match algorithms, and

outputs a list of mappings which are validated by experts

to find out whether the matching is correct or not. The

feedback is used to feed into another decision tree for

learning. YAM (Duchateau et al., 2009) is a machine

learning based schema matching factory. In the learning

phase, YAM considers users’ requirement such as a

preference for recall or precision, provided expert

correspondences. It uses a Knowledge Base (KB) that

consists of a set of classifiers, a set of similarity measures,

and pairs of schemas which have already been matched.

In the matching phase, the KB is used to match unknown

schemas. In the system, users are asked to select

appropriate classifiers. If the users do not have proper

knowledge, then they depend on the default classifiers.

However, the default classifiers often do not produce

good performance. In addition, without proper

knowledge, it is not easy to provide the preference

between precision and recall. Machine learning

techniques are promising for element similarity, but they

need to rebuild the training model if schema data changes

over time. Inversely, knowledge engineering approach

encodes human knowledge directly, such that

knowledgebase can be constructed with limited data.

 Some systems have used knowledge engineering

approach for schema matching. (Peukert et al., 2012)

propose a self-configuring and adaptive schema matching

system. It uses different terminological matchers such as

name, datatypes, annotations, and synonyms using

WordNet. In the structure level matching, it uses

similarity propagation approach. The system depends on

some features that are computed from input schemas and

from intermediate mapping results. The features are then

used in matching rules to select matchers, aggregation and

selection operators. The rules represent expert knowledge

on how to define or adapt schema matching processes.

The matching process is iteratively extended, rewritten

and executed in order to correct matching problems.

However, the system predefines mapping rules such as

starting, aggregation, rewrite, refine and selection.

Therefore, the system faces problems when the viewpoint

of two schemas is highly different. Second problem is that

if some pre-defined mappings are incorrect and these

methods are run only one time to produce new mappings,

then the accuracy of new results will be unconfident.

Third problem is that the system tunes matching processes

manually and it does not split the process control flow

based on the type of entities to be matched. Traditional

rule-based systems require time-consuming knowledge

acquisition as in those systems a highly trained specialist,

the knowledge engineer, and the time-poor domain expert

are necessary in order to analyze domain (Richards,

2009).

 AMC (Peukert et al., 2011) is a schema and ontology

matching framework where it is necessary for the users to

provide an appropriate operator from different types of

operators such as matcher, combination, selection,

analyzer and blocking operators as input and to

investigate individual results of individual operator. For

this, users need to gather knowledge about the operators.

If users want to use the default operator, then the operator

may not handle different schemas of different domains.

 In this research, we use Hybrid-RDR (Anam et al.,

2015) approach that combines decision tree, J48 and

incremental knowledge engineering approach, Censor

Production Rules (CPR) based Ripple Down Rules (RDR)

at the element level. In the approach, the KB is empty at

the beginning, and the first rule is added to the KB by

classifying a dataset using decision tree classification

model. Then rules are added incrementally in order to

solve schema matching problems such as false positives

and false negatives. There are some advantages of the

approach. First, only one classification model of decision

tree is used in the approach, so it does not generate any

over fitting problem. Second, rules are not pre-defined.

Rules are created based on the features constructed from

string similarity metrics and text processing techniques.

Third, the approach does not need time consuming

knowledge acquisition as rules are only created to

correctly classify the wrongly classified cases produced

by decision tree model. At the structure level matching,

Similarity Flooding algorithm is used to match the

hierarchical structure of a full graph.

4 KSMS Overview

The main components of KSMS system are described in

Fig.2. The system discovers mappings between two

schemas by element level and structure level matchers.

The final mapping results are produced by using

aggregation function. The functionalities of the system

are described below:

Fig.2. KSMS architecture

 KSMS has been implemented in Java. It supports

Graphical User Interface (GUI) for selecting schemas,

displaying mapping knowledge created by feature

construction process, classifying entities using J48

training model, creating rules for knowledge acquisition

using features, checking satisfaction of rules, validating

rules and also for saving rules to the Knowledge Base

(KB).

 In the system, any two schemas are first selected from

repository. At the element level, input source and target

schemas are parsed to extract names of the entities.

4.1 Feature Construction

Features of the entities are constructed using

terminological matchers: text processing techniques and

string similarity metrics. Feature construction processes

are: Step 1, Cartesian product of the entities is generated.

Step 2, three text processing techniques such as

tokenization, abbreviation and acronym expansion, and

synonym lookup are applied on the entities. Step 3, string

similarity metrics are applied on the features of the

attributes computed from the above two steps. We use

string similarity metrics developed by two open source

projects. For Levenshtein, JaroWinkler, Jaro Measure,

TFIDF and Jaccard, we use open source library

SecondString
1
 and for Monge-Elkan, Smith-Waterman,

Needleman-Wunsch, Q-gram and Cosine, we use

SimMetric open source library
2
. Similarity values are

normalized, such that the value within from 0 to 1, where

0 means strong dissimilarity and 1 means strong

similarity. The threshold values for deciding schemas

matching (true/false) are increased with 0.1 from 0 to 1.

Another feature is created by using expert manual

mapping (true/false). These features and features values

are termed as attributes and cases respectively.

4.2 Element Level Matching

The extracted features including cases are fed into

Hybrid-RDR approach. In the approach, knowledge base

(KB) is empty at the beginning. First decision tree, J48

constructs a classification model using a small number of

cases and uses the model for classifying the new cases.

The decision tree rule is added in the KB as a first rule.

Then users verify the results based on the expert manual

mapping. If any case is wrongly classified (false positive/

false negative), new stopping rule is added to the KB to

make the classification as NULL. The rule is created

based on the features using a knowledge acquisition

process of CPR based RDR (Kim et al., 2012).

1
 http://secondstring.sourceforge.net

2
 http://sourceforge.net/projects/simmetrics

Knowledge acquisition is a process which transfers

knowledge from human experts to knowledge based

systems. The rule consists of one or more than one

conditions. The condition has the form:

Attribute operator value

 Where attribute is the feature, operator can be ‘=, !=,

<, >, <=, >=’, and value is the feature value. The

conditions are added into a condition list to make rule.

The rule is checked to determine whether it is satisfied by

the current case or not. If the rule is satisfied, then the rule

is validated on all the wrong classified cases to check

whether other cases also satisfy the rule. The rule is saved

in the KB as censor node which provides the

classification of the wrongly classified cases as NULL. In

order to correctly classify the NULL classified cases,

alternative rules are added to the KB as child rules of the

root rule for correctly classifying the cases as

TRUE/FALSE.

 The inference process is based on searching the KB

represented as a decision list with each decision possibly

refined again by another decision list. Once a rule is

satisfied by any case, the process evaluates whether or not

the exception rules are matched to the given case. If any

exception rule is not satisfied, then the process stops with

one path and one conclusion. However, if any exception

rule is satisfied, the fired rule becomes zero according to

censored conditions (Kim et al., 2012). Then other rules

below the rule that was satisfied at the top level is

evaluated. The process stops when none of the rules can

be satisfied by the case in hand. The inference algorithm

is the following:

1. Set lastFiredRule and CurrentRule as null

2. Get exceptionRule of rootRule

3. If exceptionRule is not null, set exceptionRule as

currentRule

4. Evaluate inputCase with currentRule

i. If inputCase satisfies currentRule, set

currentRule as lastFiredRule and get

exceptionRule of currentRule

a. If exceptionRule is not null, set

exceptionRule as currentRule and

go to 4

ii. Else get alternativeRule of currentRule

a. If alternativeRule is not null, set

alternativeRule as currentRule and

go to 4

5. Stop inference process and return lastFiredRule

The mapping results produced by this approach at the

element level are stored in a repository.

4.3 Structure Level Matching

 At the structure level matching, input schemas are parsed

and converted into graph data structure. Structure

matching is used to adjust incorrect matches from

matching phase, and it finds additional mappings. KSMS

uses the results of element level to match schema graph

structures based on a graph matching algorithm called

Similarity Flooding (Melnik et al., 2002). The approach

converts schemas into directed labelled graphs and uses

fix point computation to determine the matches between

corresponding nodes of the graphs. It uses the concept

that two nodes are matched based on the matching of

neighborhood.

4.4 Final Results of Mapping

 In this phase, we combine the mappings discovered from

element level and structure level matching by weighted,

average, minimum, maximum and harmonic mean

aggregation methods. Different systems have used

different aggregations function for combining mappings.

In order to determine the best one, we compare the

performance of all the aggregation functions. We define

the similarity values found from element level matching

and structure level matching by esim and ssim

respectively. The aggregation functions are described

below:

 Weighted: This strategy returns a weighted sum of the

similarity values. The similarity value found from

structure level matching is used as the threshold value

which is the weight of element level matching, and the

weight for structure level matching, 𝑊𝑠𝑡𝑟𝑢𝑐𝑡 is (1-

threshold) (Ngo et al., 2011b). The weighted similarity

of the entity pair, 𝑒1 and 𝑒2 is calculated as:

𝑤𝑠𝑖𝑚(𝑒1, 𝑒2) = 𝑊𝑠𝑡𝑟𝑢𝑐𝑡 . 𝑠𝑠𝑖𝑚(𝑒1, 𝑒2)
+ (1 − 𝑊𝑠𝑡𝑟𝑢𝑐𝑡). 𝑒𝑠𝑖𝑚(𝑒1, 𝑒2)

 This combination strategy is used in some matching

systems (Do and Rahm, 2002, Ngo and Bellahsene, 2012,

Madhavan et al., 2001).

 Average: The average similarity is calculated by

dividing the sum of the similarity values of two string

metrics for each name pair by the total number of

similarity functions. Average value is calculated by

the following function:

 Avg= (esim+ssim)/2

The matching systems which use this strategy are (Do

and Rahm, 2002, Volz et al., 2009, Jimenez et al., 2009).

 Minimum: This strategy returns the minimum

similarity value between two string metrics.

Minimum value is calculated by using the following

function:

 Min=Math.min (esim, ssim)

 Maximum: This strategy returns the maximum

similarity value between two string metrics.

Maximum value is calculated by using the following

function:

 Max=Math.max (esim, ssim)

The combination strategies, minimum and maximum are

used in some matching systems (Do and Rahm, 2002,

Volz et al., 2009, Massmann and Rahm, 2008).

 Harmonic mean: Harmonic mean is calculated by

the following function:

 Harmonic mean=2*esim*ssim/ (esim+ssim)

This combination strategy is used in the systems (Do and

Rahm, 2002, Ngo et al., 2011a).

5 Experimental Design

5.1 Datasets

Five XDR schemas of purchase order domain, such as

CIDX, EXCEL, NORIS, PARAGON and APERTUM

obtained from www.biztalk.org are used for this

evaluation study. We denote the schema datasets CIDX,

EXCEL, NORIS, PARAGON and APERTUM by C, E,

N, P, and A respectively. These schema datasets are used

for schema mapping evaluation and terminological

matching evaluation (Peukert et al., 2011). These schema

datasets contain different types of characteristics such as

identical words, combined words, abbreviated words and

synonym words. Each schema dataset contains 35 (E), 30

(C), 46 (N), 82 (A), 59 (P) entities.

5.2 Experimental Procedure

In this research, we experiment ten matching tasks one-

by-one using all combinations of five schema datasets

such as C-E (first matching task is to deal with two

datasets, CIDX and EXCEL), C-N, C-P, C-A, E-N, E-P,

E-A, N-P, N-A and P-A. We take the Cartesian product

of the schema datasets for ten matching tasks separately.

The sizes of Cartesian product of the matching tasks are

1050 (C-E), 1380(C-N), 1770(C-P), 2460(C-A), 1610(E-

N), 2065(E-P), 2870(E-A), 2714(N-P), 3772(N-A) and

4838(P-A) entity pairs respectively. We denote the

matching tasks C-E, C-N, C-P, C-A, E-N, E-P, E-A, N-P,

N-A and P-A by D1, D2, D3, D4, D5, D6, D7, D8, D9

and D10 respectively.

 In the evaluation approach, we feed the datasets in to

the static decision tree, dynamic decision tree (DT)

approaches and Hybrid-RDR approach. The approaches

learn a new model by including newly available data. We

use the decision tree to compare the performance to the

existing approaches as some systems, YAM (Duchateau

et al., 2009) and MatchPlanner (Duchateau et al., 2008)

use decision tree as a combination method. Here we

divide the decision tree into static and dynamic decision

tree. In the static decision tree, one dataset is used for

building a training model and another dataset is used for

testing. In the dynamic decision tree, one dataset is used

for building a training model and test the test dataset.

Then two datasets are combined and used for building a

training model and test the test dataset. Incrementally, all

the datasets except the test dataset are used for building a

training model and test the test dataset.

 We perform ten experiments to get the performances

(precision, recall and F-measure) of the static decision

tree, dynamic decision tree (DT) and Hybrid-RDR

approaches. In all experiments, we randomly select

datasets for training and testing. For example, we select

D1 for training and D10 for testing, D7 for training and

D3 for testing, D4 for training and D9 for testing. In such

a way, we select the datasets for training and testing. The

evaluation processes of the approaches are described

below:

5.2.1 Static DT

 In the static decision tree approach, we create decision

tree model, 𝑴𝑳𝟎 for D1 and test D10. Then we create

http://www.biztalk.org/

𝑴𝑳𝟏 for D2 and test D10. In this way, we create 𝑴𝑳𝟐 for

D3 to 𝑴𝑳𝟖 for D9 and test D10. For other combination,

we create 𝑴𝑳𝟎 for D7 and test D3, 𝑴𝑳𝟏 for D8 and test

D3. In this way, we create 𝑴𝑳𝟖 for D1 and test D3.

5.2.2 Dynamic DT

In the dynamic decision tree approach, we create decision

tree model, 𝑀𝐿0 for D1 and test D10. Then we

incrementally add other datasets like D1+D2, D1+D2+D3

for creating decision tree models, 𝑀𝐿1, 𝑀𝐿2 respectively

and test D10. In this way, we add all nine datasets for

creating decision tree model, 𝑀𝐿8 and test D10.

 For all decision tree approaches, we consider 10-fold

cross validation. 10-fold cross validation means that the

data is split into 10 groups where nine groups are

considered for training and the remaining one group is

considered for testing. This process is repeated for all 10

groups. For all experiments using decision tree, we use

WEKA (Hall et al., 2009) data mining and machine

learning toolbox.

5.2.3 Hybrid-RDR

In the Hybrid-RDR approach, we create decision tree

model, 𝑀𝐿0 for D1 and test D10. We also test D2 and

find some wrong classified cases. Then we refine the

decision tree rule by adding censor/exception/stopping

rule, 𝑅𝑢𝑙𝑒0 and again classify the cases by adding

alternative rule, 𝑅𝑢𝑙𝑒0. The censor rules are added as

censor nodes of decision tree in the KB and alternative

rules are added as parent rules in the KB. The 𝑀𝐿0+𝑅𝑢𝑙𝑒0

is then used for testing D10 and also for testing D3. We

add rule, 𝑅𝑢𝑙𝑒1 again for the wrong classified cases of

D3, and 𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1 is used for testing D10. In

such a way, we incrementally add rules for all nine

datasets, 𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1+…+𝑅𝑢𝑙𝑒8 and test D10.

5.3 Evaluation Metrics

As this task is a classification task, we use the following

conventional metrics: precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁

and F-measure =
 2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, where 𝑇𝑃 is True

Positive (hit), 𝐹𝑃 is False Positive (false alarm, Type I

error) and 𝐹𝑁 is False Negative (miss, Type II error). For

a specific threshold value, we calculate TP, FP and FN by

comparing manually defined matches (R) with the

predicted matches (P) returned by the matching

algorithms according to (Jimenez et al., 2009).

6 Evaluation Results

Performance of the static decision tree, dynamic decision

tree and Hybrid-RDR approaches depends on the features

of the datasets which are created using string similarity

metrics and text processing techniques. The performance

of Hybrid-RDR approach also depends on the efficient

knowledge acquisition. We compute performance in

terms of precision, recall and F-measure. Precision

estimates the reliability of the match predictions and

recall specifies the share of real matches. During schema

mapping, manually matching schemas of two

heterogeneous data sources and false identified matches

by algorithms are handled by humans. The burden of

deleting false identified matches is much easier than

creating manual matches among thousands of schemas

(Stoilos et al., 2005). As for calculating recall value,

manually identified matches are necessary, so recall value

is very important. Only precision or recall cannot

estimate the performance of match algorithms (Cheng et

al., 2005). So it is necessary to calculate the overall

performance or F-measure of Hybrid-RDR approach and

both static and dynamic decision tree using both precision

and recall. For this, we determine the best performing

classification system based on the optimized F-measure

(Marie and Gal, 2008) for almost all experimental

datasets.

6.1 Schema Mapping Results at the Element Level

At the element level, the names of the entities are

matched by static decision tree, dynamic decision tree

and Hybrid-RDR approaches. For all the above three

approaches, we perform ten experiments and compute

average performance of the experiments. In all

experiment, we randomly select datasets for training and

testing. We compare the performance of the approaches

to other approaches, AMC (Peukert et al., 2011), COMA

(Do and Rahm, 2002), FALCON (Hu et al., 2008),

RONDO (Melnik et al., 2003) based on F-measure. The

performance, F-measures of these approaches are found

from AMC. All F-measure of the approaches are

described in Table 1. The Datasets column describes the

datasets used for the experiments. The other columns,

AMC, COMA, FALCON and RONDO represent F-

measure of these approaches. We denote static decision

tree, dynamic decision tree and Hybrid-RDR by S_DT,

D_DT and HRDR respectively. The schema mapping

result found from element level matching is described in

Table 1.

Datas

ets

AM

C

CO

MA

FALC

ON

RON

DO

S_D

T

D_

DT

H-

RD

R

D1 0.44 0.42 0.38 0.41 0.81 0.85 0.90

D2 0.71 0.63 0.62 0.43 0.74 0.87 0.89

D3 0.59 0.51 0.55 0.53 0.65 0.78 0.85

D4 0.52 0.46 0.35 0.47 0.62 0.76 0.87

D5 0.45 0.42 0.42 0.41 0.74 0.82 0.86

D6 0.65 0.60 0.70 0.60 0.67 0.84 0.90

D7 0.51 0.48 0.44 0.45 0.66 0.79 0.88

D8 0.55 0.50 0.54 0.55 0.64 0.76 0.85

D9 0.41 0.34 0.39 0.28 0.68 0.75 0.83

D10 0.30 0.31 0.25 0.25 0.56 0.60 0.80

AVG 0.51 0.48 0.47 0.44 0.68 0.79 0.86

Table 1. F-measures compariosn of the approaches

 In Table 1, we compare performance, F-measure of

some previous approaches to the static decision tree,

dynamic decision tree and Hybrid-RDR. We find that our

approaches show better performance compared to AMC,

COMA, FALCON and RONDO. The average

performances of these approaches are 0.51, 0.48, 0.47 and

0.44 respectively, whereas for static decision tree,

average performance is 0.68. Though static decision tree

improves performance compared to the previous

approaches, but the performance is still low. F-measure is

calculated from precision and recall. The reason of low

precision means high false positive values, and low recall

means that the false negative numbers are very high. In

order to increase the performance, we use dynamic

decision tree which adds datasets gradually to the

previous datasets for building training model and use the

model for handling some false positives and false

negatives. The approach improves the average

performance up to 11% compared to static decision tree,

but it is necessary to handle more false positives and false

negatives to increase the performance. For this, we use

Hybrid-RDR that handles the problems by efficient

knowledge acquisition. The performance of Hybrid-RDR

is reasonably high compared to other approaches for all

datasets. The average performance of Hybrid-RDR is

0.86 which improves 18% and 7% compared to static and

dynamic decision tree respectively.

The performance of the algorithms depends on the

characteristics of the datasets such as identical,

abbreviated, and synonym and combined words. If

training dataset contains large number of abbreviated

words, but test dataset contains large number of synonym

words, then performance becomes low. For increasing the

performance of dynamic decision tree, it is necessary to

build models again with more datasets to correctly

classify the schema data. Sometimes building model with

a large amount of datasets may not improve the

performance by classifying the schemas correctly because

the learning approach easily overfits with the learning

base. However, for the Hybrid-RDR approach,

performance is improved by incrementally adding rules

for solving false positives and false negatives.

6.2 Schema Mapping Results at the Structure Level

 Only element level matching does not produce good

results. In order to improve the performance and produce

accurate results, we have performed structure level

matching. The mapping result of structure level matching

is shown in Table 2.

Datasets Precision Recall F-measure

D1 0.98 0.94 0.96

D2 0.94 0.91 0.92

D3 0.93 0.95 0.94

D4 0.97 0.94 0.95

D5 1.00 0.89 0.94

D6 0.96 0.91 0.93

D7 0.95 0.93 0.94

D8 0.91 0.94 0.92

D9 0.95 0.91 0.93

D10 0.90 0.92 0.91

AVG 0.95 0.92 0.93

Table 2. Performance of KSMS at the structure level matching

In Table 2, we show that the performance of structure

level matching in terms of precision, recall and F-

measure. Precision is higher than recall in most of the

datasets. This is reasonable when we consider structure

level instead of element level. We compare this F-

measure to the F-measure of the element level matching,

and we find that average F-measure has been improved

up to 7% when we consider the hierarchical structure at

the structure level matching. The average precision, recall

and F-measure of all the datasets in the purchase order

domain are 0.95, 0.92 and 0.93 respectively.

6.3 Final Mapping Results by Aggregation

functions

 In order to combine the schema mapping results produced

by element level and structure level matchers, and to

produce the final results, we use aggregation functions on

the F-measure. The final schema mapping results are

shown in Table 3 where the columns Datasets, Harm,

Avg, Min, Max, Weighted describe information about

datasets, HARMONIC MEAN, AVERAGE, MINIMUM,

MAXIMUM and WEIGHTED aggregation results.

Datasets Harm Avg Min Max Weighted

D1 0.93 0.93 0.90 0.96 0.90

D2 0.90 0.91 0.89 0.92 0.89

D3 0.89 0.90 0.85 0.94 0.86

D4 0.91 0.91 0.87 0.95 0.87

D5 0.90 0.90 0.86 0.94 0.86

D6 0.91 0.92 0.90 0.93 0.90

D7 0.91 0.91 0.88 0.94 0.88

D8 0.88 0.89 0.85 0.92 0.86

D9 0.88 0.88 0.83 0.93 0.84

D10 0.85 0.86 0.80 0.91 0.81

AVG 0.90 0.90 0.86 0.93 0.87

Table 3. Final mapping results

 In Table 3, we find that MAXIMUM gives the highest

and MINIMUM gives the lowest schema mapping results

compared to other aggegation functions. As MAXIMUM

takes the highest value and MINIMUM takes the lowest

value between two values, we do not consider the results.

We compare the results among other three functions. We

find that WEIGHTED provides the lowest aggregation

result. AVERAGE gives slightly better mapping results

compared to HARMONIC MEAN for some datasets such

as D2, D3, D6, D8 and D10. Therefore, the final average

mapping performance, F-measure is 0.90.

7 Discussion

Schema mapping can be done by machine learning or

knowledge engineering approaches at the element level.

Machine learning approach is promising for element

similarity, but it needs to rebuild a training model if

schema data changes over time. Inversely, knowledge

engineering approach encodes human knowledge directly

such that knowledge base can be constructed with limited

data, but it needs time consuming knowledge acquisition.

In order to overcome the limitations, we have used

Hybrid-RDR approach that combines machine learning

algorithm, J48 and knowledge engineering approach,

CPR based RDR in our system, KSMS. The advantage of

Hybrid-RDR is that it needs only one training model to

classify new schema data. If the model gives wrong

classification, then rules are added incrementally in order

to handle the problem. The approach increases

performance incrementally with the help of knowledge

acquisition and decreases rule addition over time.

However, only element level matching is not sufficient

for schema mapping. This is because it is necessary to

consider the hierarchical structure of a full graph in order

to improve the performance and produce accurate results.

For this, we have added the features of performing

structure level matching in KSMS. Finally, we have used

some aggregation functions for combining the results of

both element level and structure level matching.

8 Conclusion and Future Works

In this research, we have presented a Knowledge-based

Schema Matching System (KSMS) which has performed

schema mapping both at the element and structure level.

In order to show the ability of the system, we have used 5

XDR datasets from purchase order domain. Experimental

results have shown that the system determines good

performance both at the element and structure level. The

final schema mapping result is determined by the average

aggregation function. There are some advantages of our

system compared to the existing systems. First, it is not

necessary to select the best combination of matchers.

Second, Knowledge base is empty at the beginning. That

means the system does not need any initial expert

correspondences from the users. Third, rules are not

predefined. Rules are created based on the features

constructed from element level matchers. Fourth, over

fitting problem does not occur in the system as only one

decision tree model is used for classifying schemas. Fifth,

the system does not need time consuming knowledge

acquisition as rules are only created to correctly classify

the wrongly classified cases produced by decision tree

model. Finally, the system can handle the schema

matching problems: false positives and false negatives

using knowledge acquisition. So users do not need to add,

delete or modify schema mapping results manually.

 In future, we will adapt our system for ontology

mapping. Then we will experiment more datasets from

other domains such as conference, bibliography and

anatomy.

Acknowledgement

Autonomous Systems, Digital Productivity and Service

Flagship, and the Tasmanian node of the Australian

Centre for Broadband Innovation are assisted by a grant

from the Tasmanian Government which is administered

by the Tasmanian Department of Economic

Development, Tourism and the Arts.

References

Anam, S., Kim, Y. and Liu, Q. (2014): Incremental

Schema Mapping. Knowledge Management and

Acquisition for Smart Systems and Services.

Springer International Publishing.

Anam, S., Kim, Y.S., Kang, B.H. and Liu, Q. (2015):

Schema Mapping Using Hybrid Ripple-Down

Rules. the Thirty-Eighth Australasian Computer

Science Conference, ACSC 2015. Sydney,

Australia: CRPITT.

Cate, B.T., Dalmau, V. and Kolaitis, P.G. (2013):

Learning schema mappings. ACM Transactions

on Database Systems (TODS), 38, 28.

Cheng, W., Lin, H. and Sun, Y. (2005): An efficient

schema matching algorithm. Knowledge-Based

Intelligent Information and Engineering Systems,

Springer, 972-978.

Do, H.-H. and Rahm, E. (2002): COMA: a system for

flexible combination of schema matching

approaches. Proceedings of the 28th

international conference on Very Large Data

Bases, VLDB Endowment, 610-621.

Duchateau, F., Bellahsene, Z. and Coletta, R. (2008): A

flexible approach for planning schema matching

algorithms. On the Move to Meaningful Internet

Systems: OTM 2008. Springer.

Duchateau, F., Coletta, R., Bellahsene, Z. and Miller,

R.J.(2009): Yam: a schema matcher factory.

Proceedings of the 18th ACM conference on

Information and knowledge management, ACM,

2079-2080.

Eckert, K., Meilicke, C. and Stuckenschmidt, H. (2009):

Improving ontology matching using meta-level

learning. The Semantic Web: Research and

Applications. Springer.

Hall, M., Frank, E., Holmes, G., Pfahringer, B.,

Reutemann, P. and Witten, I.H. (2009): The

WEKA data mining software: an update. ACM

SIGKDD explorations newsletter, 11, 10-18.

Hu, W., Qu, Y. and Cheng, G. (2008): Matching large

ontologies: A divide-and-conquer approach.

Data & Knowledge Engineering, 67, 140-160.

Jimenez, S., Becerra, C., Gelbukh, A. and Gonzalez, F.

(2009): Generalized mongue-elkan method for

approximate text string comparison.

Computational Linguistics and Intelligent Text

Processing. Springer.

Kim, Y.S., Compton, P. and Kang, B.H. (2012): Ripple-

down rules with censored production rules.

Knowledge Management and Acquisition for

Intelligent Systems. Springer.

Lee, Y., Sayyadian, M., Doan, A. and Rosenthal, A.S.

(2007): eTuner: tuning schema matching

software using synthetic scenarios. The VLDB

Journal—The International Journal on Very

Large Data Bases, 16, 97-122.

Madhavan, J., Bernstein, P.A. and Rahm, E. (2001):

Generic Schema Matching with Cupid.

Proceedings of the 27th International

Conference on Very Large Data Bases. Morgan

Kaufmann Publishers Inc.

Marie, A. and Gal, A. (2008): Boosting schema matchers.

On the Move to Meaningful Internet Systems:

OTM 2008. Springer.

Massmann, S. and Rahm, E.(2008): Evaluating Instance-

based Matching of Web Directories. WebDB,

2008. Citeseer.

Melnik, S., Garcia-Molina, H. and Rahm, E. (2002):

Similarity flooding: A versatile graph matching

algorithm and its application to schema

matching. 18th International Conference on

Data Engineering, IEEE, 117-128.

Melnik, S., Rahm, E. and Bernstein, P.A. Rondo (2003):

A programming platform for generic model

management. Proceedings of the 2003 ACM

SIGMOD international conference on

Management of data, ACM, 193-204.

Ngo, D., Bellahsene, Z. and Coletta, R. (2011a): A

generic approach for combining linguistic and

context profile metrics in ontology matching. On

the Move to Meaningful Internet Systems: OTM

2011. Springer.

Ngo, D.H. and Bellahsene, Z. (2009): YAM++:(not) Yet

Another Matcher for Ontology Matching Task.

BDA'2012: 28e journées Bases de Données

Avancées, 2012.

Ngo, D.H., Bellahsene, Z. and Coletta, R. (2011b):

YAM++--Results for OAEI 2011. ISWC'11:

The 6th International Workshop on Ontology

Matching, 228-235.

Peukert, E., Eberius, J. and Rahm, E. (2011): AMC-A

framework for modelling and comparing

matching systems as matching processes. 27th

International Conference on Data Engineering

(ICDE), IEEE, 1304-1307.

Peukert, E., Eberius, J. and Rahm, E. (2012): A self-

configuring schema matching system. 28th

International Conference on Data Engineering

(ICDE), IEEE, 306-317.

Richards, D. (2009): Two decades of ripple down rules

research. The Knowledge Engineering Review,

24, 159-184.

Stoilos, G., Stamou, G. and Kollias, S. (2005): A string

metric for ontology alignment. The Semantic

Web–ISWC, Springer.

Volz, J., Bizer, C., Gaedke, M. and Kobilarov, G. (2009):

Discovering and maintaining links on the web of

data, Springer.

