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Abstract. We address the problem of efficiently detecting critical links in a large
network. Critical links are such links that their deletion exerts substantial effects
on the network performance. Here in this paper, we define the performance as
being the average node reachability. This problem is computationally very ex-
pensive because the number of links is an order of magnitude larger even for
a sparse network. We tackle this problem by using bottom-k sketch algorithm
and further by employing two new acceleration techniques: marginal-link up-
dating (MLU) and redundant-link skipping (RLS). We tested the effectiveness
of the proposed method using two real-world large networks and two synthetic
large networks and showed that the new method can compute the performance
degradation by link removal about an order of magnitude faster than the base-
line method in which bottom-k sketch algorithm is applied directly. Further, we
confirmed that the measures easily composed by well known existing centralities,
e.g. in/out-degree, betweenness, PageRank, authority/hub, are not able to detect
critical links. Those links detected by these measures do not reduce the average
reachability at all, i.e. not critical at all.
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1 Introduction

Studies of the structure and functions of large complex networks have attracted a great
deal of attention in many different fields such as sociology, biology, physics and com-
puter science [26]. It has been recognized that developing new methods/tools that enable
us to quantify the importance of each individual node and link in a network is crucially
important in pursuing fundamental network analysis. Networks mediate the spread of
information, and it sometimes happens that a small initial seed cascades to affect large
portions of networks [30]. Such information cascade phenomena are observed in many
situations: for example, cascading failures can occur in power grids (e.g., the August
10, 1996 accident in the western US power grid), diseases can spread over networks
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of contacts between individuals, innovations and rumors can propagate through social
networks, and large grass-roots social movements can begin in the absence of central-
ized control (e.g., the Arab Spring). These problems have mostly been studied from the
view point of identifying influential nodes under some assumed information diffusion
model. There are other studies on identifying influential links to prevent the spread of
undesirable things. See Section 2 for related work.

We study this problem from a slightly different angle in a more general setting.
Which links are most critical in maintaining a desired network performance? For ex-
ample, when the desired performance is to minimize contamination, the problem is
reduced to detecting critical links to remove or block. When the desired performance is
to maximize evacuation or minimize isolation, the problem is to detect critical links that
reduce the overall performance if these links do not function. This problem is mathe-
matically formulated as an optimization problem when a network structure is given and
a performance measure is defined. In this paper we define the performance as being the
average node reachability with respect to a link deletion, i.e. average number of nodes
that are reachable from every single node when a particular link is deleted. The problem
is to rank the links in accordance with the performance and identify the most critical
link(s).

Since the core of the computation is to estimate reachability, an efficient method
of counting reachable nodes is needed. We borrow the idea of bottom-k sketch [11, 12]
which can estimate the number of reachable nodes quite efficiently by sampling a small
number of nodes. Although it is very efficient, it still is computationally heavy when
applied to our problem because we have to compute reachability from every single
node for a particular link deletion and repeat this for all nodes and take the average. We
repeat this for all the links and rank the results. To cope with this difficulty, we introduce
two acceleration techniques called marginal-link updating (MLU) and redundant-link
skipping (RLS). These are designed to improve the computational efficiency of bottom-
k sketch.

We have tested our method using two real-world benchmark networks taken from
Stanford Network Analysis Project and two synthetic networks which we designed to
control the structural properties. We confirmed that about an order of magnitude reduc-
tion of computation time is obtained by use of these two acceleration techniques over a
baseline method in which no acceleration techniques are used and bottom-k sketch al-
gorithm is applied directly. We also analyzed which acceleration technique works better
in which situations. We further investigated whether other measures which can easily be
composed by the well known existing centralities can detect critical links. We composed
four measures each computed by degree centrality, betweenness centrality, PageRank
centrality and authority/hub centrality, respectively. These four measures rank the links
very differently and those identified critical according to these measures do not reduce
the performance at all, i.e. they are not critical by no means. This series of experiments
confirm that the proposed method is unique and can efficiently detect critical links.

The paper is organized as follows. Section 2 briefly explains studies related to this
paper. Section 3 revisits bottom-k sketch algorithm and introduces two new acceleration
techniques. Section 4 reports four datasets used and the experimental results: computa-
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tional efficiency and comparison with other measures. Section 5 summarizes the main
achievement and future plans.

2 Related Work

Finding critical links in a network is closely related to the problem of efficiently pre-
venting the spread of undesirable things such as contamination and malicious rumors
by blocking links. An effective method of blocking a limited number of links in a so-
cial network was presented to solve the contamination minimization problem under a
fundamental information diffusion model such as the independent cascade and the lin-
ear threshold models [17]. Many studies were also made on exploring effective strate-
gies for reducing the spread of infection by removing nodes in a network [1, 5, 6, 25].
Moreover, we note that the contamination minimization problem can be converse to the
influence maximization problem, which has recently attracted much interest in the field
of social network mining [16, 19, 23, 8, 9, 15, 3, 29, 31].

To find critical links in a network, we consider quantifying how influential each link
is. It is closely related to quantifying how influential each node is in the network. To
this end, several node-centrality measures have been presented in the field of social net-
work analysis. Representative node-centrality measures include degree centrality [14],
HITS (hub and authority) centrality [7], PageRank centrality [4] and betweenness cen-
trality [14]. Here, note that for some node-centrality measures such as betweenness cen-
trality, their computation becomes harder as the network size increases, since it needs
to take the global network structure into account. Thus, several researchers presented
methods of approximating such node-centralities [2, 27, 10]. Moreover, given an infor-
mation diffusion model on a social network, influence degree centrality can be defined
by evaluating the influence of each node. Unlike node-centrality measures derived only
from network topology, influence degree centrality exploits a dynamical process on the
network as well. An efficient method of simultaneously estimating the influence de-
grees of all the nodes was presented under the SIR model setting [22]. We note that
influence degree centrality can also be employed for identifying super-mediators of in-
formation diffusion in the social network [28]. In this paper, we propose a method of
efficiently evaluating how critical each link is in the network (i.e., calculating our new
link-centrality measure). Since conventional node-centrality measures can naturally de-
rive link-centrality measures, we also compare the proposed link-centrality measure
with those link-centrality measures (see Section 4.3).

A bottom-k sketch [11, 12] used in this paper is a summary of a set of nodes, which
is obtained by associating with each node in a network an independent random rank
value drawn from a probability distribution. The bottom-k estimator includes thek
smallest rank values, and thekth smallest one is used for the estimation. This estimate
has a Coefficient of Variation (CV), which is the ratio of the standard deviation to the
mean, that is never more than 1/

√
k− 2 and is well concentrated [11]. We can quite ef-

ficiently calculate the bottom-k sketch of each node in the network by orderly assigning
the rank values from the smallest one to those nodes reachable by reversely follow-
ing links over the network. Based on this framework, a greedy Sketch-based Influence
Maximization (SKIM) algorithm has been proposed, and it has been shown that the
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SKIM algorithm scales to graphs with billions of edges, with one to two orders of mag-
nitude speedup over the best greedy methods [13]. Thus, we also develop our method
of detecting critical links under the framework of the bottom-k sketching algorithm.

3 Proposed Method

Let G = (V,E) be a given simple network without self-loops, whereV = {u, v,w, · · · }
andE = {e = (u, v), f ,g, · · · } are sets of nodes and directed links, respectively. Let
R(v; G) andQ(v; G) be the sets of reachable nodes by forwardly and reversely following
links from a nodev overG, respectively, where note thatv ∈ R(v; G) andv ∈ Q(v; G).
Also, letR1(v; G) andQ1(v; G) be the sets of those nodes adjacent tov, i.e.,R1(v; G) =
{w ∈ R(v; G) | (v,w) ∈ E} andQ1(v; G) = {u ∈ Q(v; G) | (u, v) ∈ E}, respectively.
Here, we briefly revisit the bottom-k sketch [11, 12] and describe the way to estimate
the number of the reachable nodes from each nodev ∈ V, i.e., |R(v; G)|. First, we
assign to each nodev ∈ V a valuer(v) uniformly at random in [0,1]. When|R(v; G)| ≥
k, let Bk(v; G) be the subset of thek smallest elements in{r(w) | w ∈ R(v; G)}, and
bk(v; G) = maxBk(v; G) be thek-th smallest element. Then, we can unbiasedly estimate
the number of the reachable nodes fromv by H(v; G) = |Bk(v; G)| if |Bk(v; G)| < k 1;
otherwiseH(v; G) = (k − 1)/bk(v; G). Here note that for anyc > 0, it is enough to set
k = (2+c)ϵ−2 log |V| to have a probability of having relative error larger thanϵ bounded
by |V|−c [11, 12]. Here, we can efficiently calculate the bottom-k sketchBk(v; G) for
each nodev ∈ V by reversely following linksk|E| times. Namely, we first initialize
Bk(v; G) ← ∅ and sort the random values as (r(v1), · · · , r(vi), · · · , r(v|V|)) in ascending
order, i.e.,r(vi) ≤ r(vi+1). Then, fromi = 1 to |V|, for w ∈ Q(vi ; G), we repeatedly insert
r(vi) intoBk(w; G) by reversely following links fromvi if |Bk(w; G)| < k.

As described earlier, we focus on the problem of detecting a critical link ˆe ∈ E,
where the average number of reachable nodes maximally decreases by its removable.
Let Ge = (V,E \ {e}) be the network obtained by removing a linke, then we can define
the following objective function to be minimized with respect toe ∈ E.

F0(Ge) =
1
|V|
∑
v∈V
|R(v; Ge)|. (1)

In this paper, by using the estimation based on the bottom-k sketches, we focus on the
following objective function.

F(Ge) =
1
|V|
∑
v∈V

H(v; Ge). (2)

Here we can straightforwardly obtain a baseline method which re-calculates the bottom-
k sketches,Bk(v; Ge), with respect toGe for all nodes from scratch. However, the base-
line method generally requires a large amount of computation for large-scale networks.

1 Bk(v; G) can still be defined when|R(v; G)| < k. In this case its cardinality is the number of
reachable nodes fromv.
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In order to overcome this problem, by borrowing and extending the basic ideas of prun-
ing techniques proposed in [21, 22], below we propose new acceleration techniques
called marginal-link updating (MLU) and redundant-link skipping (RLS).

The MLU technique locally updates the bottom-k sketches of some nodes when
removing links incident to a node with in-degree 0 or out-degree 0 in the networkG.
First, let v ∈ V be a node with in-degree 0, i.e.,|Q1(v; G)| = 0. Here, note that by
removal of a link fromv to its child nodew, saye = (v,w) andw ∈ R1(v; G), only
the bottom-k sketch of nodev changes, i.e.,Bk(u; G) = Bk(u; Ge) for any nodeu , v.
Namely, we can locally update the bottom-k sketch of nodev by computingBk(v; Ge)
as thek smallest elements in∪w∈R1(v;Ge)Bk(w; G). On the other hand, letv ∈ V be a node
with out-degree 0, i.e.,|R1(v; G)| = 0, then the bottom-k sketch of nodev isBk(v; G) =
{r(v)}. Here, note that by removal of a link tov from its parent nodeu, saye = (u, v)
andu ∈ Q1(v; G), only the bottom-k sketch of nodex such thatx ∈ Q(v; G) \ Q(v; Ge)
possibly changes. Thus, by computing the bottom-(k + 1) sketch of any nodeu ∈ V,
i.e.,Bk+1(u; G), in advance, we can locally update the bottom-k sketch of such a node
x just by replacingr(v) ∈ Bk(x; G) with bk+1(x; G) unless|Bk+1(x; G)| ≤ k, by reversely
following links fromv as performed in the bottom-k sketches calculation.

The RLS technique selects each linke ∈ E for which F(Ge) = F(G) and prune
some subset of such links. Here, we say that a linke = (v,w) ∈ E is a skippable link
if there exist some nodex ∈ V such thatf = (v, x) ∈ E andg = (x,w) ∈ E, i.e.,
x ∈ R1(v; G) ∩ Q1(w; G), which means|R1(v; G) ∩ Q1(w; G)| ≥ 1. Namely, we can
skip evaluatingF(Ge) for the purpose of solving our problem due toF(Ge) = F(G).
Moreover, we say that a linke= (v,w) ∈ E is aprunable linkif |R1(v; G)∩Q1(w; G)| ≥
2. Namely, we can prune such a linke for our problem by settingG ← Ge due to
F((Ge) f ) = F(G f ) for any link f ∈ E. For each nodev ∈ V, letS(v) andP(v) be sets of
skippable and prunable links fromv. We can calculateS(v) andP(v) as follows: for each
child nodew ∈ R1(v; G), we first initializec(v,w; G) ← 0, S(v) ← ∅ andP(v) ← ∅.
Then, for each nodex ∈ R1(v; G), we repeatedly setc(v,w; G) ← c(v,w; G) + 1 and
S(v)← S(v)∪ {(v,w)} if {w} ∈ R1(x; G), and setP(v)← P(v)∪ {(v,w)} andG← G(v,w)

if c(v,w; G) ≥ 2.

In our proposed method, the RLS technique is applied before the MLU techniques,
because it is naturally conceivable that the RLS technique decreases the number of
links in our networkG. Clearly we can individually incorporate these techniques into
the baseline method. Hereafter, we refer to the proposed method without the MLU
technique as the RLS method, and the proposed method without the RLS technique as
the MLU method. Since it is difficult to analytically examine the effectiveness of these
techniques, we empirically evaluate the computational efficiency of these three methods
in comparison to the baseline method.

4 Experiments

We evaluated the effectiveness of the proposed method using two benchmark and two
synthetic networks.
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Table 1.Basic statistics of networks.

No. name |V| |E| |I0| |O0| |S| |P|
1 CIT 34,546 421,578 2,393 6,320 302,248 176,224
2 DBA 35,000 351,317 5,984 5,999 85,815 24,690
3 DCN 35,000 350,807 4,996 8,868 289,398 175,211
4 P2P 36,682 88,328 26,960 229 1,502 29

4.1 Datasets

We employed two benchmark networks obtained from SNAP (Stanford Network Anal-
ysis Project)2. The first one is a high-energy physics citation network from the e-print
arXiv 3, which covers all the citations within a dataset of 34, 546 papers (nodes) with
421,578 citations (links). If a paperu cites paperv, the network contains a directed link
from u to v. The second one is a sequence of snapshots of the Gnutella peer-to-peer file
sharing network from August 20024. There are total of 9 snapshots of Gnutella network
collected in August 2002. The network consists of 36,682 nodes and 88, 328 directed
links, where nodes represent hosts in the Gnutella network topology and links represent
connections between the Gnutella hosts.

In addition, we utilized two synthetic networks with a DAG (Directed Acyclic
Graph) property, which were generated by using the DCNN and DBA methods de-
scribed in [21, 22], respectively. For the sake of convenience, we briefly revisit these
methods. First, we explain the DCNN method. Here, we say that a pair of nodes{v,w}
is a potential pair if they are not directly connected, but have at least one common adja-
cent node. Then, we can summarize the DCNN method as an algorithm which repeats
the following steps from a single node and an empty set of links while|V| < L: 1)
With probability 1− δ , create a new nodeu ∈ V, select a nodev ∈ V at random, and
add a link (u, v) or (v,u) arbitrary; 2) With probabilityδ, select a potential pair{v,w}
at random, and add a link (v,w) or (w, v) to be a DAG direction. Clearly, we can easily
see that the DCNN method generates a DAG. In our experiments, we setL = 35,000
andδ = 0.1 to make sure that the numbers of nodes and links can be roughly equal to
|V| = 35,000 and|E| = 350,000, which can be a network with an intermediate size
between the above two benchmark networks.

Next, we explain the DBA method. Here, we say that a node is selected by prefer-
ential attachment if its selection probability is proportional to the number of adjacent
nodes. Then, we can summarize the DBA method as an algorithm which repeats the
following steps from a DAG havingM links generated by the DCNN method while
|V| < L: 1) With probability 1− δ, create a new nodeu ∈ V, select a nodev ∈ V by
preferential attachment, and create a link (u, v) or (v,u) arbitrary. 2) With probabilityδ,
select a nodev ∈ V at random, select another nodew ∈ V by preferential attachment,
and create a link (v,w) or (w, v) to be a DAG direction. Again, we can easily see that the
DBA method generates a DAG. In our experiments, we also setL = 35, 000,δ = 0.1,
andM = 100.

2 https://snap.stanford.edu/
3 https://snap.stanford.edu/data/cit-HepPh.html
4 https://snap.stanford.edu/data/p2p-Gnutella30.html
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Fig. 1.Computation time comparison.

In what follows, we refer to these two benchmark networks of citation and pear-to-
pear and those generated by the DCNN an DBA methods as CIT, P2P, DCN and DBA
networks. Table 1 summarizes the basic statistics of these networks, consisting of the
numbers of nodes and links,|V| and |E|, the numbers of in-degree 0 and out-degree 0
nodes,|I0| and|O0|, and the numbers of skippable and prunable links,|S| and|P|, where
each network is also identified by its data number as shown in Tab. 1. From this table, we
can conjecture that the RLS technique works well for the CIT and DCN networks, while
the MNU technique for the P2P networks. Here note that the numbers of skippable and
prunable links appearing in the networks generated by the DCNN method inevitably
become larger than those generated by the DBA method because the DCNN method
has a link creation mechanism between potential pairs.

4.2 Computational Efficiency

First, we evaluated the efficiency of the proposed method which calculatesF(Ge) for
each linke ∈ E. We compared the computation time of the baseline (BL), RLS, MLU,
and proposed (PM) methods by performing five trials. Here, we used the same random
valuer(v) assignment for each trial so that the bottom-k sketches of all the nodes are
the same for any method, i.e., it is guaranteed that each method can produce the same
result. Figure 1 shows the computation times of each method for five trials plotted by
dots and the average values over these trials plotted by different markers as indicated in
the figure, where we setk = 64 for calculation of the bottom-k sketches of all the nodes
according to [13]. Figure 1(a) compares the actual processing times of these methods,
where our programs implemented in C were executed on a computer system equipped
with two Xeon X5690 3.47GHz CPUs and a 192GB main memory with a single thread
within the memory capacity. Figure 1(b) compares the reduction rates of computation
times for these methods from the BL method.
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Fig. 2.gain comparison of extracted links.

From Fig. 1(a), we can see that the computation times were improved largely for
the CIT and CNN networks, modestly for the P2P network, and much less modestly
for the DBA network, although the computation time of the BL method for the P2P
network was smaller than those for the other networks. More specifically, as expected,
we consider that the RLS technique worked quite well especially for the CIT and DCN
networks, due to large numbers of skippable and prunable links in these networks as
shown in Tab. 1. On the other hand, although the MLU technique is not so remarkably
effective, we consider that this technique can steadily improve the reduction rate of
computation times especially for the P2P network as shown in Fig. 1(b). In short, we
can conjecture that the proposed method combining both the RLS and MLU techniques
is more reliable than the other three methods in terms of computation time because it
produced the best performance for all of the four networks. Reduction of computation
time depends on network structures, but overall we can say that use of both techniques
can increase the computational efficiency by about an order of magnitude. These results
demonstrate the effectiveness of the proposed method.

4.3 Comparison with Conventional Centralities

As noted earlier, by solving our critical link detection problem that the average number
of reachable nodes maximally decreases by link removable, we can obtain the value
F(Ge) for each linke ∈ E as a measure to evaluate the criticalness of the linke. Thus,
we evaluated whether or not our measureF(Ge) can actually provide a novel concept in
comparison with some measures derived from conventional centralities.

As conventional centralities, we examined the degree centrality, the betweenness
centrality, the PageRank centrality, and the eigenvalue centrality for networkG, and
straightforwardly extended these centralities so as to evaluate the criticalness of a given
link e. The first measureDGC(e) derived from degree centrality for a given linke =
(u, v) ∈ E is defined as

DGC(e) = |Q1(u; G)| × |R1(v; G)|, (3)

where recall thatQ1(u; G) andR1(v; G) are in-degree of nodeu and out-degree of node
v, respectively. Namely, the first measureDGC(e) highly evaluate a link from a node
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with high in-degree to a node with high out-degree. Next, for a given linke= (u, v) ∈ E,
the second measureBWC(e) derived from the betweenness centrality is defined as

BWC(e) = btw(u) × btw(v), btw(v) =
∑
w∈V

∑
x∈V

nspG
w,x(v)

nspG
w,x
, (4)

wherebtw(v) stands for the betweenness of a nodev ∈ V andnspG
w,x is the total number

of the shortest paths between nodew and nodex in G andnspG
w,x(v) is the number of the

shortest paths between nodew and nodex in G that passes through nodev. Namely, the
second measureBWC(e) highly evaluate a link between nodes with high betweenness
centrality scores. Going on next, for a given linke = (u, v) ∈ E, the third measure
PRK(e) derived from the PageRank centrality is defined as

PRK(e) = prk(u) × prk(v), (5)

whereprk(v) stands for the PageRank score of a nodev ∈ V, which is provided by
applying the PageRank algorithm with random jump factor 0.15 [4]. Namely, the third
measurePRK(e) highly evaluates a link between nodes with high PageRank scores.
Finally, for a given linke = (u, v) ∈ E, the fourth measureEIG(e) derived from eigen-
vector centrality is defined as

EIG(e) = auth(u) × hub(v), (6)

whereauth(u) and hub(v) respectively stand for the authority and the hub scores of
nodesu, v ∈ V, which is provided by applying the HITS algorithm [7]. Namely, the
fourth measureEIG(e) highly evaluates a link from a node with a high hub score to a
node with high authority score.

First, we examined how each of highly ranked links by these standard centralities,
i.e., DGC, BWC, PRK, and EIC, can decrease the average number of reachable nodes
by its removal. Here, we measured the performance by the following gainF(G)−F(Ge)

F(G) − F(Ge) =
1
|V|
∑
v∈V

H(v; G) − 1
|V|
∑
v∈V

H(v; Ge). (7)

Figures 2 shows our experimental results, where the vertical and horizontal axes stand
for the rank until top-100 and the gain, respectively, and Figs. 2(a), 2(b), 2(c), and 2(d)
correspond to the CIT, DBA, DCN, and P2P networks. We can see that our proposed
method (denoted by PM) detected critical links having substantial amount of gains,
where the curves for the top-100 links are somewhat different from each other depend-
ing on the network datasets. On the other hand, the gains for all of the top-100 links by
those measures defined by the standard centralities were almost zeros for any dataset.
In addition, we should emphasize that the gain curves shown in Fig. 2 could uncover
some characteristics of these networks, i.e., the DCN network was relatively robust to a
single link removal, and so on.

Next, we examined the similarity between our ranking based onF(Ge) and the other
ranking,i.e., the DGC, BWC, PRK, and EIC ranking. Here, we measured the similarity
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Fig. 3.precision comparison of extracted links.

Table 2.Ranks by conventional cenralities to top-3 links by proposed measure.

CIT DBA
rank DGC BWC PRK EIG DGC BWC PRK EIG

1 233,638 296,250 161,504405,661188,686 309,435 251,492218,665
2 189,768 424 26,626 402,823301,228 335,210 309,249289,465
3 67,333 106,045 2,158 141,559276,667 320,951 288,338217,370

DCN P2P
rank DGC BWC PRK EIG DGC BWC PRK EIG

1 284,501 269,488 252,472168,049 42,915 88,077 82,028 81,162
2 302,753 296,190 293,284312,283 44,008 79,543 75,022 75,128
3 311,040 311,040 338,940186,370 74,710 74,947 85,107 65,655

between the topj links for our ranking method, denoted as a setA j , and those for the
other ranking method, denoted as a setA′j , by the precisionPrec( j) defined by

Prec( j) =
|A j ∩A′j |

j
. (8)

Figures 3 shows our experimental results, where the vertical and horizontal axes stand
for normalized rank for all links and the precision, respectively, and Figs. 3(a), 3(b),
3(c), and 3(d) are those of the CIT, DBA, DCN, and P2P networks. We can see that the
results were quite similar to each other regardless of any pair of the centrality measures
and the networks although a slightly better precision curve swelling in the upper left
corner was obtained especially for the DBA network.

Finally, Table 2 shows ranks by conventional centralities to top-3 links obtained by
proposed measure. These results indicate that the rankings by these convention mea-
sures were substantially different from those of our measure. Namely, these experimen-
tal results suggest that our measureF(Ge) could actually provide a novel concept in
comparison with some measures derived from conventional centralities.

5 Conclusion

In this paper we have proposed a novel computational method that can detect critical
links quite efficiently for a large network. The problem is reduced to finding a link that
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reduces the network performance substantially with respect to its removal. Such a link
is considered critical in maintaining the good performance. There are many problems
that can be mapped to this critical link detection problem, e.g. contamination mini-
mization be it physical or virtual, evacuation trouble minimization, road maintenance
prioritization, etc.

Network performance varies with specific problem, but in general it is represented
by the reachability performance, i.e. how many nodes are reachable from a node in the
network on the average. This brings in computational issue because reachability must be
estimated for all the nodes for a particular link removal and to find critical links this has
to be repeated for all the links. The number of links is generally an order of magnitude
larger than the number of nodes even for a sparse network that is encountered in actual
practice. We used bottom-k sketch algorithm as a basis to count reachable nodes, which
only usesk-samples to estimate the reachable nodes from a selected node. It has a
sound theoretical background and been shown quite efficient and accurate for ak which
is far smaller than the number of nodes in the network. Our contribution is to introduce
two new acceleration techniques to further reduce the bottom-k sketch computation
by clever local update and redundant computations pruning. The first technique MLU
(marginal-link updating) locally updates the bottom-k sketches of some nodes when
removing links incident to a node with in-degree 0 or out-degree 0 in the network. The
second techniqu RLS (redundant-link skipping) selects each link that does not affect the
performance with respect to its removal and prune some subset of such links.

We have tested the performance of the proposed method using four networks with
about 35, 000 nodes and 90,000 to 420,000 links. Two were taken from Stanford Net-
work Analysis Project and the other two were artificially generated to control the net-
work structure. We verified that the acceleration techniques indeed work for all these
four networks of different characteristics and can reduce the computation time by about
an order of magnitude. MLU works better for networks with many nodes with in-degree
0 or out-degree 0. RLS works better for networks with many prunable links. We have
further evaluated how other measures based on conventional centralities work in esti-
mating our performance measure, i.e. the average number of reachable nodes by a link
removal. We have composed four measures, each based on degree centrality, between-
ness centrality, PageRank centrality and authority/hub centrality, respectively. All of
these measures are not able to detect critical links that were detected by the proposed
method. Links detected by these measures do not show any performance degradation,
i.e. not critical at all. We can conclude that no existing measure can find critical links.

There are many things to do. Reachability computation is a basic operation and
is a basis for many applications. We continue to explore techniques to further reduce
computation time. Our immediate future plan is to apply our method to a real world
application and show that it can solve a difficult problem efficiently, e.g. identifying
important hot spots in transportation network or evacuation network.
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