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ABSTRACT

A major task in any discrimination scenario requires the col-
lection and validation of as many examples as possible. De-
pending on the type of data this can be a time consuming
process, especially when dealing with large remote sensing
data such as Synthetic Aperture Radar imagery. To aid in
the creation of improved machine learning-based ship detec-
tion and discrimination methods this paper applies a type of
neural network known as an Information Maximizing Gen-
erative Adversarial Network. Generative Adversarial Net-
works pit a generating and discriminating network against
each other. A generator tries to create samples that are in-
distinguishable from real data whereas the discriminator tries
to identify whether a sample is real or generated. Information
Maximizing Generative Adversarial Network extend this idea
by extracting untangled latent variables as part of the discrim-
ination process which help to classify the data in terms of cat-
egories/classes and properties such as ship rotation. Despite
the limited size and class distribution of the dataset, the paper
showed that the trained network was able to generate con-
vincing samples from the three given classes as well as create
a discriminator that performs similarly to state-of-the-art ship
discrimination methods despite using no labels for training.

Index Terms— Synthetic aperture radar, Machine learn-
ing, Marine technology

1. INTRODUCTION

The monitoring of large ocean areas is of great concern to the
Maritime Domain Awareness effort [1, 2, 3, 4]. Ocean ar-
eas typically cannot be monitored in a cost effective manner
at-sea so a remote sensing approach such as Synthetic Aper-
ture Radar (SAR) monitoring becomes an effective alterna-
tive. Historically SAR has been an expensive means of moni-
toring areas but has recently become more affordable with the
release of free and systematic Sentinel-1 A/B acquisitions.
Medium resolution SAR data typically covers areas of
100s of kilometres and to this end extracting meaningful, ac-
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curate and verifiable ship samples from this data can be a
time-consuming process that often yields errors. For exam-
ple, ships in a dataset such as [5] had an average length of
7 pixels versus a single SAR image which contains approxi-
mately 22000 x 17000 pixels. Furthermore, this dataset con-
tained 46 SAR images but only yielded 1596 ship examples.
This presents a fundamental limit in terms of the types of ma-
chine learning methods that can be applied to this data and
so a means of generating more examples would be benefi-
cial. This paper utilizes a new form of neural networks known
as Information Maximizing Generative Adversarial Networks
(InfoGAN) [6] and applies these to ship SAR data to simul-
taneously create new samples, an unsupervised classifier and
identify latent variables in the data. The paper is organized as
follows: In section 2 we discuss the data used in our exper-
iments followed by the detailed discussion of the proposed
ship sample generation method in section 3. Sections 4 and
5 provides some results, a concluding discussion about the
method presented here and future work.

2. DATA DESCRIPTION

A SAR dataset has been created using 22 Sentinel-1 (Extra
Wide Swath) and 3 RADARSAT-2 (Scan-SAR Narrow) ac-
quisitions and a total of 42 dual and 4 single polarized, radio-
metrically calibrated images [5]. The dataset covers approx-
imately 80% of the South African Exclusive Economic Zone
(EEZ) with multiple acquisitions over a number of high ship
densities areas (harbors). The dataset contains three classes
represented by 21 x 21 sub-images, containing ships (posi-
tives), ship-like areas (false positives) and ocean areas (neg-
atives). The 1596 positive examples were identified using
expert analysis and false positives were identified by select-
ing areas that did not contain ships but were incorrectly high-
lighted by a low-threshold cell-averaging constant false alarm
rate (CA-CFAR) prescreening method [1, 2, 3, 4]. Of all
the detected false positives, 3192 sub-images were selected
at random for this experiment. This represents a 2 to 1 ra-
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tio of false positives to positives which is a likely ratio that
would be encountered with careful prescreening threshold de-
sign and selection. Finally, 1596 sub-images that did not con-
tain either a ship or false positive were selected as negative
samples (ocean). The negatives samples were added to under-
stand how the proposed method would deal with and generate
such samples. No additional feature extraction was performed
on the 9588 sub-images resulting in input feature set of 21x21
normalized RCS pixel values per image. Fig. 1 (a) shows
9 examples of the three different classes, across two SAR
sensors. This dataset is significantly smaller than datasets
that are commonly used to train deep learning systems. For
instance, the MNIST dataset has 70000 samples across 10
classes, CIFAR-10 and CIFAR-100 datasets each have 60000
samples, evenly distributed across 10 or 100 classes [5]. The
size of the dataset and unbalanced nature presents a unique
opportunity to train and test an InfoGAN network within a
data-limited SAR environment.

3. METHODOLOGY

This section will describe the basic premise of GAN [7]
and explain how the extended InfoGAN [6] help to identify
classes and pertinent features such as rotation or brightness
within the SAR data.

3.1. Generative Adversarial Networks

GAN networks are a relatively new development in the ma-
chine learning community which tries to pit two competing
deep neural networks against one another using a minimax
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Fig. 1: Examples of data from (a) the actual dataset and (b) InfoGAN generator network. The original samples are split
into three classes and the unsupervised InfoGAN network was able to identify these distinct classes and generate convincing
examples given a uniformly distributed random input z and categorical variable c¢; indicating three classes.

approach [7, 6], see Fig. 2 for an example of such a network.
The goal is to create a generator distribution Pg(x) which
closely matches that of real world data Py, (x). GAN creates
a generator G(z) that uses a noisy variable z ~ Pyise(2) to
generate a sample © ~ p,(z|z). The training and evaluation
of this generator proceeds against a competing discriminator
network D(z) which tries to learn whether any given sample
is real or generated. For a given generator, the discriminator

D(x) = p—2l)— is the optimal discriminator [7, 6]. The

minimax procedure of this can be defined as
mén max Vean (D, G) = Epop,ora (2)[l0g D()] (1)
+ Eonp.(»)[log(1 — D(G(2)))]-

Using a stochastic gradient descent approach the networks
are trained using steps with the only knowledge available to
the D(x) being whether it correctly guessed the type of sam-
ple and for G(z) whether it correctly fooled the D(x). Errors
in the D(x) are propagated back to G(z) in order to improve
the generated examples and in this way improvements to the
discriminator create better samples. The system tries to find
an equilibrium where mutual information is maximized be-
tween the two (i.e. the discriminator cannot tell the difference
between real or generated data).

3.2. Information Maximizing GAN

An extension to the GANs was introduce in 2016 which add
a simple step to the minimax procedure where a discrimina-
tor paired network Q(c|x) tries to identify latent variables ¢
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Fig. 2: Information Maximizing Generative Adversarial Network as described in [7, 6]. The generator network G(z, ¢) gen-
erates examples given uniform random input z and latent codes c. The discriminator network D(z) then tries to determine if
any given sample is real or generated. Errors gradients for the discriminator are propagated back to the generator network in
the hopes of teaching it to generate more convincing samples. The addition of the latent variable ¢ allows the system to vary

intrinsic properties of the samples generated by the GAN.

within the data. The minimax procedure of eq. 2 becomes

Iéliél max Vinocan (D, G, Q) = V(D,G) — AL1(G,Q) (2)

for the InfoGAN network where A is a hyperparamter nor-
malised during training, and L; (G, Q) is the variational lower
bound of the mutual information between the input variables
z and latent variables c. These latent variables can be in two
forms ¢ ~ Categorical || Uniform. Categorical variables are
discovered during training as any part of the data that forms
discontinuities, such as different classes. Uniformly dis-
tributed latent variables describe continuous properties of the
generated samples such as rotation, size and brightness [6].
For a full mathematical treatment of GANs and InfoGANs
readers are referred to [6].

4. RESULTS

One of the major difficulties when training an InfoGAN is the
metric by which its overall performance is measured. Cur-
rently results are determined in two ways - visual inspection
and the usage of the network in downstream tasks such as
classification. For the purpose of this study both will be done
but future work should include a metric by which generated
samples can be objectively measured. The system was trained
5 times using cross validation which partitioned the data into
5 equal segments with one set (20%) used as testing data
while the rest (80%) was used as training data. No labels
were used to train the system, only three types of input were
given to the system: the random uniform input prior z;, where
L = 21 x 21 = 441, a categorical variable ¢; ~ Cat(K =
3,p = 0.333) to model the discontinuous class variations and
¢y ~ Uniform(—1, 1) where N = 2 for this study but can be
increased to other numbers given larger datasets/more train-

ing. The results of using these three inputs are shown in Fig. 1
(b), Fig. 3 and Fig. 4.

Fig. 1 (b) shows that given the three class categories, the
system is able to separate data into 3 classes and generate
samples that are visually quite similar (despite being drawn
from randomly generated values). Two flaws are immediately
apparent, one for the positive class and one for the negative
class. The generator seems to fail at consistently generating
larger ships but this can be explained by the fact that the ma-
jority (> 70%) of ships presented to the discriminator are
small with an average ship length of 7 pixels across all ex-
amples. The second error lies in the undersaturation of the
“ocean clutter” generated in the negative samples. The rea-
sons for this error are not clear and could stem from scaling
by the network as output. For each of the 5-fold cross valida-
tion steps the discriminator network was tested to determine
its performance given c; and the results for a single fold are
shown in Fig. 3. These results compare well with the previ-
ously proposed Deep Highway Networks for discrimination
(76.8% versus 84% positive class accuracy) with the added
benefit of not needing labelled data. However, it should be
noted that the networks will fail to converge to a meaningful
result in approximately 10% of all cases. This can be caused
by a number of factors including generator “collapse”, small
sample size or incorrect gradient descent learning rates for the
discriminator versus the generator [8]. Finally, Fig. 4 shows
the results of varying two separate latent variables co and c3 to
determine which intrinsic parameter is being modelled. The
Fig. 4 (a) shows how the network can capture the positive
classes variance in terms of rotation and how this parameter
can be smoothly varied to give different output images with
different rotations. In a similar manner, Fig. 4 (b) shows that
c3 seems to control the relative brightness of the generated
ship sample to the ocean clutter.
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Fig. 3: Confusion matrices for the 2nd K-fold version of the (a) InfoGAN discriminator network and (b) 50 layer Highway
Network [5]. The headings are POS, FP and NEG which represent the positive, false positive and negative classes respectively.
The D(x) using categorical variable ¢; was able to obtain a 76.8% positive class accuracy without labelled data versus the

highway network’s 84% with it.
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Fig. 4: The effects of varying ¢, and c3 after the network has been trained. The latent variable co seems to capture the rotation
of the generated sample whereas c3 has captured the relative brightness of the “ocean clutter” versus the ship at the center.

5. CONCLUSION

Ship detection and discrimination in SAR imagery is an on-
going research area for any sea-bordering country. New SAR
satellite sensors are constantly being launched and with the
advent of freely accessible data from Sentinel-1 creating ef-
fective ship discrimination networks is important to maintain
a high level of MDA. One of the major tasks when design-
ing any new ship detection system is the generation of ver-
ifiable SAR data to test the system with. Creating datasets,
specifically on large spatial data such as SAR imagery, can
be time consuming and error prone. One approach in the ma-
chine learning community is to use generative networks to
create samples that closely match real-world data to supple-
ment data already obtained. New samples are often gener-
ated using rules that are set up given observations of the data.
Another means of generating new sample data is by apply-
ing machine learning generative networks such as InfoGAN.
This paper showed how an InfoGAN can be applied, in an
unsupervised manner, to medium resolution SAR ship data
to: generate convincing sample for all three classes present;
create a discriminator that performs similarly to state-of-the-
art solutions; and, finally, extract latent variables of the ship
such as rotation, brightness and size. Future work includes
using these latent variables to better separate false positives
and ships as well as training a generator network based on
input data such as AIS ship information.
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