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ABSTRACT: 

The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, 

robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens 

Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer 

measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a 

buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were 

used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU 

sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and 

Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the 

differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 

0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result 

assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch 

determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter. 

* Corresponding author

1. INTRODUCTION

Different kinds of technologies enable the measurement of 

orientation, inertial based sensory systems have the advantage 

of being completely self-contained such that the measurement is 

independent of motion and environment or location. An IMU 

(Inertial Measurement Unit) contains gyroscopes and 

accelerometers enabling the tracking of rotational and transfer 

movements. In order to measure in three dimensions, tri-axis 

sensors consisting of 3 mutually orthogonal sensitive axes are 

required. A MARG (Magnetic, Angular Rate, and Gravity) 

sensor is a combination of IMU along with tri-axis magnetic 

sensor. An IMU alone can only measure an attitude relative to 

the direction of gravity which is sufficient for many applications 

(Euston et al., 2007; Luinge et al., 2004). MARG systems or 

AHRS (Attitude and Heading Reference Systems) are able to 

provide a complete measurement of orientation relative to the 

direction of gravity and the earth's magnetic field. 

A gyroscope measures angular velocity which, sensor 

orientation will be computed over the time if initial conditions 

are known (Bortz, 1971; Ignagni, 1990). Precision gyroscopes 

are really expensive and grave for most applications while low 

accuracy MEMS (Micro Electrical Mechanical System) devices 

are used in a majority of applications (Yazdi et al. 1998). 

Accumulating error will occur in computed orientation because 

of the integration of gyroscope measurement errors. Therefore, 

gyroscope by itself can not present a complete measurement of 

orientation. The accelerometer measures the earth's gravitational 

and magnetometer measures magnetic fields thus, beside a 

gyroscope they create an absolute reference of orientation. 

However, these sensors are likely to be subject to high levels of 

noise; for example, the measured direction of gravity will 

corrupt by the noise due to the motion of the platform. The task 

of an orientation filter is to compute a single estimate of 

orientation through the optimal fusion of gyroscope, 

accelerometer and magnetometer measurements. 

These days The Kalman filter (Kalman, 1960) plays important 

role in majority of orientation filter algorithms (Foxlin, 1996; 

Luinge et al., 1999; Marins, 2001) and commercial inertial 

orientation sensors. Different commercial inertial systems have 

used Kalman-based algorithm; for example, Xsens (Xsens 

Technologies, 2009), micro-strain (MicroStrain, 2009), 

VectorNav (VectorNav, 2009), Intersense (InterSense, 2008), 

PNI (PNI sensor corporation) and Crossbow (Crossbow, 2007). 

The Kalman-based algorithms for orientation determination 

from sensor's raw data have a number of disadvantages, 

however, the widespread use of Kalman-based algorithm has 

emphesised that they have good accuracy and their 

effectiveness. Implementation of Kalman-based algorithm can 
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be really complicated (Kallapur et al., 2009; Barshan and 

Durrant-Whyte, 1995; Foxlin, 1996; Luinge et al., 1999; Marins 

et al., 2001; Sabatini, 2006; Luinge and Veltink, 2006). 

(Mahony et al., 2008) developed the complementary filter 

which is shown to be an efficient and effective solution; 

however, performance is only validated for an IMU. 

 We used Mahoney and Complementary Filter for orientation 

determination from raw data that has been achieved by 

accelerometer, gyroscope, and magnetometer accelerometer. 

Their performances are benchmarked against an existing 

commercial filter (Xsens Kalman Filter (XKF3i)).  

 

2. MAIN BODY 

2.1 The Complementary Filter 

When looking for the best way to make use of a IMU-sensor, 

thus combine the accelerometer and gyroscope data, a lot of 

people get fooled into using the very powerful but complex 

Kalman filter. However, the Kalman filter is great, there are 2 

big problems with it that make it hard to use: Very complex to 

understand and Very hard. 

 

Complementary Filter is extremely easy to understand, and even 

easier to implement. Most IMU's have 6 DOF (Degrees of 

Freedom). This means that there are 3 accelerometers, and 3 

gyrosocopes inside the unit. IMU will be able to measure the 

precise position and orientation of the object it is attached to. 

This because an object in free space has 6DOF. So if we can 

measure them all, we know everything. The sensor data is not 

good enough to be used in this way. 

 

We will use both the accelerometer and gyroscope data for the 

same purpose: obtaining the attitude of the object. The 

gyroscope can do this by integrating the angular velocity over 

time. To obtain the attitude with the accelerometer, we are 

going to determine the position of the gravity vector (g-force) 

which is always visible on the accelerometer. This can easily be 

done by using an atan2 function. In both these cases, there is a 

big problem, which makes the data very hard to use without 

filter. 

 

The problem with accelerometers: 

As an accelerometer measures all forces that are working on the 

object, it will also see a lot more than just the gravity vector. 

Every small force working on the object will disturb our 

measurement completely. If we are working on an actuated 

system, then the forces that drive the system will be visible on 

the sensor as well. The accelerometer data is reliable only on the 

long term, so a "low pass" filter has to be used. 

 

The problem with gyroscopes: 

It is possible to obtain the angular position by use of a 

gyroscope. It is very easy to obtain an accurate measurement 

that was not susceptible to external forces. The less good news 

was that, because of the integration over time, the measurement 

has the tendency to drift, not returning to zero when the system 

went back to its original position. The gyroscope data is reliable 

only on the short term, as it starts to drift on the long term. 

 

The complementary filter gives us a "best of both worlds" kind 

of deal. On the short term, we use the data from the gyroscope, 

because it is very precise and not susceptible to external forces. 

On the long term, we use the data from the accelerometer, as it 

does not drift. In its most simple form, the filter looks as 

follows: 

 

0.98 ( ) 0.02 ( )angle angle gyroData dt accData        

The gyroscope data is integrated every timestep with the current 

angle value. After this it is combined with the low-pass data 

from the accelerometer (already processed with atan2). The 

constants (0.98 and 0.02) have to add up to 1 but can of course 

be changed to tune the filter properly. It is very easy to compare 

Complementary Filter with Kalman filter. 

 

The Complementary filter algorithm is designed in a way that 

has to be repeated in an infinite loop. Every iteration the pitch 

and roll angle values are updated with the new gyroscope values 

by means of integration over time. The filter then checks if the 

magnitude of the force seen by the accelerometer has a 

reasonable value that could be the real g-force vector. If the 

value is too small or too big, we know for sure that it is a 

disturbance we don't need to take into account. Afterwards, it 

will update the pitch and roll angles with the accelerometer data 

by taking 98% of the current value, and adding 2% of the angle 

calculated by the accelerometer. This will ensure that the 

measurement won't drift, but that it will be very accurate on the 

short term (Jan, 2013). 

 

 
Fig. 1: Complementary filter process schematic (SegBot, 2014) 

 

 

2.2 Xsens Kalman Filter (XKF3i) 

The orientation of the IMU sensor (Xsens MTi-G-700) is 

computed by Xsens Kalman Filter. XKF3i uses signals of the 

rate gyroscopes, accelerometers and magnetometers to compute 

a statistical optimal 3D orientation estimate of high accuracy 

with no drift for both static and dynamic movements. XKF3 is a 

proven sensor fusion algorithm, which can be found in various 

products from Xsens and partner products.  

 

The design of the XKF3i algorithm can be summarized as a 

sensor fusion algorithm where the measurement of gravity (by 

the 3D accelerometers) and Earth magnetic north (by the 3D 

magnetometers) compensate for otherwise slowly, but 

unlimited, increasing (drift) errors from the integration of rate 

of turn data (angular velocity from the rate gyros). This type of 

drift compensation is often called attitude and heading 

referencing and such a system is referred to as an Attitude and 

Heading Reference System (AHRS) (MTi User Manual, 2015). 

 

2.3 Study area 

A study area was selected in Southern IRAN, Kish Island in 

Persian Gulf with Coordinates: 26°32′N 53°58′E (Fig. 2).  
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Fig. 2: Kish Island location in Iran. 

 

 

2.4 Data sets 

A field test and data acquisition have done in June 2016 in Kish 

Island beach. As we can see in (fig. 3) a lightweight buoy with 

the onboard inertial Xsens sensor used (fig. 4). The inertial 

sensor needs electrical power supply during the data 

acquisition, therefore, a boat used for putting a battery on it and 

to restrain the buoy. 

 

 

Fig. 3: Lightweight buoy with IMU 

 

 
Fig. 4: Xsens IMU Sensor 

 

 IMU data acquired with 8 HZ data rate during 25 minutes. 

Despite accelerometer (fig. 5), gyroscope (fig. 6), and 

magnetometer’s data (fig. 7), attitude data which uses Xsens 

Kalman Filter for computation, also acquired.  

 

 
Fig. 5: tri-axis accelerometer data 

 

 
Fig. 6: tri-axis gyroscope data 

 

 
Fig. 7: tri-axis magnetometer data 

 

2.5 Evaluation result 

A glimpse into upper figures, it can be deduced that in addition 

to the noise in observation, there are drift and bias. In the 

following, Mahoney, Complementary and Xsense Kalman Filter 

are used for attitude determination by means of raw data of the 

sensor, shown in (fig. 8). By looking at (fig. 8), each of three 

attitude plots by the nearest approximation pursues each other. 
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Fig. 8: Attitude determination by Mahoney, Complementary, XKF3i 

 

It should be noted, we used Xsens Kalman Filter algorithm as 

the reference algorithm without any drift and bias, so for 

evaluation of the accuracy and precision of Mahoney and 

Complementary Filter, as it can be seen in (fig. 9) & (fig. 10), 

we compared them with Xsens Kalman filter algorithm. 

 

 
Fig. 9: Differences between Mahoney Filter and XKF3i 

 

 

 
Fig. 10: Differences between Complementary Filter and XKF3i 

 

Also, the standard deviation of this comparison brought in (tab. 

1). Due to the (tab. 1) the mean differences between Mahoney 

filter and XKF3i for roll, pitch, and heading angles respectively 

almost are -1.45*10-15, 8.23*10-16, -4.00*10-6 and the mean 

differences Complementary filter and XKF3i for roll, pitch, and 

heading angles respectively almost are 1.36*10-15, 1.73*10-15, 

0.1855. On the other hand, the standard deviation of differences 

between Mahoney filter and XKF3i for roll, pitch, and heading 

angles respectively almost are 0.5644, 0.3872, 0.4990 and the 

standard deviation of the differences between the 

Complementary filter and XKF3i for roll, pitch, and heading 

angles respectively almost are 0.6349, 0.2621, and 2.3778. 

 
Statistics Roll Ang Pitch Ang Heading Ang 

Mahoney min -1.1869 -0.8922 -2.0883 

Mahoney max 1.2046 0.6971 1.4710 

Mahoney mean -1.45E-15 8.23E-16 -4.00E-06 

Mahoney Std 0.5644 0.3872 0.4990 

Complementary min -1.1286 -0.7053 -3.1761 

Complementary max 1.4555 0.4540 4.8839 

Complementary mean 1.36E-15 1.73E-15 0.1855 

Complementary Std 0.6349 0.2621 2.3778 

 

(Fig. 11, 12, 13) show the roll, pitch, and heading angles 

diagram of standard deviation between Mahoney and 

Complementary filters. As it's clear from (fig. 11), the standard 

deviation of Mahoney algorithm is lower than the 

Complementary algorithm, therefore, Mahoney algorithm for 

roll angle determination is more accurate. 

 

 
Fig. 11: Mahoney and Complementary Roll Std 

 

 But this principle is not true for pitch angle determination (fig. 

12). Because of the lower standard deviation of the 

Complementary algorithm, it is more accurate for pitch angle 

determination. 

 

 
Fig. 12: Mahoney and Complementary Pitch Std 
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 Eventually, can be claimed that Complementary algorithm is 

not appropriate for heading angle determination, due to greater 

standard deviation with respect to Mahoney algorithm. 

 

 
Fig. 13: Mahoney and Complementary Heading Std 

 

 
3. CONCLUSION 

In this research, we used Mahoney, Complementary, and XKF3i 

algorithms for attitude determination from raw data of 

accelerometer, gyroscope, and magnetometer. In order to collect 

data, a test field by means of a lightweight buoy with onboard 

Xsens IMU is done in Kish Island. Each of algorithms for 

accuracy evaluation is compared with XKF3i, so, due to 

presented results, it is proved that Complementary algorithm is 

only sufficient for pitch angle determination, while, Mahoney 

algorithm is more accurate for roll and heading angles 

determination. Accordingly, it is suggested that presented 

algorithm be used for different uses such as Marine Engineering 

Sciences, Hydrography, and Oceanography. 
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