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Abstract—The recent need of processing BigData has led to
the development of several Map-Reduce applications for efficient
large scale processing. Due to on-demand availability of large
computing resources, Public Clouds have become a natural host
of these Map-Reduce applications. In this case, users need to
decide which resources they need to rent to run their Map-
Reduce cluster other than deployment or scheduling of map-
reduce tasks itself. This is not a trivial task particularly when
users may have performance constraints such as deadline and
have several Cloud product types to choose with intention of not
spending much money. Even though there are several existing
scheduling systems, however most of them are not developed to
manage the scheduling of Map-Reduce applications. That is, they
do not consider things like the number of map and reduce tasks
and slots per VM. This paper proposes a novel greedy scheduling
algorithm (MASA) that considers the users constraints in order to
minimize cost of renting Cloud resources while considering the
user’s budget and deadline constraints. The simulation results
show 25-60% reduction cost in comparison to current methods
by using our proposed algorithm.

I. INTRODUCTION

Efficiently and effectively processing large volumes of
BigData has emerged as a predominant challenge in many
emerging application domains including (but not limited to)
enterprise computing, smart cities, remote healthcare, high-
energy physics, bio-informatics, and astronomy. For example,
in the past enterprises have developed offline Business Intel-
ligence (BI) for strategic decision making via analysis (done
by experts) of historical data and decision-making cycles in
the last weeks or months [1]. With the push towards more
automation for faster business strategy adaptation, enterprises
are facing the need to develop next generation BI systems that
can support data-driven decision making. For example, on-
line retail companies are required to analyze click stream data
and up-to-the minute inventory status for offering dynamically
priced and customized product bundles. Similarly, banks are
looking to detect and react to frauds in based on analyzing
transactional data. On the other hand, cities are evolving into
smart cities by fusing and analyzing data from several sources
(e.g., traffic cameras, social media, remote sensing data, GPS
data).

Public cloud providers such as Amazon Web Services have
started to offer on-demand Hadoop clusters (PaaS), referred to
as Elastic Map-Reduce, on its EC2 datacentres (IaaS) on pay-
as-you-go basis [2]. However, current scheduling techniques
and systems for deploying Hadoop clusters [3] on public IaaS

clouds are incapable of supporting SLA-driven data processing
application management. Important SLA constraints include:
(i) Deadline: upper bound on the time finishing the data
processing task and (ii) Budget: upper bound on the monetary
limit for finishing the data processing task. In the current
practice, public cloud providers require users (Map-Reduce
application administrators) to manually decide the mix and
type of IaaS resources they need as part of their Hadoop cluster
for finishing the analytic task over their BigData within SLA
constraints.

Research Problem. Clearly, it is impossible to resolve
such dependency between IaaS-level hardware configurations,
deployment plan for Hadoops PaaS-level software components
and SLA constraints manually. In particular, the hard challenge
is to flexibly select IaaS configurations (I/O capacity, RAM,
VM speed, local storage, cost) for scheduling PaaS-level
Hadoops software components (such as number of Map tasks,
number of Reduce tasks; Map Slots per VM, Reduce Slots for
VM, Max RAM per slot) driven by SLA constraints (analyze
100GB of Tweets in 10 minutes subject to maximum budget
of $100). The space of possible configurations for big data
processing frameworks and hardware resource is very large, so
computing an optimal solution is NP-complete, and therefore
intractable given current technology.

The scheduling problem is further complicated by the fact
that Map-Reduce application workload characteristics (e.g.,
data volume, priority, concurrency) and IaaS resource per-
formance (e.g., availability, throughput, utilization) behavior
fluctuate over time. Furthermore, as public cloud providers
desire to maximize resource utilization and profit, they have
mechanisms of dynamically consolidating other types of
workload (e.g. web servers, video streaming, SQL/NoSQL
query processing, stream processing) to the unused physical
resources in the cluster which further adds to the complexity of
dynamically managing clusters performance for meeting SLA
constraints. In reality, the performance degradation depends on
how noisy neighboring application workloads are. In most of
the cases, it is likely that Map-Reduce applications will miss
their deadline, which may result in financial losses based on
analytic context. For example, delays in detecting fraudulent
transaction may incur heavy losses to banks. On the other
hand, delays in analyzing customer sentiments for products
may lead to revenue loss for on-line retail companies.

Research Methodology and Contributions. The question



of SLA-aware scheduling of applications has been addressed
previously in context of HPC, Grid, Cloud (at IaaS-layer), and
Database research over the last 2 decades. Our methodology
differentiates itself in following aspects. First of all, we
present a mathematical model that enables holistic modeling of
relationship between SLA parameters (e.g., budget and dead-
line) and Hadoop clusters configurations in terms of: (i) Big
Data volume (ii) PaaS component configuration (number of
mappers and number of reducers) and IaaS configuration (VM
type, VM speed). Secondly, we develop a greedy heuristic-
based scheduling algorithm that can pro-actively minimize the
cost under user’s constraint (budget and deadline), BigData
workload (data volume, priority) and IaaS performance (e.g.,
availability, throughput, utilization) uncertainties. We exten-
sively validate the performance of the SLA model and greedy
scheduling algorithm in the IoTSim [4] simulator.

The rest of this paper is organized as follows. In Section
2, we discuss some related works. Section 3 presents the
high level system scenario that is considered for scheduling
Map-Reduce application(aka. Jobs) on Public Clouds. Section
4 discusses our mathematical model and its assumptions. In
Section 5, we present our proposed scheduling algorithm.
Section 6 presents evaluation of the performance of our
proposed algorithm. In Section 7, we conclude the paper with
future directions.

II. RELATED WORK

While public clouds have evolved towards heterogeneous
hardware configuration for differentiated processing power,
I/O capacity, RAM size, network connectivity and network
location, most existing Map-Reduce application scheduling
platforms (Apache YARN, Apache Mesos, Apache Spark,
Amazon Elastic Map-Reduce) are designed for homogeneous
clusters of hardware resources (VM, Storage, and Network).
These platforms expect Map-Reduce application administra-
tors to determine the number and configuration of hardware
resources to be allocated PaaS-level components (e.g., num-
ber of Map tasks, number of Reduce tasks; Map Slots per
CPU, Reduce Slots for CPU, Max RAM per slot). Branded
price calculators are available from public cloud providers
(Amazon[5], Azure[6]) and academic projects (Cloudrado[7])
but they cannot recommend hardware configurations to be
allocated to PaaS-level Hadoop components driven by SLA
constraints.

There are several works on scheduling different applications
on public cloud. Some have proposed algorithms to manage
web applications, others for managing scientific applications
and some on scientific workflow. Data and control flow depen-
dencies in Map-Reduce applications are quite different from
workflow as number of tasks in an application are not static
as in traditional workflow but depends on data size. Thus, the
existing algorithms that are proposed for scientific workflows
cannot be applied in this scenario.

Lee et al.[8] proposed dynamically allocating public cloud
resources to a Hadoop cluster based on a simple SLA
constraint: minimize storage size. Kambatla et al. [9] pro-
posed selecting the optimal set of public cloud resources

for Hadoop cluster by developing and profiling hardware
resource consumption statistics. Similarly, the authors of [10]
propose selecting configurations of heterogeneous Amazon
EC2 resources under various what-if scenarios (number of
Map tasks, number of Reduce tasks, size and distribution of
input data). However, none of these approaches considered
deadline and budget SLA constraints while taking scheduling
decisions. Some works such [11][12][13] proposed algorithms
to minimize makespan of multiple map-reduce jobs on the
same cluster where each job is competing for the resources,
which is not the case of a Public Cloud. [14] shares a
similar scenario with these papers, but the authors assume
that map tasks and reduce tasks have the constraints in terms
of monetary and execution time without any consideration of
data transmission time. This assumption is not very realistic,
because users are not able to set the specific constraints for
each map or reduce task. In this paper, we only ask the users to
set the constraints for the Map-Reduce application. Moreover,
we consider the time of data transmission in our model which
might significantly affects total makespan when the data size
is huge.

Some public cloud providers such as Amazon Auto Scaler
controllers implement reactive heuristics to scale Hadoop
clusters based on CPU usage measurements. However, Auto
Scaler warrants the administrator to statically define the CPU
thresholds (no support for dynamic scaling based on opti-
mizing SLA constraints) that triggers the scaling of cluster.
There has been lot research work conducted in developing
performance models of Map-Reduce applications on clouds.
These performance models are based on machine learning
[15], Markov and fast fourier transforms [16] or using wavelet
techniques [17] and they provide predictions on execution
(run) time of Map/Reduce tasks, input data volume, network
I/O patterns, etc. Principal Component Analysis [18] has
also been applied to learn performance model parameters of
Map-Reduce applications. The progress made in Map-Reduce
performance modeling is significant however, these models
do not cater for SLA constraints while undertaking prediction
decisions.

In summary, to best of our knowledge, it is the first
work that model all the requirements of a map-reduce job
(both computing and communication) and schedule them on
Public Cloud in order to minimize their execution cost while
considering SLA parameters such as Budget and Deadline.

III. SYSTEM MODEL: SCHEDULING FRAMEWORK

Current BigData processing platforms for deploying Map-
Reduce applications can be divided into following layers:
(i) Platform as a Service (PaaS) level software frameworks

such as Apache Hadoop [3] (an implementation of
Google’s Map-Reduce programming model [19]) that en-
able development of parallel data processing applications
by exploiting capacity of large cluster of commodity
computers. Frameworks such as Apache Hadoop hide the
low-level distributed system management complexities
by automatically taking care of activities including task



Fig. 1. Map Reduce Job Scheduling on Public Cloud

scheduling, data staging, fault management, inter-process
communication, result collection.

(ii) Infrastructure as a Service (IaaS) that offers unlimited
data storage and processing capabilities hosted in large
datacentre farms.

Figure 1 shows our scheduling scenario. In our approach,
users submit their requests to a MR (Map-Reduce) Cloud
broker whose responsibility is to select appropriate IaaS dat-
acentre services for deploying Hadoop Cluster on behalf of
an user (e.g., data analyst) while meeting user-specified SLA
constraints. The users’ deployment request consist of details of
map reduce application features including data size to process,
deadline by which a user wants the job to be finished and a
budget which she is willing to spend.

MR Cloud Broker has the similar responsibility as a typical
Cloud broker, i.e. to interact with users, understand their
requirements and schedule processing based on users’ SLA
constraints. The scheduling algorithm, models, and assumption
for making this decision is discussed in the following sections.
The broker will decide which type of Virtual Machines (VMs)
to be utilized so that cost of execution can be minimized. It
will also decide where (e.g., type of VM) each map and reduce

task should execute. After analyzing the user’s request, the
MR broker deploys a Map-Reduce cluster after negotiating
all the required IaaS services from the datacentre provider.
In the next section we will discuss the mathematical model
and assumption that is considered as part of our scheduling
approach.

IV. MATHEMATICAL MODEL AND ASSUMPTIONS

TABLE I
NOTATIONS

Symbols Descriptions
MapReduce Workload

J a Map-Reduce Job or workload set
Ji a Map-Reduce Job or workload instance
Mi a set of map tasks ∈ Ji

Ri a set of reduce tasks ∈ Ji

Sizemap(Ji) the input data size of map tasks ∈ Ji

Sizereduce(Ji) the input data size of the reduce tasks ∈ Ji

VM Configuration
VM a set of VM types
VMmips set denoting MIPS rating of VMs
VMmap upper limit on number of map tasks that can

be mapped to VM
VMreduce upper limit on number of reduce tasks that

can be mapped to VM
VMbandwidth VMs’ network bandwidth
Y the leasing cost of a Small VM type for a

minute
vmj a VM instance j

makespan
TT (Mi, vmj) network delay (transfer cost) in transferring

input data of map tasks of Ji to vmj

TT (Ri, vmj) network delay (transfer cost) in transferring
input data of reduce tasks of Ji to vmj

vmbw
j the network bandwidth of vmj

MIMT (Mi) Ji’s aggregated millions instructions (MI) of
map tasks

TET (Mi, vmj) the execution time of the map tasks of Ji

MIRT (Ri) Ji’s aggregated millions instructions (MI) of
reduce tasks

TET (Ri, vmj) the execution time of the reduce tasks of Ji

makespan(Ji, hVM) the total makespan of executing Ji over
hVM VMs

makespanm(Ji, hVM ′) the makespan of executing map tasks
of Ji over hVM ′ VMs

makespanr(Ji, hVM ′′) the total makespan of executing
reduce tasks of Ji over hVM ′′ VMs

Monetary Cost
COST (Ji, hVM) the cost of execution Ji over hVM VMs

We assume that a Map-Reduce Job Ji consists of a set of
map tasks Mi and a set of reduce tasks Ri, where |Mi| ≥ |Ri|.
The aggregate data size ∈ Ji is be represented as Size(Ji). It
is also the total size of input datasets of the map tasks, hence
Size(Ji) == Sizemap(Ji). On the other hand the total size
of the input data of the reduce tasks is denoted by function
Sizereduce(Ji).

Furthermore, in this paper we consider three types
of VMs which can host a map or a reduce task:
VM = {SmallV M,MediumVM,LargeVM}, and
the MIPS (millions instructions per seconds) rating of
these VMs is denoted by set VMmips. We assume that
a SmallVM can only run one map task and one reduce
task at a given point of time i.e., SmallV Mmap = 1
and SmallV Mreduce = 1. On the other hand,
MediumVMmap = 2, MediumVMreduce = 2 and
LargeVMmap = 4 and LargeVMreduce = 4 respectively.



Our modeling assumptions are based on Amazon EC2 [5]
VM configurations where the number of processor core
doubles across VM types. We also assume that each VM can
be allocated network bandwidth in proportion to their sizes.
For example,the bandwidth allocation of each VM type is
defined by the following relation: 4 ∗ SmallV Mbandwidth =
2 ∗ MediumVMbandwidth = LargeVMbandwidth =
4B(Mbps), where VMbandwidth={SmallV Mbandwidth,
MediumVMbandwidth, LargeVMbandwidth}.

In the following, we first model the makespan of Map-
Reduce Job followed by the Monetary cost model. Finally,
we formalize the optimization problem in Section IV-C.

A. Makespan of Map-Reduce Job
As we discussed above, each type of VM has its correspond-

ing capacity limit for processing the map and reduce tasks as
shown in Eq. 1 and Eq. 2 respectively:

VMmap = {SmallV Mmap,MediumVMmap, LargeV Mmap} (1)

VMreduce = {SmallV Mreduce,MediumVMreduce, LargeVMreduce}
(2)

In general, Map-Reduce jobs have four stages [19]. In the
first stage, input data is transferred to the Map-Reduce cluster.
In the second stage, Map tasks process the data. In the third
stage, shuffling of intermediate data is done and in last stage
Reduce tasks aggregate the result set emitted by different Map
tasks. Based on these four stages, we can model the makespan
of a Map-Reduce Job by splitting it into four steps: map data
transfer, map task execution, reduce data transfer and reduces
task execution.

1) Network delay of transferring input data to Map task:
Given a Map-Reduce Job Ji, we apply the Eq. 3 to calculate
the network data transfer delay:

TT (Mi, vmj) =

Sizemap(Ji)

|Mi|

vmbw
j

, vmbw
j ∈ VMbandwidth (3)

2) Map task execution delay: In order to calculate the
execution time of map tasks, we model following equation:

MIMT (Mi) = mimap ∗
Sizemap(Ji)

|Mi|
(4)

where mimap is the millions of instructions per MB data when
processing each map task. Therefore, the execution time of a
map task on a given vmj is:

TET (Mi, vmj) =
MIMT (Mi)

vmmips
j

, vmmips
j ∈ VMmips (5)

3) Network delay of transferring input data to Reduce task:
As we have discussed above, the number of reduce tasks of
Ji is always less than the number of map tasks. Moreover,
the data size of the reduce tasks must also differ from that
of map tasks. Thus, the network delay of transferring data to
vmj where a reduce task will be mapped is:

TT (Ri, vmj) =

Sizereduce(Ji)
|Ri|

vmbw
j

, vmbw
j ∈ VMbandwidth (6)

4) Reduce task execution delay: Similar to map task, we
calculate the execution time of a reduce taks on a VM using the
concept: MIRT (millions instructions of reduce task), which
is defined as:

MIRT (Ri) = mireduce ∗
Sizereduce(Ji)

|Ri|
(7)

where mireduce represents the millions of instructions per MB
data when processing a reduce task. Equation 8 calculates the
execution time of reduce task on vmj :

TET (Ri, vmj) =
MIRT (Ri)

vmmips
j

, vmmips
j ∈ VMmips (8)

A Map-Reduce Job may not be executed in a single VM,
the makespan of Ji over a set of map and reduce tasks mapped
to VMs hVM can be computed as shown in Equation 9. The
hVM has two subsets hVM ′ and hVM ′′, representing the
VMs that executed map and reduce tasks respectively.

makespan(Ji, hV M) = makespanm(Mi, hV M ′)+

makespanr(Mi, hV M ′′)

= max
vmj∈hiredV M′

(TT (Mi, vmj) + TET (Mi, vmj))

+ max
vmh∈hiredV M′′

(TT (Ri, vmh) + TET (Ri, vmh))

(9)

, where |Mi| =
∑

vmj∈hVM ′ vm
map
j and, |Ri| =∑

vmh∈hVM ′′ vmreduce
h . vmmap

j is the maximum number of
map tasks that vmj can host, and vmreduce

h is the maximum
number of reduce tasks that vmh can host.
B. Monetary Cost

In this paper, we assume that the VMs are charged under
pay-as-you-go model (e.g. per minute). For example, the price
of hiring or leasing computation time of a SmallVM for 30
minutes at Y dollar per minute base rate will be 30∗Y dollars.
In our model, the MediumVM and LargeVM cost 2Y dollars
and 4Y dollars per minute respectively. This is a reasonable
and practical assumption and is modeled around the Amazon
EC2 pricing scheme. In summary, the total cost of processing
a Map-Reduce Job Ji on set of heterogeneous VMs will be:

COST (Ji, hV M) = (makespanm(Mi, hV M ′)∗∑
vmj∈hV M′

Y [vmj ∈ SmallV M ]+

2Y [vmj ∈MediumVM ]+

4Y [vmj ∈ LargeVM ])+

(makespanr(Ri, hV M ′′)∗∑
vmh∈hV M′

Y [vmh ∈ SmallV M ]+

2Y [vmh ∈MediumVM ]+

4Y [vmh ∈ LargeVM ])

(10)

C. Optimization Problems

It is evident from Equation 4 and 7 that by increasing
the level of parallelism for map and reduce tasks (i.e. hiring
more and more number of VMs), the overall makespan can be



reduced. Furthermore, using more powerful VMs (Large vs.
Small) has further potential to improve the makespan due to
superior processor speed and network I/O capacity. However,
adding more VMs and replacing small VM with larger VM
will certainly lead to elevated monetary Cost. In other words,
there are exsit a trade-off between Map-Reduce application
makespan and monetary cost.

In this paper, we consider the following optimization prob-
lem how to minimize the monetary cost to process a given
set of Map-Reduce Jobs J while meeting the deadline C. The
problem is formalized as:

argmin
∑
Ji∈J

COST (Ji, hV M)

Subject to:
∑
Ji∈J

makespan(Ji, hV M) ≤ C
(11)

V. PROPOSED MAP-REDUCE APPLICATION SCHEDULING
ALGORITHM (MASA)

In general, the scheduling problems (discussed above) are
NP-hard problems as they map to 0-1 Knapsack problems [20].
Thus a heuristic approach is necessary to solve the problem.
In this section, we give details of our proposed greedy algo-
rithm which schedules Map-Reduce applications considering
deadline and budget SLA requirements.

In Map-Reduce frameworks such as Hadoop, in general data
is distributed across several cluster nodes where map tasks are
scheduled in round robin fashion in order to have balanced
load across each cluster node. In other words, each node
will be executing a more or less equal number of map tasks
considering homogeneous configuration across nodes. Thus,
without loss of generality we can assume there is one large
size map task running on each node instead of several small
map tasks.

Algorithm 1 depicts the important steps of our algorithm.
In the first step, the minimum and maximum number of
map tasks are created such that user specified deadline and
budget constraint can be achieved. These bounds are computed
considering that the same type of VMs are used for executing
tasks. In the next step, the algorithm iteratively computes (in
a greedy fashion) the best possible number of mappers and
reducers, and VM types that can minimize the cost, while
meeting the deadline constraint.

VI. EVALUATION

In this section, we evaluate the performance of our proposed
MASA algorithm and compare it against existing Map-Reduce
scheduling approach (NonSLA or SLA agnostic). We refer
to the existing approach as ”NonSLA Algorithm”. In this
algorithm, rather than specifying budget and deadline, each
user will specify which types of VM s/he intends to initiate
to run his/her map-reduce tasks. The more details of this
approach is given in Algorithm 2.

A. Experimental Setup

To model a real Public Cloud environment and map-reduce
application scheduling scenario, we utilised IoTSIM [4]. Our

Algorithm 1: MASA: Greedy based proposed algorithm
Data: Input: User Request = r1;// details of

Map-Reduce application,
deadline,budget

Result: Allocation aij;// allocation of map and
Reduce tasks to VMs

Minmap=Calculate Lower bound on number of mappers;
Maxmap=Calculate Upper bound on number of mappers;
Let AllocList be the list of possible allocations; for
i ∈ (Minmap,Maxmap) do

for j ∈ (1, i) do
// For allocation, choose VM types

having minimum cost(vmtype)
VMcores∗VMMIPS

aij = Compute Allocation(i, j, r1);
// calculate time and cost of the

above allocation
calculate time(r1, aij);
calculate cost(r1, aij); // compare the

time with deadline
if time > deadline||cost > budget then

delete this allocation;
else

if time < deadline&cost < budget then
keep it as an option i.e. insert in AllocList

end
;

end
// choose the minimum cost

allocation
ChooseMinimum Alloc(AllocList);
Deploy r1 based on chosen allocation;

end
end

Algorithm 2: NonSLA: Current Existing Mechanism
Data: Input: User Request = r1;// details of

Map-Reduce application, deadline
(d), budget (b), and VM type to
initiate (VMType

Result: Allocation aij ;// allocation of Map
and Reduce tasks to VMs

// number of VMs to be initiated
NumVms= b

VMTypecost∗d ;
aij = Compute Allocation(NumVMs, r1);
deploy request r1 based on aij ;



simulation setup considers multiple Map-Reduce jobs with
different deadlines being submitted to MR Cloud Brokers.

1) User Requests Generation: Typically, on the user’s side,
a request for deploying and executing Map-Reduce application
consist of details of application characteristic along with SLA
constraints, such as deadline, budget. Next, we discuss how
SLA constraints are modeled in our experiments.
• Deadline is defined as the maximum time (upper bound)

that user would like to wait until the Map-Reduce job
finishes execution. The deadline is measured in min-
utes. Deadline is calculated based on the makespan.
Let maxExTime represent the maximum makespan of a
Map-Reduce application, Let minExTime represent the
minimum makespan a Map-Reduce application, Then, the
estimated execution time (α) = maxExTime+minExTime

2 .
Based on this, we derived three different classes of
deadline as following:

tight deadline = 0.5 ∗ α

medium deadline = α

relaxed deadline = 2 ∗ α

• Budget represents the money that each user is willing
to pay for the execution of its Map-Reduce tasks. The
budget is calculated is modeled as follows. Let maxCost
represent the maximum cost required to process all tasks
in Map-Reduce job. Let minCost represent the minimum
cost required to process all tasks in a Map-Reduce job,
Then

β =
maxCost+minCost

2

Based on this, we derived three different classes of
budgets that can be specified by a user as following:

low budget = 0.50 ∗ β,

medium budget = β

high budget = 2 ∗ β

• Data Size is the size of data that will be processed
by the Map-Reduce job. The unit of data size is MB.
For experiments, three types of Map-Reduce jobs are
considered based on data size: short, medium and long.
The medium job has 5 times more data size than the
short job, while the long job has 10 times the data size
of the short job. The data size of each Map-Reduce job
is modeled based on a uniform distribution.

• Size of Map Task is defined by millions of instructions
that need to be executed to process each KB (Kilobyte)
data in the map phase. The unit of this parameter is
Millions Instructions (MI) per KB. It is modeled using a
uniform distribution.

• Size of Reduce Task: is defined by millions of instruc-
tions that need to be executed to process each KB data in
the reduce phase. The unit of this parameter is Millions
Instructions (MI) per KB. It is modeled using a uniform
distribution.

2) VM Configuration Modeling: We consider three types
of VMs: Small, Medium and Large. The VM configurations
are listed in the Table VI-A2.

VM Type Small Medium Large
number of CPUs in a VM 1 2 4

MIPS for each core x 2x 4x
Cost per hour y 2y 4y

3) Evaluation metrics: As the aim of MR Cloud Broker is
to reduce the cost without missing the deadline and budget.
The following two metrics are quantified during evaluation:
• Average Makespan: The average makespan shows how

fast Map-Reduce jobs are executed. Let MKi represent
the make span of request i and is calculated using
Equation 7. The N is the number of requests. Then,
the average makespan is calculated by the following
formulas:

average makespan =
∑
i∈N

MKi

N

• Average Cost: The average cost presents how much does
it cost to process Map-Reduce jobs. Let TCi represent
the cost of processing request i and is calculated using
Equation 8. Let N is the number of requests. Then, the
average cost is calculated by the following formulas:

average cost =
∑
i∈N

TCi

N

4) Evaluation Scenarios: To understand the behavior and
performance of our proposed MASA algorithm, We con-
sider the following four types of scenarios; each varying
different experimental parameters discussed above.

– Variation in the number of concurrent user requests.
– Variation in the VM configurations.
– Variation in the Deadlines
– Variation in Request Sizes.

B. Analysis of Results
1) Variation in Number of Concurrent User requests: In

this scenario, we change the number of Map-Reduce Jobs
(5, 10, 20) submitted simultaneously while keeping other
independent variables (VM Configuration, cost model) at
medium level. Each batch of Map-Reduce jobs consists of 30%
short jobs, 30% medium jobs and 40% long jobs. Figure 2(a)
and 2(b) clearly shows how our proposed algorithm MASA
outperforms NonSLA based existing algorithm for executing
Map-Reduce jobs on Public Clouds. MASA can achieve more
than 50% lower cost and makespan.

2) Variation in Deadline: In this scenario, we set the
aforementioned different type of deadline (tight, medium or
relaxed) for the same batch of Map-Reduce job requests.

Figure 3(a) and 3(b) show how the performance of MASA
and NonSLA algorithms are affected by the deadline. It can
be clearly seen that NonSLA approach performance is similar
to MASA as deadlines become stricter. The principal reason
behind this behaviour is that as deadlines get stricter, the set of
possible VMs that can host map and reduce tasks is restricted
and is often tilted towards superior VM configurations.
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Fig. 2. Variation in Number of Jobs

3) Variation in Request Sizes and Deadlines: In this sce-
nario, we mix different types of deadline (tight, medium, relax)
for different types of Map-Reduce jobs (short, medium, long)
while keeping VM Configuration and cost model same. The
deadline is varied as follows:
• R4S,M4M,L4T means we set relax deadline for short

jobs, medium deadline for medium jobs and tight dead-
line for long jobs;

• M4S,T4M,R4L means we set medium deadline for short
jobs, tight deadline for medium jobs and relax deadline
for long jobs;

• T4S,R4M,M4L means we set tight deadline for short
jobs, relax deadline for medium jobs and medium dead-
line for long jobs.

Figure 4(a) and 4(b) shows how MASA performs in compar-
ison to NonSLA when different deadline distribution models
are applied for different request mix. Overall MASA still
is better at cost optimization in comparison to NonSLA
algorithm. Even though overall makespan of job increases
with variation in deadlines, MASA outperforms NonSLA
counterpart.

4) Variation in VM Configurations: In this scenario, we
vary MIPS rating of VMs. We define three different types
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Fig. 3. Variation in Deadlines

of MIPS Configurations (small, medium or high) as in the
following:
• Low MIPS means the MIPS of medium VM is 1.5 times

than that of small VM, and the MIPS of large VM is 1.5
times than that of medium VM;

• Medium MIPS means the MIPS of medium VM is 2
times than that of small VM, and the MIPS of large VM
is 2 times than that of medium VM;

• High MIPS means the MIPS of medium VM is 2.5 times
than that of small VM, and the MIPS of large VM is 2.5
times than that of medium VM.

Figure 4(a) and 4(b) shows how MASA performs in com-
parison to NonSLA. Overall MASA still incurs very low cost
to the user in comparison to NonSLA algorithm. As difference
between VMs’s performance increases, both algorithms tend
to select more number of large VMs than smaller VMs due to
which the average makespan decreases considerably. However,
as cost of Large VMs is much higher as compared against
small VMs, the decrease in the average cost is only 25% from
Low MIPS to High MIPS configuration.

VII. CONCLUSIONS AND FUTURE DIRECTIONS
As BigData is gaining importance, more and more applica-

tions have been redesigned to use BigData frameworks such
as Apache Hadoop that supports Map-Reduce programming
model. These applications are generally hosted on Public
Clouds which provide virtually infinite on-demand storage and
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computing resources. This paper identified an important gap
in the literature concerning scheduling of Map-Reduce jobs on
Public Clouds considering while SLA requirements of a user
in terms of budget and deadline.

To this end, we first modeled the scheduling problem and
then proposed a novel scheduling algorithm MASA which:
(i) computes in an greedy manner the best combination of
VMs for scheduling Map and Reduce tasks and (ii) con-
siders run-time uncertainties (e.g., availability, throughput,
and utilization) during resource allocation process. MASA
minimizes data analysis cost while avoiding SLA violations.
The extensive IoTSim-based evaluation clearly shows that
MASA can help users reduce cost of executing Map-Reduce
applications on public clouds by about 25% to 60%. The
cost saving efficiency of the proposed SLA-aware scheduling
approach depends on the complexity (e.g., number of Mappers,
number of Reducers, input data size, output data size) of Map-
Reduce application.

In future, we will extend the current scheduling model to
include other SLA constraints such as network bandwidth and
storage. We will also extend our approach to take advantage of
Software Defined Networking (SDN) capabilities, specially as
regards to optimizing data transfer delays between distributed
file-system, Mappers, and Reducers. We will also investigate
new scheduling approaches which can undertake joint opti-
misation of QoS parameters across VMs and SDN-enabled

0

50

100

150

200

250

300

Low MIPS Medium MIPS High MIPS

A
ve

ra
ge

 C
o

st
(U

n
it

: 
$

) 

Cloud Configurations 

MASA NonSLA

(a) Average Cost

0

100000

200000

300000

400000

500000

600000

700000

800000

Low MIPS Medium MIPS High MIPS

A
ve

ra
ge

 M
ak

e
sp

an
 (

u
n

it
: 

se
co

n
d

s)
 

Cloud Configurations 

MASA NonSLA

(b) Average Makespan
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datacentre networking infrastructure.
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