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Abstract—Accurate modeling of batteries for plug-in hybrid 

vehicle applications is of fundamental importance to optimize the 

operation strategy, extend battery life and improve vehicle 

performance. Tremblay’s battery model has been specifically 

designed and validated for electric vehicle applications. 

Tremblay’s parameter identification method is based on 

evaluating the three remarkable points manually picked from a 

manufacturer’s discharge curve. This method is error prone and 

the resultant discharge curve may deviate significantly from the 

experimental curve as reported in previous studies. This paper 

proposes to use a novel quantum-behaved particle swarm 

optimization (QPSO) parameter estimation technique to estimate 

the model parameters. The performance of QPSO is compared to 

that of genetic algorithm (GA) and particle swarm optimization 

(PSO) approaches. The QPSO technique needs less tuning effort 

than other techniques since it only uses one tuning parameter. 

Reducing the number of iterations should be a welcome 

development in most applications areas. Results show that the 

QPSO parameter estimation technique converges to acceptable 

solutions with fewer iterations than that obtained by the GA and 

the PSO approaches. 

Index Terms—Tremblay’s battery model, parameter 

identification, genetic algorithm, particle swarm optimization, 

quantum-behaved particle swarm optimization. 

I. INTRODUCTION  

With increasing fossil fuel prices and concerns about 
climate change [1]–[3], automobile manufacturers have 
equipped vehicles with diversified energy sources [4], [5]. 
Plug-in hybrid electric vehicles (PHEVs) have been introduced 
to the market to facilitate electrification of transportation [6], 
[7]. PHEVs have significant advantages in flattening the net 
demand profile [8] and reducing carbon emissions [9]. The 
PHEV batteries can be plugged into the domestic electricity 
grid as well as being charged from renewable energy sources 
[2]. PHEV batteries act as energy storage to counter the 
intermittency of renewable energy sources as well as to supply 
power back to the grid via vehicle-to-grid (V2G) technologies. 
A battery is one of the key elements of a PHEV used to provide 
electrical energy to the motor to propel the vehicle. A PHEV 

battery’s steady-state and dynamic performance might be 
accurately predicted by a suitable battery model which is 
critical for simulation studies. The characteristics of a battery 
can be analyzed and the battery state-of-charge (SOC) 
prediction can be performed in different driving scenarios 
through simulation studies. 

Modeling of PHEV batteries is a research area that has been 
studied extensively throughout the literature. Some earlier 
examples in this area have been demonstrated in [10]–[13]. A 
small subset of more recent research is described in [8], [14], 
[15]. These PHEV battery models vary widely in terms of 
complexity and accuracy [15]. 

In [16], modeling strategies for batteries are summarized 
into three categories: experimental, electrochemical and 
electric circuit-based models [8], [16]. Experimental and 
electrochemical models cannot accurately represent the 
dynamics of vehicle batteries in terms of the SOC estimations 
of battery packs according to [16]. Electrochemical models 
emulate the static characteristics of a PHEV battery using 
mathematical equations that relate to the chemical reactions 
inside the battery [17]. These models cannot accurately 
simulate the battery’s dynamic response [18] and require high 
computational power to solve the associated nonlinear partial 
differential equations [19]. The circuit-based models provide 
reasonable accuracy and robustness in simulating the dynamics 
of the battery [20]–[22]. Their model parameters can be 
estimated based on experimental data. A dedicated automated 
test system is used to acquire the data in [23], these data 
include the responses of a battery at different discharge current 
levels and SOC conditions [23]. Tremblay’s model is a widely 
used battery model in research on battery energy storage 
systems [8], on-board electric vehicle batteries [15], [19] and 
wireless sensor networks [17]. The model incorporates both 
empirical and electrochemical relationships between SOC and 
battery terminal voltage. It is embedded into Matlab/Simulink 
as a standard library block with predefined battery model 
parameters [16], [24]. It has also been validated for electric 
vehicle applications using experimental data [15]. This paper 
proposes to use the quantum-behaved particle swarm 



optimization (QPSO) parameter estimation technique to 
provide a more accurate estimation of Tremblay’s battery 
model parameters. To the authors’ best knowledge, this 
approach has not yet been applied in the context of Tremblay’s 
model parameterization. The results obtained using the QPSO 
approach are compared against those obtained using the 
genetic algorithm (GA) [13] and particle swarm optimisation 
(PSO) [15] approaches. The model parameters and the root 
weighted residual sum of squares (RWRSS) between the 
model curves and the discharge curves obtained from static 
capacity tests conducted by Idaho National Laboratory [25] are 
used to contrast the different sets of results. 

The rest of the paper is organized as follows. Section II will 
explain Tremblay’s model that emulates a typical battery 
discharge characteristic and the method described in [16], [24] 
to identify its model parameters and other parameter 
optimization techniques [8], [13], [15], [26]. Section III 
provides a brief review of GA, PSO, and QPSO parameter 
estimation algorithms and provides detailed procedures for 
identifying the model parameters. Section IV compares and 
analyses the results among the three parameter estimation 
techniques. Finally, Section V discusses the results and 
presents a summary and possible future work. 

II. PHEV BATTERY MODEL 

A.  Tremblay’s Model 

Tremblay’s model expresses the battery voltage during 
discharging by [16], [24]: 

 𝑉𝑑𝑖𝑠 = 𝐸𝑜 − 𝐾
𝑄

𝑄−𝑖𝑡
∙ 𝑖𝑡 − 𝑅 ⋅ 𝑖 + 𝐴𝑒𝑥𝑝(−𝐵 ⋅ 𝑖𝑡) − 𝐾

𝑄

𝑄−𝑖𝑡
∙ 𝑖∗ (1) 

where 𝐸𝑜 is the battery constant voltage; 𝐾 is the polarization 
constant (𝑉 𝐴ℎ⁄ )  or polarization resistance (Ω) ; 𝑄  is the 

maximum battery capacity (𝐴ℎ) ; 𝑖𝑡 = ∫ 𝑖𝑑𝑡  is the actual 

battery charge (𝐴ℎ); the parameter 𝐴 is the exponential zone 
amplitude (𝑉) ; 𝑖∗  is the filtered current (𝐴) ; 𝐵  is the 
exponential zone time constant inverse (𝐴ℎ)−1 ; 𝑅  is the 
internal resistance (Ω); 𝑖 and 𝑉𝑑𝑖𝑠  are the battery current and 
voltage during discharge, respectively. The current is positive 
for a discharging process whereas the current is negative 
during a charging process. The discharge voltage of the battery 
is decomposed into five components, which are the battery 
constant voltage  𝐸𝑜 , the voltage drop on the internal 
resistance  𝑅 ∙ 𝑖 , the polarization voltage affected by battery 

charge 𝐾
𝑄

𝑄−𝑖𝑡
∙ 𝑖𝑡, the polarization voltage affected by filtered 

current 𝐾
𝑄

𝑄−𝑖𝑡
∙ 𝑖∗, and the exponential zone voltage 𝐴𝑒𝑥𝑝(−𝐵 ∙

𝑖𝑡). The filtered current 𝑖∗ can be expressed as the first order 

step response of the battery current 𝑖, i.e.,  𝑖∗ = 𝑖 ∙ (1 − 𝑒−
𝑡

𝜏), 
where 𝜏 is the battery response time. Fig. 1 shows a typical 
PHEV battery nominal discharge characteristic generated by 
Tremblay’s model, where the remarkable points are clearly 
shown. 

B. Model Parameters Identification 

Tremblay proposed a parameter estimation method 
described in [16], [24] to estimate the model parameters. This 
method utilizes the three remarkable points (shown in Fig. 1),  

 

Fig. 1. A typical battery discharge characteristic. 

namely the fully charged voltage (𝑉𝑓𝑢𝑙𝑙), end of exponential 

zone (𝑄𝑒𝑥𝑝,𝑉𝑒𝑥𝑝) and end of nominal zone (𝑄𝑛𝑜𝑚,𝑉𝑛𝑜𝑚) that are 

manually sampled from the typical discharge characteristic on 
the manufacturer’s datasheets. The parameters 𝐴, 𝐵, 𝐾, and 𝐸𝑜 
in (1) are determined from the three remarkable points using 
several approximation equations. Thus, this approach is quite 
subjective and error-prone in terms of locating the positions of 
the remarkable points [15]. The remarkable points on the 
extracted discharge curve may not be easily identifiable and 
are highly susceptible to human errors. Specifically, the 
parameters 𝑄𝑛𝑜𝑚 ,𝑉𝑒𝑥𝑝  and  𝑄𝑒𝑥𝑝  are difficult to determine 

from the manufacturer’s discharge curve by visual analysis as 
indicated in [27]. The discharge characteristic obtained from 
the manufacturer’s datasheets may not reflect the actual 
discharge curve of the battery since model parameters are 
dependent on battery life and operational environment [8]. 
Thus, parameter identification for PHEV batteries needs to be 
conducted over time and corresponding adjustments of model 
parameters must be made to account for changes attributed to 
battery aging [15]. 

A variety of parameter estimation techniques are proposed in 
the literature for the parameterization of battery models. A 
particle swarm optimization (PSO) technique is presented in 
[15] to estimate the model parameters of Tremblay’s model. A 
hybrid optimization technique is proposed in [8] that utilises a 
stochastic and a deterministic algorithm to identify the 
parameters of Tremblay’s model. A GA approach is used in 
[13] to identify the parameters of an improved Thévenin 
battery model to account for the effects of electrochemical 
polarization and concentration polarization. A simulated 
annealing (SA) algorithm approach is proposed in [27] for 
Tremblay’s model parameterization. In this technique, the 
discharge curves obtained from a testbed were used to validate 
the effectiveness of the SA algorithm. Results obtained using 
the SA algorithm are compared to those obtained using 
Tremblay’s parameter estimation method. The current paper 
uses the QPSO approach to parameterize Tremblay’s model 
and the resultant discharge curve is compared to those 
generated by the GA and the PSO approaches. The simulated 
curves obtained from the GA, the PSO, and the QPSO 
parameter estimation techniques are compared to the 



experimental data together with the simulated curve obtained 
from Tremblay’s parameter estimation method in [16], [24]. 

III. PARAMETER ESTIMATION TECHNIQUES 

A. Problem Formulation 

The three remarkable points identified in the battery 
discharge curve need to be estimated to improve the curve 
fitting to the experimental discharge characteristic. 
Additionally, the internal resistance 𝑅  and the maximum 
battery capacity 𝑄𝑚𝑎𝑥  also need to be accurately estimated 
since 𝑅 affects the shape of the battery discharge curve and 
𝑄𝑚𝑎𝑥  is not provided in PHEV battery static capacity test 
results. In total, there are seven parameters that need to be 
estimated in the PHEV battery model. The objective function 
is defined as the RWRSS between the model discharge curve 
and the discharge curve obtained from the static capacity test 
results in [28]. Therefore, an optimization problem is 
formulated as follows: 

 𝑀𝑖𝑛
𝑥
𝐹(𝑥) = 𝑀𝑖𝑛

𝑥
√∑ 𝑤𝑘[𝑉𝑀𝑎𝑛𝑢(𝑘) − 𝑉𝑀𝑜𝑑(𝑘)]

2𝑁
𝑘=1       𝑥 ∈ 𝑋 (2) 

 𝑥 = (𝑉𝑚𝑎𝑥, 𝑉𝑒𝑥𝑝 , 𝑄𝑒𝑥𝑝, 𝑉𝑛𝑜𝑚 , 𝑄𝑛𝑜𝑚 , 𝑄𝑚𝑎𝑥, 𝑅) (3) 

where 𝐹(𝑥) is the objective function, 𝑘 is the index of the data 
sample, 𝑉𝑚𝑜𝑑(𝑘) represents the model voltage at the 𝑘𝑡ℎ data 

sample, 𝑉𝑀𝑎𝑛𝑢(𝑘) is the manufacturer’s voltage at the 𝑘𝑡ℎ data 
sample, 𝑁 is the number of data samples, 𝑥 is the vector of all 
estimated variables, 𝑋 is the space of the solutions and 𝑤𝑘 is 
the weighting factor for the 𝑘𝑡ℎ  data sample. The 
manufacturer’s voltage data are extracted from the static 
capacity test results at beginning of test (BOT) in [28], using a 
web-based tool called WebPlotDigitizer [29], which is used to 
extract data points from plots. 

PHEV battery manufacturers usually limit the usable 
capacity of the battery to meet the battery life cycle 
requirements, vehicle drive performance and safety issues [30]. 
The operational range for the state-of-charge (SOC) of PHEV 
batteries is between 20% and 85%, i.e., the depth-of-discharge 
(DOD) is between 15% and 80%, which is reported in [3]. In 
order to match the discharge curve in the operational range, an 
appropriate weighting function is needed. Many different 
mathematical expressions could be used to represent the 
weighting function. In this study, the weighting function used 
for parameter estimation is defined as follows [31]: 

 𝑤 =

{
 
 

 
 
                     1                                 ,0.15 ≤ 𝐷𝑂𝐷 ≤ 0.8

(𝑤𝑀𝑎𝑥 − (𝑤𝑀𝑎𝑥 −𝑤𝑀𝑖𝑛) ×
𝐷𝑂𝐷

0.2
)
1.3
   , 𝐷𝑂𝐷 > 0.8

(𝑤𝑀𝑖𝑛 + (𝑤𝑀𝑎𝑥 −𝑤𝑀𝑖𝑛) ×
𝐷𝑂𝐷

0.2
)
1.3
, 𝐷𝑂𝐷 < 0.15

 (4) 

where 𝑤𝑀𝑎𝑥   and 𝑤𝑀𝑖𝑛  are the corresponding maximum and 
minimum values of the weighting function. Several other 
weighting functions could also be implemented to improve the 
accuracy of the estimated results. 

B. Genetic Algorithms 

GAs are population-based, stochastic search algorithms 

[32]. GAs have been successfully implemented in parameter 

identification [33] and state-of-health estimation [34]. A GA 

generates arbitrary initial solutions that are encoded as 

chromosomes that provide a correct representation of the search 

space [35]. The bit string representation is employed in this 

paper. To determine the optimal solution for the problem, the 

initial chromosomes are progressively modified by means of a 

series of actions including selection, crossover, and mutation to 

improve the population’s fitness. The fitness of an individual 

chromosome is evaluated using the cost function in (2). A GA 

often terminates after a fixed number of iterations is reached. 

C. Particle Swarm Optimization 

The original PSO algorithm introduced by Kennedy and 

Eberhart [36] mimics the behavior of birds flocking and fish 

schooling with a swarm of particles, to simulate the search 

behaviors of organisms as they happen in nature [37]. The 

speed of movement of each particle is affected by its previous 

position, its personal best position 𝑃𝑏𝑒𝑠𝑡 , and the best position 

of the entire swarm 𝐺𝑏𝑒𝑠𝑡 . The positions and velocities of 

particles are updated as follows: 

 𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (5) 

 𝑣𝑖
𝑘+1 = 𝜔𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖
𝑘) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘) (6) 

where 𝑥𝑖
𝑘 is the previous position of particle 𝑖, 𝑥𝑖

𝑘+1 is the new 

position of particle 𝑖, 𝑣𝑖
𝑘+1 is the new velocity of particle 𝑖, ω 

is the inertia weight,  𝑐1  and 𝑐2  are the cognitive and social 

learning rates, 𝑟1,𝑟2 are random numbers uniformly distributed 

between 0 and 1, 𝑃𝑏𝑒𝑠𝑡,𝑖 is the personal best position of  particle 

𝑖, and 𝐺𝑏𝑒𝑠𝑡  is the best position of the entire swarm. This paper 

employs a set of the PSO algorithm parameters 𝜔 = 0.6,𝑐1 =
1.7 and 𝑐2 = 1.7 reported in [38], which is shown to exhibit 

fast convergenece and high robustness. 

D. Quantum-behaved Particle Swarm Optimization 

Note that the global convergence of PSO cannot be 

guaranteed [39] and it needs conscious efforts in parameter 

tuning. To further reduce the number of tuning parameters and 

increase the convergence rate of the PSO algorithm, a 

quantum-behaved particle swarm optimization (QPSO) 

algorithm is employed with its concept inspired by quantum 

mechanics and physics. The equations for updating the 

positions of particles are presented as follows [40]: 

 {
𝑥𝑖
𝑘+1 = 𝑃𝑖

𝑘 + 𝛽 ∙ |𝑚𝐵𝑒𝑠𝑡𝑘 − 𝑥𝑖
𝑘| ∙ 𝑙𝑛 (

1

𝑢
) , 𝑘 < 0.5

𝑥𝑖
𝑘+1 = 𝑃𝑖

𝑘 − 𝛽 ∙ |𝑚𝐵𝑒𝑠𝑡𝑘 − 𝑥𝑖
𝑘| ∙ 𝑙𝑛 (

1

𝑢
) , 𝑘 ≥ 0.5

 (7) 

where, 

 𝑃𝑖
𝑘 = (𝑟1 ∙ 𝑃𝑏𝑒𝑠𝑡,𝑖 + 𝑟2 ∙ 𝐺𝑏𝑒𝑠𝑡) (𝑟1 + 𝑟2)⁄  (8) 

 𝑚𝐵𝑒𝑠𝑡𝑘 =
1

𝑁
∑ 𝑃𝑏𝑒𝑠𝑡,𝑖
𝑁
𝑖=1  (9) 

where 𝑚𝐵𝑒𝑠𝑡𝑘 is the mean best position defined as the mean 

of all the personal best positions of the swarm. 𝑢, 𝑘, 𝑟1 and 𝑟2 

are all random numbers distributed uniformly on (0,1) , 

respectively. The one and only tuning parameter 𝛽  is the 

Contraction-Expansion coefficient. High values of 𝛽  are 

preferred in the initial stage of optimization for global 

exploration, whereas low values are favoured in the later stage 

for more accurate results in the local search [40]. This paper 

uses values of parameter 𝛽 that decrease dynamically from 0.9 

to 0.5 during the course of iterations [41]. 



E. Lower and Upper Bounds of Estimated Variables 

The admissible lower and upper bounds of each estimated 
variable need to be defined prior to the parameter estimation 
process. An inappropriate value for one estimated variable may 
produce irregular or abnormal discharge curves. Thus, it is 
crucial to reject the values generated by the parameter 
estimation algorithms that have spurious physical meanings. 
According to the PHEV battery specifications given in Table I, 
the lower and upper bounds of each estimated parameter can 
be derived using the relationships given in Table II. Some of 
the symbols used in Table II can be found in Fig. 1 and Table 
I. In Table II, the upper and lower bounds of the internal 
resistance are given by the maximum and minimum values of 
the ten-second discharge pulse resistance dataset, denoted as 
𝑅𝐷𝑂𝐷, as the internal resistance is dependent on DOD variation. 
The ten-second discharge pulse resistance dataset shows the 
internal resistance with respect to the DOD and is extracted 
from [28] using WebPlotDigitizer. It is advised in [42] that the 
value of 𝑄𝑚𝑎𝑥  is 105% of the rated battery capacity. Thus, the 
lower and upper bounds of 𝑄𝑚𝑎𝑥 are specified as 𝑄𝑟𝑎𝑡𝑒𝑑  and 
1.1𝑄𝑟𝑎𝑡𝑒𝑑 , respectively, to include additional solutions for a 
better estimation of 𝑄𝑚𝑎𝑥  over a wide range. 

As it can be seen from Table II, the bounds of parameters 
𝑄𝑒𝑥𝑝 and 𝑄𝑛𝑜𝑚 are exactly the same, this also holds true for 

the parameters 𝑉𝑓𝑢𝑙𝑙 , 𝑉𝑒𝑥𝑝 , and 𝑉𝑛𝑜𝑚 . Special constraints 

should be imposed on these parameters to ensure the algorithm 
rejects unreasonable values being assigned into the battery 
model. The constraints imposed on these parameters are 
expressed in the following inequalities: 

𝑉𝑓𝑢𝑙𝑙 > 𝑉𝑒𝑥𝑝 > 𝑉𝑛𝑜𝑚 > 𝑉𝑚𝑖𝑛 𝑎𝑛𝑑 0 < 𝑄𝑒𝑥𝑝 < 𝑄𝑛𝑜𝑚 < 𝑄𝑟𝑎𝑡𝑒𝑑 (10) 

where 𝑉𝑚𝑖𝑛 is the minimum battery pack voltage that is given 

as 𝐸𝑚𝑖𝑛 ∙ 𝑁𝑠 . Some of these parameters are shown 

schematically in Fig. 1. 

IV. RESULTS & DISCUSSION 

The PHEV battery examined in this study is the battery 
pack of the 2013 Chevrolet Volt – VIN 3929 [28]. The battery 
specifications are provided in Table I. Simulations have been 
conducted using 500 iterations and a population of 100 
particles/chromosomes for the GA, the PSO, and the QPSO 
parameter estimation techniques. Table III compares the 
estimated Tremblay’s model parameters generated by 
Tremblay’s, GA, PSO, and QPSO parameter estimation 
techniques. The performances of the GA, the PSO, and the 
QPSO parameter estimation techniques are assessed in terms 
of RWRSS value, which is also presented in Table III. The 
performance graph of the GA, the PSO, and the QPSO 
parameter estimation techniques are presented in Fig. 2. The 
results shown in Fig. 3 compare the static capacity test curve 
and the simulated discharge curves estimated by Tremblay’s, 
GA, PSO, and QPSO parameter estimation techniques. 

The results shown in Fig. 3 are of significance as it can be 
seen that the GA, PSO, and QPSO parameter estimation 
techniques generate similar discharge characteristics that are 
almost indistinguishable in the operating SOC range for the 
PHEV battery. These discharge curves provide a much better 
model fit than the discharge characteristic estimated by  

Table I. Battery specifications of the 2013 Chevrolet Volt – VIN 3929 [28]. 

Battery Specifications Value 

Manufacturer LG Chem 

Rated Pack Energy/Capacity 16.5 𝑘𝑊ℎ/45.0 𝐴ℎ 

Battery Type Lithium-Ion 

Minimum Cell Voltage (𝐸𝑚𝑖𝑛) 3.00 𝑉 

Maximum Cell Voltage (𝐸𝑚𝑎𝑥) 4.15 𝑉 

Nominal Cell Voltage (𝐸𝑛𝑜𝑚) 3.7 𝑉 

Number of series-connected cells (𝑁𝑠) 96 

Table II. Upper and lower bounds of each model parameter. 

Parameters Upper Bound Lower Bound 

Fully Charged Voltage 

𝑉𝑓𝑢𝑙𝑙  (𝑉) 
1.05𝐸𝑚𝑎𝑥 ∙ 𝑁𝑠 𝐸𝑚𝑖𝑛 ∙ 𝑁𝑠 

Voltage at the end of the 

exponential zone 𝑉𝑒𝑥𝑝 (𝑉) 
1.05𝐸𝑚𝑎𝑥 ∙ 𝑁𝑠 𝐸𝑚𝑖𝑛 ∙ 𝑁𝑠 

Capacity at the end of the 

exponential zone 𝑄𝑒𝑥𝑝 (𝐴ℎ) 
𝑄𝑟𝑎𝑡𝑒𝑑 0 

Voltage at the end of the 

nominal zone 𝑉𝑛𝑜𝑚 (𝑉) 
1.05𝐸𝑚𝑎𝑥 ∙ 𝑁𝑠 𝐸𝑚𝑖𝑛 ∙ 𝑁𝑠 

Capacity at the end of the 

nominal zone 𝑄𝑛𝑜𝑚 (𝐴ℎ) 
𝑄𝑟𝑎𝑡𝑒𝑑 0 

Maximum Capacity 

𝑄𝑚𝑎𝑥 (𝐴ℎ) 
1.1𝑄𝑟𝑎𝑡𝑒𝑑 𝑄𝑟𝑎𝑡𝑒𝑑 

Internal Resistance 𝑅 () MAX (𝑅𝐷𝑂𝐷) MIN (𝑅𝐷𝑂𝐷) 

Table III. RWRSS and model parameters obtained using the GA, the PSO, 

and the QPSO parameter estimation techniques. 

Model Parameter Tremblay GA PSO QPSO 

RWRSS 172.1512 21.7588 19.1298 20.2075 
Fully Charged 

Voltage 𝑉𝑓𝑢𝑙𝑙  (𝑉) 
398.40 418.32 404.43 414.88 

Voltage at the end 
of the exponential 

zone 𝑉𝑒𝑥𝑝 (𝑉) 

376.80 360.36 332.09 354.33 

Capacity at the end 

of the exponential 

zone 𝑄𝑒𝑥𝑝 (𝐴ℎ) 

10.67 22.39 38.42 27.13 

Nominal Voltage 

𝑉𝑛𝑜𝑚 (𝑉) 
331.00 317.81 300.36 319.82 

Capacity at 

nominal 

voltage 𝑄𝑛𝑜𝑚 (𝐴ℎ) 

42.12 41.70 43.93 41.17 

Maximum 
Capacity 

𝑄𝑚𝑎𝑥 (𝐴ℎ) 

47.25 49.50 46.41 47.43 

Internal Resistance 

𝑅 () 

0.1000 0.1270 0.1340 0.1344 

 
Fig. 2. The performance graph of the GA, PSO, and QPSO parameter 

estimation algorithms. 



 
Fig. 3. A comparison between the static capacity test curve and the simulated curves generated by Tremblay’s, GA, PSO, and QPSO parameter estimation 

techniques. 

 

Tremblay’s parameter estimation approach. From Table III, 
the RWRSS values for the GA, the PSO, and the QPSO are 
slightly different. It can be inferred that plausible global 
optimal solutions have been achieved by the three methods. 
The beginning and the end of the static capacity test curve is 
not well approximated by any of the four methods. This is not 
a major concern since these sections are beyond the scope of 
interest. These sections represent a difficult operating zone for 
vehicle propulsion since the voltage drops quite rapidly. Thus, 
the differences between the simulated curves and the static 
capacity test curve are not of importance. 

From Fig. 2, it can be seen that the QPSO approach 
converges faster to its final RWRSS value with a similar 
accuracy level than the GA and the PSO approaches. The 
estimation process will accelerate using the QPSO algorithm 
and fewer iterations will be required to reach the final solution 
when compared to that obtained using the GA and the PSO 
methods. The QPSO approach also provides an advantage over 
the GA and the PSO algorithms that there is only one tuning 
parameter 𝛽 involved in the QPSO algorithm, as shown in (7), 
thus the tuning effort is significantly reduced when compared 
to that of the GA and the PSO approaches. 

V. CONCLUSIONS & FUTURE WORK 

This paper uses the QPSO parameter estimation technique 
to estimate Tremblay’s battery model parameters. The 
parameterization of Tremblay’s battery model has been 
formulated as a multivariable optimization problem that can be 
solved using the QPSO parameter estimation technique. The 
simulated discharge curve generated by the QPSO approach is 
compared with those obtained using the GA and PSO 
approaches. The QPSO parameter estimation technique 

generates solutions with similar accuracy levels when 
compared to those obtained using the GA and the PSO 
parameter estimation techniques, and converges to the final 
solution with fewer iterations than the other methods. This 
highlights the potential enhancement of using the QPSO 
algorithm to parameterize Tremblay’s model as the QPSO 
algorithm only requires one parameter 𝛽 to be tuned. 

Future work may include additional parameter estimation 
techniques, such as the hybrid optimization technique 
mentioned in [8], to improve the performance of Tremblay’s 
model parameterization. The performances of the GA, the PSO, 
and the QPSO parameter estimation techniques could be 
further enhanced by optimizing the algorithms’ parameters, 
such as the cognitive and social learning rates in the PSO 
algorithm and the contraction-expansion coefficient in the 
QPSO algorithm. The weighting function could also be 
adjusted to improve the convergence speed and accuracy of the 
estimated results. Finally, additional simulations could be 
performed using a larger particle/chromosome size and a 
higher number of generations. 
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