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Abstract

Educators are faced with many challenging questions
in designing an effective curriculum. What prerequi-
site knowledge do students have before commencing
a new subject? At what level of mastery? What is the
spread of capabilities between bare-passing students
vs. the top-performing group? How does the intended
learning specification compare to student performance
at the end of a subject? In this paper we present
a conceptual model that helps in answering some of
these questions. It has the following main capabilities:
capturing the learning specification in terms of syl-
labus topics and outcomes; capturing mastery levels
to model progression; capturing the minimal vs. aspi-
rational learning design; capturing confidence and reli-
ability metrics for each of these mappings; and finally,
comparing and reflecting on the learning specification
against actual student performance. We present a web-
based implementation of the model, and validate it
by mapping the final exams from four programming
subjects against the ACM/IEEE CS2013 topics and
outcomes, using Bloom’s Taxonomy as the mastery
scale. We then import the itemised exam grades from
632 students across the four subjects and compare
the demonstrated student performance against the ex-
pected learning for each of these. Key contributions
of this work are the validated conceptual model for
capturing and comparing expected learning vs. demon-
strated performance, and a web-based implementation
of this model, which is made freely available online as
a community resource.
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1 Introduction

To develop an effective teaching and learning plan
for a subject that has prerequisites, a lecturer must
be aware of the capabilities of the students at the
beginning of that subject. That is, the lecturer must
have a solid idea of the knowledge and concepts that
students have learnt in the previous semester, and
the level of mastery achieved. The teaching sched-
ule, lecture topics and learning outcome statements
from the previous subject may provide some indica-
tion as to the content that was covered, but this does
not detail what was actually assessed, how it was as-
sessed and how it was graded. The marking criteria
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for the subject might have awarded most marks for
rote-memorisation of algorithms and code recipes. On
the other hand, perhaps the assessments tested higher-
level problem-solving skills using the learnt concepts
in unfamiliar scenarios. It is not easy to discern how
much of the overall assessment weight was associated
to the former as opposed to the latter. The lecturer,
however, must be aware of these details in order to
develop an effective teaching program based on the
capabilities of beginning students.

Likewise, a lecturer must be able to answer the
same questions about the teaching and assessments
of his or her own subject. That is, which topics and
concepts are expected as subject outcomes, and at
what levels of mastery are students expected to achieve
them? Additionally, what does the assessment design
infer or guarantee about the minimal capabilities ex-
pected of bare-passing students at the end of the sub-
ject, and how does this compare to the aspirational
outcomes expected of top-performing students?

Further still, expected outcomes must be validated
against actual learning, as demonstrated by student
performance, to ensure that the teaching and learn-
ing design is realistic. That is, are bare-passing stu-
dents meeting the minimal expectations? Are top-
performing students achieving the aspirational out-
comes? If expectations do not align with demonstrated
performance, the lecturer must consider why, and what
remedial teaching or assessment changes are appropri-
ate for future offerings of the subject.

Taking a whole program perspective, each individ-
ual subject is only one in a long sequence of 24 or more
in a typical three- or four-year degree. From semester
to semester, students must progressively learn new con-
cepts and build upon the concepts previously learnt.
So in order to develop an effective program sequence,
each subject lecturer must be able to answer these
questions about his or her own subject, and about
previous subjects in the sequence. The many subject
lecturers involved in the teaching of a degree program
must thus have a shared and comparable understand-
ing of the outcomes and mastery levels developed
throughout the program.

This paper presents a conceptual model for a sys-
tematic curriculum mapping and learner modelling
approach that enables subject lecturers to design and
document the learning goals in a subject, and to com-
pare expected learning with actual performance as
demonstrated by student assessment grades. This is
done in terms of a syllabus specification that can be
used to communicate learning goals across a whole
computer science degree program. The conceptual
model also formally captures the level of mastery for
each topic or outcome assessed, and the academic’s



confidence and judgement of reliability for each of
these. This model enables academics to systematically
answer some of the difficult questions posed above.

2 Background

Sadler (2009) claims that “academic achievement stan-
dards is now the key issue. It is what worries a lot of
people”. He asks “do the grades that are on students’
transcripts actually mean what they say?” That is,
what do assessment marks actually tell us, if we cannot
reliably identify what exactly is being assessed, what
cognitive skills are required to pass the assessments,
and what a bare-passing grade means compared to the
highest passing grade. Sadler suggests that “what we
need to do is find ways of capturing the standards we
want to use, so we can compare students’ work with
those standards”. Doing so means that “each grade
represents a particular level of competence, knowledge
or skill”, and as Sadler put it, “that is the crux of the
matter”.

Similar concerns have also been expressed in the
computing education (CSEd) research community.
Commenting on the Grand Challenges facing com-
puting education, McGettrick (2005) makes several
points about important issues relating to the com-
puter science curriculum, including that there is an
increasing need for curriculum standardisation and
for comparable outcomes. This is due to the continu-
ing globalisation of the workforce, which requires stu-
dents, educators, employees and employers to have a
common vocabulary for describing discipline skills and
competence levels. McGettrick observes that “there
are different levels of learning as exhibited by the exis-
tence of Bloom’s taxonomy of educational objectives
(Bloom et al. 1956). These different levels, as well
as the associated degrees of commitment required to
achieve these levels, need recognition and their con-
sequences understood”. Two of the grand challenges
which relate directly to this are:

• Identify very clearly the technical skills ... that
students should acquire throughout their program
of study in higher education [2.3.2.i]

• Identify and then employ a phased development
of all these skills, ensuring that the skill levels are
such that graduates are internationally competi-
tive in terms of their skills... [2.3.2.ii]

2.1 Learning Standards in Computer Science

In order to implement the transparency proposed in
the previous section, there needs to be an agreed set
of learning goals against which to measure student
performance. For computer science disciplines within
Australia there are several candidate sets of learning
goals that might be useful. These include high-level
transferable generic graduate attributes (Barrie et al.
2009), national graduate outcomes such as the upcom-
ing TEQSA TLOs (ALTC 2010), international stan-
dards such as the ABET-CAC accreditation guidelines
(ABET 2011), and fine-grained Syllabus or Body of
Knowledge topic and outcome recommendations such
as those from the ACS (Gregor et al. 2008) or the
ACM and IEEE (ACM/IEEE 2008, 2013).

In this paper we choose to focus on detailed fine-
grained syllabus outcomes, and specifically those from
the CS2013 Strawman (ACM/IEEE 2013), which lists
over 1366 topics and 1041 learning objectives, cate-
gorised into 18 top-level Knowledge Areas and 155
Knowledge Units. Out of the 1366 topics, 257 are clas-
sified as Tier-1 Core (absolute essentials), 328 as Tier-2
Core (80% minimum coverage expected) and 781 as
electives. Whilst Australian computer science degree
programs are not formally accredited against this cur-
riculum, most institutions endeavour to be mindful

of and align with these recommendations. Addition-
ally, the ACM/IEEE CS guideline is one of the most
comprehensive and widespread Body of Knowledge
descriptions of a computer science degree. As such,
it provides a common vocabulary for describing and
sharing the design of teaching, learning and assessment
activities, both among the different subject lecturers
within an institution and across institutions within
the wider computer science discipline.

2.2 Mastery and Progression in Computer
Science

As well as indicating the need for agreed learning stan-
dards, both Sadler and McGettrick proposed that stu-
dents’ level of competence or mastery would need to
be measured against such learning standards. Much re-
search has been published about the importance of this
in the CSEd community. Lister & Leaney (2003a,b)
proposed a criterion-based grading scheme based on
Bloom’s Taxonomy (Bloom et al. 1956), where bare-
passing students are expected to show competence
at the novice levels (Knowledge and Comprehension)
while top-performing students should be challenged at
the higher levels (Synthesis and Evaluation). Similar
uses of Bloom’s Taxonomy to classify the cognitive
complexity of programming exercises have been dis-
cussed by many others (Reynolds & Fox 1996, Buck &
Stucki 2001, Oliver et al. 2004, Burgess 2005, Whalley
et al. 2006, Starr et al. 2008, Thompson et al. 2008,
Gluga, Kay, Lister, Kleitman & Lever 2012, Simon
et al. 2012). Bloom’s Taxonomy is also the recom-
mended medium for specifying mastery in the CS2008
curriculum (ACM/IEEE 2008) and in the ACS ICT
Profession Body of Knowledge (Gregor et al. 2008).
The new ACM/IEEE CS2013 Strawman has made a
slight departure from Bloom’s Taxonomy, proposing
instead a new three-level mastery scale, the merits of
which are currently under review (Lister 2012).

2.3 Curriculum Mapping

Having found suitable learning standards (the CS2013
Strawman) and a suitable cognitive classification the-
ory (Bloom’s Taxonomy) on which to model our com-
puter science degree programs, we then turned to lit-
erature on curriculum mapping as a framework on
which to construct our model. English (1988) proposed
that an effective approach to curriculum management
“should include a planned relationship between the writ-
ten, taught and tested curricula”. English stated that
effective program planning and auditing “should en-
sure that the written curriculum has planned relation-
ships to the taught curriculum, and that the taught
curriculum and written curriculum are related to the
tested curriculum”.

English (1978) also stated that “curriculum guide-
lines, behavioral objectives, course outlines are all de-
scriptions of a future desired condition” and thus “do
not represent the actual curriculum applied by indi-
vidual teachers”. He saw this as a serious problem,
labeling curriculum guides and course outlines as the
fictional curriculum. He stated that “to exercise qual-
ity control over curriculum requires the instructional
leader or supervisor to know what the real curriculum
is in his or her subject area” and unless the real cur-
riculum is “known and quantified, it is not possible to
understand ... existing gaps or holes” in the program
of study. English proposed that “a fairly accurate pic-
ture of the real curriculum” must be obtained in order
to allow for effective quality control.

Curriculum mapping has been used extensively in
K-12 education in the United States (Jacobs 1989,
1991, 1997, 2010). In tertiary education, however, it
has been adopted mostly by the medical disciplines



(Willett 2008, Britton et al. 2008, Harden 2001), and
more recently to some extent by engineering (Gluga
et al. 2010, Wigal 2005) and other professionally ac-
credited disciplines. Examples of such systems in com-
puter science education are limited. One example is
the COMPASS system, developed as a Moodle plugin
at the University of West Georgia (Abunawass et al.
2004); COMPASS provided mechanisms to link the
assessment in each subject to CC2001 topics and learn-
ing objectives, at appropriate Bloom mastery levels.
This system aimed to answer some of the same ques-
tions we identified earlier.

However, COMPASS had a number of limitations.
Data entry was “a bit daunting” (Abunawass et al.
2004), in that users had to open external websites
to read through syllabus specifications and manually
copy over the appropriate topics/outcomes for each as-
sessment mapping. Additionally, “most administrative
and review functions require direct interaction with
the underlying database using SQL commands”, which
meant that visualising the mapped relationships re-
quired significant technical expertise and manual data
processing. Further still, the system did not integrate
with student marks (this was listed as future work,
but no further related publications could be found),
so there was no way to compare the actual student
performance with the intended curriculum design.

3 Conceptual Model

To enable subject lecturers to plan more effective and
integrative teaching and learning activities, we have
developed a conceptual model for documenting and de-
scribing degree programs in terms of well defined learn-
ing goals and mastery levels. The conceptual model
supports the capture of teaching and learning inten-
tion at multiple curriculum stages, based on the ideas
introduced by English and others. This model is rep-
resented in Figure 1. We define five curriculum stages
as follows (leftmost column in the Figure).
• Recommended Curriculum – the collection of

graduate attributes, national/international learn-
ing standards, accreditation competencies and
syllabus or body of knowledge recommendations
that are relevant for each degree program. A de-
gree program may not need to consider all recom-
mendations, but may aspire to do so for accredi-
tation purposes and recognition purposes. In this
paper we focus on fine-grained discipline specific
topics and outcomes from an authoritative syl-
labus, namely the ACM/IEEE Computer Science
Curriculum Guidelines (CS2013) (ACM/IEEE
2013).

• Planned Curriculum – the structure of a typical
three- to five-year degree program, comprising
two semesters per year and four core (C) or elec-
tive (E) subjects per semester. Each core and elec-
tive subject must contribute towards the learning
goals from the Recommended Curriculum that
the degree program aspires to align with, such as
the 1366 topics and 1041 outcomes of the CS2013.
Significant planning is required to decide which
topics are to be covered in which subjects, and
at which levels of mastery, to ensure an effective
progressive sequence of study.

• Practised Curriculum – the outcomes and learn-
ing activities in every subject. The outcomes for
the subject are the lecturer’s interpretation of the
aims of the subject, based on the learning goals
prescribed as part of the program-level Planned
Curriculum. These outcomes thus drive the pre-
requisite knowledge of the subject, and also the
design of learning activities such as lecture topics,
lab exercises, text readings, etc.

• Assessed Curriculum – the learning goals that
are actually assessed as part of each individual
subject. The Assessed Curriculum is defined by
the subject lecturer when creating the assessment
exercises for the class. Each assessment question
or task may relate to one or more recommended,
planned and practised learning goals.

• Demonstrated Curriculum – a description of what
students have actually learnt as part of a sub-
ject or collection of subjects, based on the fine-
grained marks associated with each assessment ex-
ercise. The Demonstrated Curriculum is a profile
of learners in terms of learning goals and mastery
levels achieved, based on the marks from each
assessed component.

In this paper we focus on the effectiveness of this
conceptual model in enabling subject lecturers to de-
scribe the Assessed Curriculum and the Demonstrated
Curriculum in terms of fine-grained syllabus/body-
of-knowledge learning goals and mastery levels. The
model supports description and comparison of the ex-
pected performance of the bare-passing student vs. the
top-performing student vs. demonstrated student per-
formance in terms of these learning goals and mastery
levels. The model additionally supports a mechanism
for capturing the academic’s confidence as to the re-
liability of each classification, such that a confidence
value may be used to express overall certainty or un-
certainty in each of the presented visualisations. These
aspects are discussed in greater detail in the following
subsections.

3.1 Modelling the Assessed Curriculum

The Assessed Curriculum represents the subject lec-
turer’s expectations as to what bare-passing students
and top-performing students will have learnt, and will
be able to demonstrate, at the end of the subject. This
is represented in the Assessed Curriculum section of
Figure 1 as a collection of exams or assessments de-
signed to measure student learning. Each exam or
assessment is broken down into a set of questions or
sub-tasks, which are graded separately and may assess
different learning goals, at different levels of mastery.

Subjects, exams and questions each have a weight
component as a function of performance in the over-
all degree program. That is, a subject usually has a
credit-point value, an exam or assessment has an over-
all subject weight, and a question or task is worth
a certain number of marks. These are important for
capturing and calculating the strength of evidence for
each modelled learning goal and mastery level, as will
be discussed later.

On the right side of the Assessed Curriculum box
in Figure 1, we show how learning goals, mastery lev-
els, and other elements are mapped to each assessment
question. We label these mappings the Academic Clas-
sifications. The first of these is a reliability score that is
associated with each assessment. This score represents
the academic’s judgement of how reliable the grades
from the classified exam or assessment are considered
to be. For example, an academic may feel that an end-
of-semester closed-book written final exam, completed
under strict supervision, is a fairly accurate represen-
tation of a student’s capabilities. On the other hand, a
take-home assessment may be considered less reliable
as an indicator, as the student is easily able to seek
external help in completing it, and thus the final mark
may not be as reliable an indicator of the student’s
actual capabilities.

The remaining four fields in the Academic Classifi-
cation box map to each assessment question. The first
is a bare-pass friendly yes/no flag, which indicates if



Figure 1: Conceptual model for degree program curriculum design

the academic expects most of the students who finish
the subject with a bare-pass mark to be able to earn,
say, 70% or more of the marks in that question.

The remaining three mappings (topic/outcome,
mastery level, confidence), are stored together as a
single sub-classification, and are defined as follows:

1. Topic/outcome – a mapping to a relevant topic,
outcome or other learning goal from the Recom-
mended Curriculum which is specifically assessed
by the question being classified.

2. Mastery level – a classification of the cognitive
difficulty at which the mapped topic or outcome
is assessed (that is, a student would be expected
to be operating at this minimal level to answer
the question correctly)

3. Confidence – a score from 0 to 100 representing
the academic’s confidence in the validity of this
classification.

Multiple instances of such sub-classifications can
be made for each question: a question may assess mul-
tiple learning goals, each at different levels of mastery
(for example, a question may require an advanced un-
derstanding of the topic loops and iteration but only
basic familiarity with arrays). The confidence meta-
tag can be used to represent any uncertainty in each
sub-classification. In some instances it may not be
easy to define the mastery level at which a specific
topic or objective is being assessed, in which case a
low confidence rating can be specified. In other cir-
cumstances the academic may feel that even though
a topic is being assessed, it is only a small part of the
overall question, so again a low confidence rating may

be used to record this as a low evidence mapping.

3.2 Modelling the Demonstrated Curriculum

The Demonstrated Curriculum represents the learn-
ing goals and mastery demonstrated by students at
the completion of a subject, a set of subjects, or a
whole degree program. This is achieved by collecting
itemised student marks for each question or task, and
using these to compute the achieved level of mastery
across the subject/s or program as a whole, or for
specific topics or outcomes. These performance scores
may then be compared against the Assessed Curricu-
lum design to see how closely they match the modelled
expectations.

3.3 Algorithm for Aggregating Classifica-
tions

The algorithm for aggregating the assessment question
classification data into meaningful forms is as follows.

(i) Calculate the weight of each question (Qw) as a
proportion of the overall subject weight (S) and of the
overall degree program (P ). Let the credit-point value
of the subject be Scp, the weight of each assessment
be Aw, and the marks for each question be Qm, giving
Qw = (Scp/Pcp) ·Aw · (Qm/Am).

(ii) Next, inspect the topic/outcome mappings
for each question (TOM). The evidence score for
each topic/outcome mapping (TOMe) is given by the
weight of the question (Qw) divided by the number of
topic/outcome mappings for that question (QnTOM ),
multiplied by its confidence rating (TOMconf ) and
the exam/assessment reliability rating (Arel) to give



the final TOMe = Qw · TOMconf ·Arel/QnTOM .
This now gives a list of evidence scores for each

assessed topic/outcome mapping. The sum of all ev-
idence scores for a specific topic or outcome can be
used to represent the overall assessment weight asso-
ciated with that topic across the whole subject, or
across the whole degree program. Additionally, each
topic/outcome mapping also has a mastery level clas-
sification, so we can also sum up all topic/outcome
mappings at a specific mastery level to represent the
overall assessment weight associated with that level. A
third possibility is to sum up all the TOMe scores for
a specific topic/outcome at a specific mastery level.

Further still, we can separate the TOMe scores
into two categories: those from questions that were
marked as bare-pass friendly and those from ques-
tions intended to distinguish top-performing students.
This allows us to create models of the assessed curricu-
lum showing the expected performance of bare-passing
students (the minimal standard) vs. the expected per-
formance of top-performing students (the aspirational
standard) in relation to the mapped syllabus and mas-
tery levels.

To compute and generate the demonstrated cur-
riculum models, we simply factor the average mark
across a set of students for a specific question and mul-
tiply this by the topic/outcome evidence score from
above. This enables a side-by-side comparison of the
expected outcomes of bare-pass students vs. expected
outcomes of top-performing students, and vs. actual
outcomes of any group of students.

4 User View

We have implemented the conceptual model described
above as part of our ProGoSs research system, which
aims to enable educators to document the learning
across a whole computer science degree and repre-
sent it in terms of authoritative curriculum specifica-
tion. The research presented here is one aspect of the
broader BABELnot project (Lister et al. 2012), which
aims to document and benchmark the academic stan-
dards associated with the core sequence of program-
ming subjects in computer science degrees.

The ProGoSs system allows users to specify the
core and elective subjects of a degree program, and
then, for each subject, a list of assessments or exams
and a sub-list of questions or tasks.

Figure 2 shows the interface for classifying Ques-
tion 8 from a fictitious final exam in a first semester
programming fundamentals subject. The system al-
lows the user to write or copy-paste the actual question
text, or to upload an image, or to leave the text empty
and instead reference a PDF version of the exam. The
question shown in the figure is worth 5 marks, and
requires students to Write a function to return the
minimum integer in an array. Below the question text
is the classification meta-data, including the bare-pass
friendly flag as discussed earlier, and two additional
meta-fields for familiarity and estimated time required
for students to answer the question. These two fields
are not currently used in any further processing.

The lower half of Figure 2 shows the topic/outcome,
mastery level, and confidence classifications. In this
case, the question was mapped to three topics from
the ACM/IEEE CS2013. The large slider on the right
is used to quickly set the mastery level for each topic,
in this case using Bloom’s Taxonomy. All three topics
have been mapped at the Application level. Moving
the slider left or right moves through the six Bloom
levels, with Knowledge to the far left and Evaluation
to the far right.

Beneath the mastery sliders is a smaller slider,
which can be used to record the user’s confidence in

each mapping decision. In this case, all three confi-
dence sliders are set to 100%, indicating the user is
very confident in the mappings made. This process is
repeated to map all of the questions in a particular
exam or assessment.

Additional topic or outcome mappings can be
added through a floating dialog editor which allows the
user to begin typing a keyword, such as ‘parameters’,
whereupon any matching topics or outcomes from the
linked syllabus document will be instantly displayed
on the screen. From here, the user can use the sliders
to immediately assign a mastery level and confidence,
and continue searching for other keywords. The dialog
additionally supports manual browsing through the
syllabus hierarchy of knowledge areas and knowledge
units to select relevant topics. A user may also de-
fine his or her own set of topics or outcomes, which
may be used in combination with, or instead of, an
authoritative curriculum.

The tabs across the top of Figure 2 allow the user
to access a range of other functionalities, namely:

• Overview – brief description of subject details,
typically similar to what appears in a printed
handbook.

• Prerequisites – mapping of syllabus top-
ics/outcomes and mastery levels that represents
expected student knowledge prior to commencing
the subject.

• Assessments – list of subject exams and assess-
ments, including facility to drill down to individ-
ual questions as seen in Figure 2.

• Dependency checks – compares the specified pre-
requisite topics/outcomes to previous subjects
in the degree program sequence, allowing the
subject lecturer to quickly identify where, and
to what extent, each prerequisite topic/outcome
was taught and assessed. Similarly, this screen
also shows subsequent subjects in the degree
program sequence which have prerequisite top-
ics/outcomes that are taught and assessed in the
current subject.

• Program progression – provides whole-of-program
visualisations showing the percentage of planned
topic/outcome coverage and planned mastery lev-
els. These are represented via a collection of
charts which allow drill-down from high-level
knowledge areas to specific topics and outcomes,
and to the subjects, assessments and questions
where they were assessed. The design and effec-
tiveness of these reports has been presented else-
where (Gluga, Kay & Lister 2012).

The final tab on the top of Figure 2, Student
Grades, allows the subject lecturer to view the learn-
ing design in terms of the topics/outcomes mapped to
exam/assessment questions. It additionally allows the
lecturer to import a CSV file containing itemised stu-
dent grades for each assessment task. Once the grades
are imported, the lecturer can generate charts such
as the one in Figure 3. These are discussed in the
following section as part of our evaluation.

5 Evaluation

To evaluate the conceptual model presented earlier,
we initially mapped the final exams from seven core
subjects from a computer science degree program of-
fered by an elite Australian (”Go8”) university. The
questions from each final exam were mapped to the rel-
evant topics/outcomes from the ACM/IEEE CS2013
Strawman draft, at appropriate levels of mastery using
Bloom’s Taxonomy. This enabled us to generate the
Program Progression reports mentioned in the previ-



Figure 2: Interface for mapping topics/outcomes and mastery levels to a fictitious question

ous section. This evaluation was described in detail
elsewhere (Gluga, Kay & Lister 2012).

The objective of this paper is to evaluate the con-
ceptual model for comparing the assessed curriculum
expectations for bare-passing vs. top-performing stu-
dents against the actual learning achieved, as demon-
strated by student grades for each itemised assessment
question. To do this, we used the system to code fi-
nal exams from four programming subjects, each from
a different Australian university. The questions from
each exam were classified by authors of this paper
using the described meta-tags, and validated by an
academic involved in the teaching or design of each
subject. For one of these four subjects, we also coded
the additional three assessments in the subject (two
practical tests and one take-home assignment in ad-
dition to the final exam). This allowed us to create
models of expected learning that took account of the
whole of the assessments for the subject.

Figure 3: Intended vs. actual performance of top 5%
of class in terms of Bloom levels for one subject

For each of these four subjects, we then imported
itemised student grades for the four final exams, and
also for the three additional assessments for the sub-
ject for which we had that information. The numbers
of student records imported for the four subjects were
148, 160, 225 and 99. With this data, each lecturer is
able to select a subset of their students’ grades (for
example, the top 10% of students, the bottom 12 stu-
dents, the 15 students who scored lowest of those who

passed) and the system will generate charts such as
the one shown in Figure 3. Along the y-axis are the
six Bloom levels, with Knowledge at the bottom and
Evaluation at the top.

For each Bloom level, the chart shows three bar val-
ues: the top bar is the expected top-performing student
performance; the middle bar is the actual student per-
formance of the selected subset of the imported grades;
and the bottom bar is the expected bare-passing stu-
dent performance. The x-axis represents the overall
subject assessment weight associated with each of the
Bloom levels. So, for the example in Figure 3, 65% of
the total assessment weight for this subject is mapped
at the Application Bloom level for top-performing stu-
dents (top bar), while the bare-passing students (bot-
tom bar) are expected to achieve 27% of these marks.
The selected subset of students (middle bar – in this
case the top 5% of the class) achieved 52%. Likewise,
the subject had 3% of its assessment weight at the
Evaluation level for top-performing students, while
bare-passing students were not expected to gain any
of those marks. Similarly, the Synthesis and Analysis
levels had 3% and 4% of assessment weight for top-
performing students and bare-passing students were
expected to gain up to 1% of the marks at the Analy-
sis level. It is not our intention to judge whether this
mapping of assessment weightings to Bloom levels is
appropriate. That is a decision that each university
must make for itself. It is merely our intention to make
decisions of this sort transparent, so that they can be
more readily discussed within an institution.

Hovering the cursor over each bar in the chart
brings up a tooltip as seen in Figure 3, which indi-
cates the type of student being modelled (Expected
Top-Performing), the Bloom mastery level (Applica-
tion), the percentage of assessment weight associated
with that mastery level (64.9%) and finally the confi-
dence or reliability score for this value (97.7%).

This confidence score is based on the reliability
of each assessment and the confidence scores for the
topic/outcome mappings as described in the previous
section. This provides an indication of the level of ac-
curacy of each of the values. So in the given example,
the Application level has an overall reliability score
of 97.7%, meaning the classifiers were very confident
when mapping questions to the Application level. The
Knowledge level, however, had a confidence score of
69%. The final exam in this evaluation was given a re-



liability score of 100%, as it was closed-book and taken
under strict supervision. This implies that many of the
questions which were mapped at the Knowledge level
had low confidence scores associated with them. This
is perhaps because the classifier was unsure if the stu-
dents would use rote learning to answer the question,
or reason about the solution using higher cognitive
skills. Most of the Application level questions, how-
ever, had a 100% confidence rating associated with
them.

Figure 4: Intended vs. actual performance of bottom
5% of bare-passing students in terms of Bloom levels

The system allows the user to generate this chart
for any subset of actual student grades. That is, after
importing the student marks, the user may select one
or more students to be included in the computation
for the middle bar. If only one student is selected,
the chart represents the demonstrated curriculum for
that individual learner. If, say, five students are se-
lected, the chart shows the demonstrated curriculum
as an average across this subgroup. This allows flex-
ible comparison of the expected performance with,
say, the actual performance of top students, the ac-
tual performance of bare-passing students, the actual
performance of the class as a whole, etc.

The middle bar in the chart in Figure 3 shows the
actual performance of the top 5% of the class (i.e. the
top 12 students, who scored between 82% and 90%).
This reveals that the actual top-performing students
in this example scored between the expected top and
expected bare-passing levels, but closer to the former.
Compare this to the chart in Figure 4, which shows
the actual performance for the bottom 5% of bare-
passing students for the same cohort (that is, the 12
students who scored the lowest marks of 50% or more,
which ranged between 50 and 52). This reveals that the
actual bare-passing students are scoring marks below
the expected bare-passing marks for the Application
and Knowledge levels. We could similarly regenerate
this chart for the whole class, for a single student, or
for any other subset of interest.

The charts in Figures 3 and 4 represent the overall
assessment distribution in terms of Bloom levels. A
different visualisation allows the user to see the over-
all assessment distribution in terms of the mapped
syllabus topics/outcomes, as shown in Figure 5. The
CS2013 topics/outcomes that were mapped to exam
questions for this subject are shown along the y-axis.
The x-axis shows the overall assessment weight associ-
ated with each topic/outcome. The three bars in each
series have the same meaning as in the previous two
charts, that is, expected top-performing students as
the top bar, actual student performance as the middle
bar, and expected bare-passing students as the bottom

bar. The image in Figure 5 is cropped to show only
the bottom five topic/outcome mappings. The actual
chart in the system is scrollable, and in the case of
this subject’s final exam it shows 43 such mappings.
The chart in Figure 5 shows the actual performance
of the bottom 12 bare-passing students. For the five
topics/outcomes shown, the actual bare-passing per-
formance is very close to the mapped intended bare-
passing performance.

Figure 5: Intended vs. actual performance of bot-
tom 5% of bare-passing students in terms of top-
ics/outcomes (partial)

The charts also support drill-down functionality.
Clicking on any of the three bars in the Application
series in Figure 3, for example, will bring up a new
chart that identifies the assessment weights and re-
liabilities associated with all of the topics/outcomes
that were assessed at the Application level. Further
clicking on any bar in the new chart will bring up
a dialog showing all of the exam questions that con-
tributed to the clicked-on topic. Likewise clicking on
a topic/outcome bar in Figure 5 will bring up a new
chart that provides a breakdown of the Bloom levels at
which that topic/outcome was assessed, and a further
click will bring up the exam questions contributing to
those mappings.

5.1 Participant Feedback Results

For each of the four subjects mapped into the sys-
tem, an academic involved in the teaching or design
of that subject was asked first to validate the meta-
tags in each question classification, and then to use
the charting visualisations described above to compare
the assessment design against demonstrated student
performance across different groups of students. Af-
ter doing so, the academics were asked to complete
a questionnaire with Likert-scale responses and open-
answer feedback commenting on the perceived useful-
ness of the approach and system implementation. The
hypotheses for this evaluation were:

1. Differentiating between the expected outcomes
of bare-passing and top-performing students is
useful.

2. Comparing expected bare-passing/top-
performing outcomes against actual bare-
passing/top-performing student outcomes is
useful.

3. Visualising the assessment distribution of the sub-
ject in terms of mastery levels is useful.

4. Visualising the assessment distribution of the sub-
ject in terms of syllabus topics and outcomes is
useful.



5. Expressing reliability of classifications is useful.
6. The system interfaces for classifying and visual-

ising information are effective.
7. Academics would consider using the system to

model their own subjects and assessments if it
were available to them.

The term ‘useful’ in this context is used to capture
whether or not participants perceived value in the ap-
proach and in the rich reporting interfaces that allowed
them to compare expected learning vs. actual learning
in their assessments. These were tested using a series
of Likert-scale questions that mapped to each of the
hypotheses (at least two questions mapped to each hy-
pothesis, with some questions mapping to multiple hy-
potheses). The scale ranged from 1 (Strongly Disagree)
to 5 (Strongly Agree). The average scores for the seven
hypotheses were all in agreement (H1=4.25, H2=4.25,
H3=4.13, H4=4, H5=3.75, H6=4.63, H7=4.25).

Open-ended feedback by the participating aca-
demics was also of high interest. One participant com-
mented in relation to H1 that “I suspect this is some-
thing that I always have in the back of my mind when
setting assessments...So what this has done is bring
these thoughts to the fore and make them explicit on
a question-by-question basis”. Increasing the trans-
parency of these assessment design decisions, so that
they may be shared across subjects, is an important
outcome. One participant commented that “I can see
that this would be useful in terms of syllabus design,
but once the course is designed and implemented I
think the usefulness diminishes”. This may be true
to some extent, namely that the approach would be
most useful in the initial design of a new subject or new
degree program. However, subjects, subject lectures,
degree program enrolment rules and even curriculum
recommendations do often change. Having the orig-
inal design decisions explicitly captured will enable
more informed restructuring of teaching and learning
activities at these points. For example, suppose an aca-
demic designs a new subject, including all assessments,
so that it aligns with a set of recommended learning
goals. What happens when this academic leaves and is
no longer responsible for this subject? How does a sub-
sequent lecturer know the implicit reasoning behind
the assessment design?

While the participants indicated overall satisfac-
tion with the effectiveness of the system interfaces,
some were concerned that the initial data entry may
be somewhat time-consuming. Additionally, some par-
ticipants found that the mapping of questions to the
CS2013 topics and outcomes was not always obvious.
In particular, a number of exam questions were iden-
tified where the primary assessed concepts were not
found in the CS2013 specification (e.g. variable scope
and static variables). However, overall the participants
were satisfied with the use of mastery levels to differ-
entiate between the performances of different student
groups. One participant stated “A very useful tool. It
has suggested, for instance, a broad difference in the
Bloom level that students reach in different bands: be-
low a Credit (65%) for instance, the Application level
average performance dips below the performance for
Comprehension-level questions. Interesting stuff which
might give a good perspective to academics who are
hoping to define clearly what it means to be a ‘Credit
level’ student vs a ‘Passing’ student.”

6 Discussion

The evaluation presented in this paper used student
marks from four subjects, each from a different insti-
tution, to validate the conceptual design. For one of
the four subjects we were able to import marks for all

of the assessments, not just for the final exam. This
provided a more realistic picture of the learning ex-
pectations vs. actual performance across that entire
subject. When considering only final exams, the gen-
erated reports showed very small assessment weight
at the higher Bloom levels (Synthesis and Evaluation).
This is to be expected, as testing for competence at
these higher levels is typically more appropriate in
larger design-oriented tasks such as take-home assign-
ments. This was reflected in the subject for which we
had student results for all assessments: a large portion
of a 20% take-home assignment was classified at the
Bloom Synthesis level. The charts for this report thus
contrasted with those from the three subjects with
only final exams, which had very little emphasis on
these higher levels.

However, take-home assignments may have lower
reliability scores, depending on the classifier’s judge-
ment. This would thus reduce the confidence scores for
these upper Bloom levels, as compared to the stronger
reliability for the lower levels assessed in final exams.
Appropriate ways in which to interpret these confi-
dence and reliability scores need to be explored. If a
topic/outcome has an overall confidence value of less
than 50%, what can we claim about the knowledge
of the student at the end of the subject? Perhaps the
reliability scores are overly pessimistic and need to be
raised? Perhaps some of the confidence values associ-
ated with each question mapping are too low and need
to be revised? Perhaps the subject relies too heavily
on less trusted assessment techniques and thus cannot
support strong claims about the learning outcomes
of the passing student? In any case, the conceptual
design and implementation allows the academic to
explicitly document and capture these concerns, pro-
viding the opportunity to iteratively refine the learn-
ing design so as to raise the mastery levels and their
confidence values to appropriate levels.

The conceptual design also supports the generation
of similar reports and visualisations across a sequence
of subjects, or across a full degree program. This may
provide very valuable information for degree program
quality assurance and accreditation purposes, and for
communicating with employers or other stakeholders
a more precise picture of graduate capabilities. The
main difficulty in doing this is collecting the itemised
fine-grained student marks for each individual ques-
tion in each subject assessment. This may require a
change to current assessment processes in some in-
stitutions, where typically marks are stored only at
a coarse level. For example, only a single mark for a
quiz or exam is recorded in the student gradebook sys-
tem, and after the student completes a subject, these
itemised marks are often lost and all that remains is
an overall subject mark for each student, which does
not provide sufficient information for such analysis.

The validation presented in this paper maps top-
ics and outcomes from the CS2013 Strawman curricu-
lum guideline, which is not formally accredited in Aus-
tralian computer science degree programs. Perhaps an
institution may be more interested in mapping assess-
ment tasks against the ACS Core Body of Knowledge,
or the Skills Framework for the Information Age (SFIA
2012) as proposed in the new ACS accreditation guide-
lines. The skills, attributes and topics listed in these
documents are significantly higher-level, so instead of
mapping to each individual exam question, it may be
more appropriate to classify only at the assessment
level, or even the subject level as a whole. Such higher-
level attributes and skills are discussed at length in
Gluga, Lever & Kay (2012).

The model presented is agnostic of any specific
syllabus or body-of-knowledge statement, so it could



instead be used with any internally defined taxonomy
of topics or concepts that an institution, department
or group of academics decides on as important. Addi-
tionally, the model is agnostic of the method by which
mastery levels are classified. We have used Bloom’s
Taxonomy, as it has received significant attention in
computing education, but other classification schemes
such as neo-Piagetian cognitive development (Lister
2011), the SOLO Taxonomy (Sheard et al. 2008), or
any internally defined scheme may work equally well.

The evaluation and discussion thus far have focused
on a single offering of each subject. That is, the final
exams and student results were from a particular offer-
ing of each of the four classified subjects. The charts
and reports shown here are thus only a snapshot view
of a subject or collection of subjects at a particular
point in time. The envisaged use of the system is to
model lecturer expectations from a subject offering,
then to compare these expectations to actual student
performance at the end of the offering, and to take any
necessary corrective action in the teaching and learn-
ing design or assessment design for the next offering.
That is, the conceptual model is intended to be used
as a tool for iterative improvement of courses and pro-
grams. The snapshot aspect of the data might appear
somewhat restrictive, in that each new offering of a
course would entail new data. However, it is our expe-
rience that while assessment items generally change
from one offering to the next, what they assess and
how they assess it remain fairly constant; therefore all
that is required for a new offering is to check the data
for the previous offering and adjust it appropriately.

The primary concern in using the tool for this pur-
pose and in this fashion, as expressed by some of our
participants, is the perceived effort required in per-
forming the fine-grained classifications. However, as
reported in Gluga, Kay, Lister & Lever (2012), the
time taken for mapping a full exam paper is between
one to two hours, or slightly more depending on the
granularity of questions. Mapping additional assess-
ments from the subject may thus take a further hour
or two. An entire subject can thus be reasonably clas-
sified by the lecturer of that subject within a single
sitting. This would enable very rich long-term models
of the curriculum with a modest time investment from
each of the 24 or more subject lecturers.

7 Conclusion

To design an effective computer science degree pro-
gram, subject lecturers need to have a clear under-
standing of the learning standards that they are to
teach and assess, and the capabilities of their students
at the beginning and end of each subject. That is, lec-
turers must know what syllabus topics and outcomes
the students have previously learnt, and what mastery
level they have attained, in order to design effective
teaching, learning and assessment activities that inte-
grate appropriately into the overall degree program
sequence. Additionally, lecturers need to be aware of
the differences in capabilities between the bare-passing
students and top-performing students, to help ensure
that neither group is neglected. Likewise, subject lec-
turers must be able to communicate this knowledge
amongst themselves as students progress through the
many subjects of a degree. They must additionally be
able to support this knowledge with evidence based
on actual student grades, such that any unmet expec-
tations can be addressed in future revisions of the
curriculum.

To achieve these goals, we have presented a con-
ceptual model that supports the description of sub-
ject assessment questions in terms of syllabus topics
or outcomes, such as the CS2013, and also in terms

of mastery levels, such as Bloom’s Taxonomy. The
model additionally supports the importing of student
marks to represent the actual Demonstrated Curricu-
lum, which we believe to be important for iterative
teaching refinement. A third component of the model
is the capture of reliability scores for each assessment
task and confidence ratings in each question classifi-
cation. These are useful for representing the accuracy
and reliability of the generated curriculum models, on
which important decisions may be based.

We have validated the conceptual model by creat-
ing a web-based implementation that enables users
to enter all the subject assessment data and to effec-
tively classify each individual question. The system
was used to model the Assessed Curriculum based
on the final exams of seven core programming sub-
jects from a real computer science degree program.
To test the effectiveness of comparing the expected
learning outcomes with actual student performance,
we imported itemised final exam marks from 632 stu-
dents across four programming subjects from different
institutions. The system was used to aggregate these
grades against the question classifications and present
a series of charts that allow visualisation of the data
from multiple perspectives. Additionally, for one sub-
ject we were able to import student marks for all re-
maining assessments, enabling us to generate realistic
reports as to the learning design of that subject as a
whole, and to compare that against the Demonstrated
Curriculum.

Academics involved in the teaching or delivery of
each of the four subjects validated the question classi-
fications and experimented in using the charting visu-
alisations to explore how closely their expectations of
bare-passing vs. top-performing students matched the
actual student performance at different band levels.
Overall, the academics expressed positive interest in
using a similar system to document and visualise their
subjects and assessments.

The main contributions of this paper are the con-
ceptual model for capturing the learning design and ex-
pectations, for comparing these against demonstrated
student performance, and for also capturing the reli-
ability of the generated models. The system is freely
available to trial online at http://progoss.com.
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