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Abstract. Gel dosimeters are manufactured from radiation sensitive chemicals which, 
upon irradiation, polymerize as a function of the absorbed radiation dose. These gel 
dosimeters have the capacity to record radiation dose distribution in three-dimensions 
(3D) compared to one and two-dimensional dosimeters. 3D dosimeters are 
radiologically soft-tissue equivalent and may be evaluated using magnetic resonance 
imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT, ultrasound 
or vibrational spectroscopy. 
 

1. Introduction 
Radiation dosimetry is an important part of the radiation therapy quality assurance process in which 
measurements are undertaken in one, two or three dimensions to ensure that the absorbed dose, as 
prescribed by the radiation oncologist, is delivered correctly [1-8]. 
 
2. Fricke Gel Dosimeters   
As long ago as 1950, the radiation-induced colour change in dyes was used to investigate radiation doses 
in gels [9]. Gel dosimetry today however, is founded mainly on the work of Gore et al who in 1984 [10] 
demonstrated that changes due to ionising radiation in Fricke dosimetry solutions [11] which were 
introduced in the 1920’s, could be measured using nuclear magnetic resonance (NMR). 

The nuclear magnetic resonance (NMR) relaxation properties of irradiated Fricke or ferrous 
sulphate dosimetry solutions show that radiation-induced changes, in which ferrous (Fe2+) ions are 
converted to ferric (Fe3+) ions, can be quantified using NMR relaxation measurements [11]. Further, 
Fricke dosimetry solutions dispersed throughout a gel matrix could be used to obtain three-dimensional 
(3D) spatial dose information using magnetic resonance imaging (MRI) [12]. Fricke-type gel dosimeters 
however do not retain a spatially stable dose distribution due to ion diffusion within the irradiated 
dosimeters [13, 14]. Fricke solutions with various gelling agents such as gelatine, agarose, sephadex and 
polyvinyl alcohol (PVA) along with chelating agents such as xylenol orange (XO) do reduce diffusion 
[15-17]. The diffusion problem however is considered to be a significant one in gel dosimetry. 
   
3. Polymer Gel Dosimeters   
Polymer systems for the use of radiation dosimetry were first proposed as early as 1954, where 
Alexander [18] discussed the effects of ionising radiation on polymethylmethacrylate. Hoecker [19] in 
1958 investigated the dosimetry of radiation-induced polymerisation in liquids, and in 1961 Boni [20] 
used polyacrylamide as a gamma dosimeter. 

A new gel dosimetry formulation was subsequently proposed based on the polymerisation of 
acrylamide and N,N’-methylene-bis-acrylamide (bis) monomers infused in an aqueous agarose matrix 
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[21]. This type of gel dosimeter, known as PAG, did not have the associated diffusion problem of Fricke 
gels and was shown to have a relatively stable post-irradiation dose distribution with the polymerisation 
reaction occurring by cross-linking of the monomers induced by the free radical products of water 
radiolysis [22-24]. Subsequent work investigating different compositions and formulations of polymer 
gel dosimeters have been summarised [25].   

Although polymer-type dosimeters do not have the diffusion limitations of Fricke-type gel 
dosimeters, there was another significant limitation in their use. Due to the nature of their free radical 
chemistry, polymer gel dosimeters were susceptible to atmospheric oxygen inhibition of the 
polymerisation processes and, as a result, had to be manufactured in an oxygen-free environment [26]. 

A number of studies have been undertaken to investigate these radiological tissue-equivalent [27-
29] PAG-type polymer gel dosimeters. De Deene et al [30] undertook an investigation into the overall 
accuracy of an anthropomorphic polymer gel dosimetry phantom for the verification of conformal 
radiotherapy treatments. It was established that significant issues relating to the accuracy of this 
dosimetry technique were a result of oxygen inhibition in the polymer gel and MRI imaging artefacts 
[31]. Authors continued to investigate clinical aspects of polymer gel dosimetry using MRI [32] 
including conformal therapy, IMRT and IMAT [33], stereotactic radiosurgery [34], brachytherapy [35], 
low energy X-rays [36], high-LET and proton therapy [37], boron capture neutron therapy [38].   
 
4. Normoxic Polymer Gel Dosimeters   
A significant development in the field of gel dosimetry occurred using an alternative polymer gel 
dosimeter formulation [39]. This new type of polymer gel dosimeter, known as MAGIC gel, bound 
atmospheric oxygen in a metallo-organic complex thus removing the problem of oxygen inhibition and 
enabling polymer gels to be manufactured on the bench-top in the laboratory. This created what was to 
be known as a normoxic gel dosimeter, compared with the previous PAG formulation which 
subsequently became known as a hypoxic gel dosimeter. The MAGIC polymer gel formulation 
consisted of methacrylic acid, ascorbic acid, gelatine and copper. The principal behind the MAGIC gel 
is in the ascorbic acid oxygen scavenger. Ascorbic acid binds free oxygen contained within the aqueous 
gelatine matrix into metallo-organic complexes and this process is initiated by copper sulphate. It was 
subsequently shown that other antioxidants could be used in the manufacture of normoxic gels [40, 41] 
including tetrakis (hydroxymethyl) phosphonium chloride [42]. Work has also included the 
development new formulations of normoxic gels [43-45] and of less toxic polymer gels [46].   

With the introduction of normoxic gel dosimeters, MRI studies were undertaken to investigate 
their usefulness for IMRT [47], and radionuclide therapy [48]. 

    
5. Evaluation of Gel Dosimeters   
Since the work of Gore et al in 1984 [10], the majority of evaluations of gel dosimeters have been 
undertaken with MRI. However, in 1996 the potential of optical-CT as an alternative imaging technique 
to MRI [49] for PAG-type polymer gel dosimeters was demonstrated [50] and further investigated [51, 
52]. Subsequently, the use of X-ray CT [53-55] to image PAG-type gels was demonstrated [56]. In 1998 
the use of variational spectroscopy was demonstrated to evaluate PAG-type polymer gel dosimeters [57, 
58]. In 2002 the use of ultrasound to image polymer gel dosimeters was demonstrated [59-61]. 
    
6. PRESAGETM Dosimeters  
A new class of polymer dosimeter, PRESAGETM (Heuris Pharma, Skillman, NJ) [62] was proposed in 
2003 and based on clear polyurethane combined with leuco-dye leucomalachite green, an alkyl 
diisocyanate prepolymer and a hydroxyl reactive polyol along with a catalyst, which polymerises into 
optically clear polyurethane. Although not suitable for MRI evaluation, this radiation tissue-equivalent 
dosimeter [29, 63, 64] contains leuco dyes which have a maximum absorbance at a wavelength of 633 
nm and are therefore suitable for evaluation with a He-Ne laser-based optical scanning system [65-67]. 
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7. Other Non-radiotherapy Developments   
A non-radiotherapy development in gel dosimetry was reported by Gore et al in 1997 using polymer gel 
dosimeters to develop an image quality test tool for MRI [68]. Hill reported the use of polymer gel 
dosimeters in measuring the CTDI (Computer Tomography Dose Index) on diagnostic x-ray CT 
scanners [69, 70] indicating the potential of using polymer gel dosimeters for diagnostic dose levels. 
The use of polymer gel dosimeters to measure absorbed dose from Tc-99m, the radionuclide used in 
nuclear medicine imaging [71]. 
 
8. Discussion and Conclusions   
This paper is based on reviews on gel dosimetry previously published by the author [72-74]. 
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