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ABSTRACT

The well-being of the environment is one of the major
factors that contributes to sustainability. Sustainable human
settlements require local governance to plan, implement, de-
velop, and manage human settlements expansions. This is
important as the number anthropogenic activities is directly
correlated to the increase in human population within a geo-
graphical region. Regional mapping of land cover conversion
of natural vegetation to new human settlements is essential. In
this paper we explore the effect which the length of a tempo-
ral sliding window has on the success of detecting land cover
change. It is shown using a short Fourier transform as a fea-
ture extraction method provides meaningful robust input to
a machine learning method. In theory, the performance is
increased by improving the estimates on the features by in-
creasing the length of the sliding window. Experiments were
conducted in the Limpopo province of South Africa and were
found that increasing the length of the sliding window beyond
12 months yield minor improves due to other seasonal and ex-
ternal factors.

Index Terms— Change detection, Fourier transform,
Satellite, time series

1. INTRODUCTION

Land cover classification and change detection is the spec-
tral and spatial analysis of either bi-temporal (2) or multi-
temporal (3 or more) images [1]. Many different approaches
attempt to extract meaningful features and classifying/detect
change land cover using a machine learnong method. This
result in many different applications being processed fast and
efficiently, leaving a fraction of processes still reliant on in-
tense human-operator-dependent mapping.

In our study area the mapping of informal human settle-
ment usually requires human interpretation as these settle-
ments vary quite significant in imagery. The physical area of
an informal settlement in our study area only spans a few con-
tiguous pixels but does cause major disturbance in surround-
ing vegetation. This allows the layout of the settlement to be

easily camouflage with the distributed vegetation. An robust
change detection method can reduce the amount of work on
human interpreters by detecting these new settlements reli-
ably.

Most land cover change detection methods can be broadly
categorized into change index and post-classification change
detection methods. The change index method derives a
change index which declares change if a predefined threshold
is exceeded. Post-classification change detection methods de-
rives the change in land cover class between images. Change
index methods usually have a higher change detection ac-
curacy than post-classification change detection methods as
it is only computes if a change has occur, not the type of
transition.

Bi-temporal change detection methods are very accurate
as long as seasonal compensation is made to the image, e.g.
images are taken in the same season or using training data to
adjust for it. It also unfortunately can not assist with ensuring
that persistent land cover change has occurs. Multi-temporal
change detection methods can be more complex but have the
ability to derive the normal seasonal variations of the land
cover classes to reliably detect change. Medium resolution
remote sensing data is used to ensure that the temporal revisit
time is high enough to decipher the seasonal variation from
change events.

In this paper we asked the question what is the fundamen-
tal lower bound which a change detection method can achieve
and how can we lower that bound? Before we answer, we
would first mention that certain research questions can not
be answered using satellite imagery which will not be cov-
ered here. Second we are restricting the investigation to our
imagery and ground truth maps with the adequate support of
mathematics for our statements. Based on these assumptions,
we will derive the Cramer-Rao Lower bound for our features
and show in experimental results how these bounds can be
used to improve change detection accuracy [2].

The disadvantage is some method’s true validity is lost in
highly convoluted algorithms which only report minor if even
any significant improvements. We start our analysis by in-



vestigating performance of a method and explain mathemati-
cal the limitations of this method and fundamental challenges
faced by the remote sensing community.

(b) 17 June 2009 - after study period

(c) 31 March 2016 - most recent image

Fig. 1: High resolution image taken near Daring
(23°49/21.3"S, 29°21’30.24"E) in the beginning of the study
period (top), shortly after the end of the study period (mid-
dle) and the most recent image available (bottom) respectively
(courtesy of Google Earth).

The paper is organized as follows. Section 2 discusses
the data set. In section 3 we present and discuss the lower
bound on our feature extraction method for detecting land
cover change and how we can improve it. In section 4 we
present our results to support our findings. Section 5 presents
our discussion and conclusions.

2. STUDY AREA AND SATELLITE DATA

Our study area is based in the Limpopo province which is
in north South Africa. The area is mainly covered by nat-
ural vegetation and subjected to massive expansions of new
informal settlements. The expansion of informal human set-
tlements is often unplanned and result in a disturbance to the
local vegetation.

Both natural vegetation and informal human settlement
areas undergo seasonal variations in their recorded satellite
reflectance values. Multi-temporal images enable the extrac-
tion of an time series for each pixel to detect transition be-
tween land cover classes. Time series in our experiments were
extracted from the MCD43A4 Bidirectional reflectance distri-
bution function corrected MODIS product.

The product combines both recording from the Terra and
Aqua satellites to provide 8-day composite 500 meter spatial
resolution acquisitions in seven spectral bands. Missing data
were filled by interpolating through temporal neighbors using
a cubic spline algorithm. The study period for our experi-
ments was February 2000 to December 2008 with all time se-
ries inspected visually using high resolution SPOT?2 imagery
in 2000-2001 and SPOTS5 imagery 2006-2008 (figure 1). All
time series mapped as change had at least 70% of their area
altered. Due to the lack of available high resolution imagery
the exact date of new human settlements change could not
determined.

3. PROPOSED METHOD

A time series of N-samples extracted from the MODIS prod-
uct for a pixel is

Ty = {Tnp}1=Y = {z1p 220 ... TN}, (€Y}

where the time index is denoted by n, € [1, N] and the spec-
tral band by b € [1,...,7]. Time series &} is wide-sense
stationary if the mean 1, and variance o7 is independent of
time. If a time series is not undergoing any land cover change
(or any severe environmental changes such as drought) it
can shown the time series approximates a wide-sense sta-
tionary process as it exhibits a symmetrical response in its
auto-correlation function.

A temporal sliding window is used to extract sub-sequences
from the time series to process with a machine learning
method to detect land cover change. A sub-sequence ()
for a given time series T is given as

Zy(t) = {znp}osi ™, ()

where ¢ denotes the time index within the time series and )
the length of the temporal sliding window. In [3], the mean-
ingful extraction of time series was investigated and it was de-
termined that a proper feature extraction method is needed to
ensure proper analysis of a temporal sliding window. These



limitations were overcome by computing the magnitude of
all the Fourier transform components which removes all the
phase offsets. This made it possible to compensate for both
the restrictive position of the temporal sliding window and the
rainfall seasonality [3]. The features presented to the machine
learning method can be expressed as

Xo(f) = |F @)1, 3)

where F(-) denotes the Fourier transform function. Ma-
chine learning methods attempt to compute the maximum
likelihood class estimations based on the features presented.
The feature extraction method estimates a set of parame-
ters from an initial data set intended to be informative and
non-redundant. It does not create additional information but
more intuitive for methods to learn differences in land cover
classes. An assumption of the Fourier analysis is that the fre-
quencies within the temporal sliding window are multiples of
the fundamental frequency 1/@Q and that only white Gaussian
noise is present. A windowing technique such as Hanning,
Hamming or Blackman window could be used to minimize
the spectral smearing. If this assumption holds for orthog-
onality between frequencies then feature estimates could be
accurately approximated using
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These estimates fk and g are offset due to the present of

white Gaussian noise, which given the linear model the esti-

mates would approximate

fr=E []Ek} 6)

gr = E[gz] @)

with covariance matrix C; of
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where I denotes the identity matrix. This is Cramer-Rao
lower bound to estimating Fourier components [2]. Note to
lower the variance on each component either the signal to
noise ratio (SNR) needs to be increased or more samples
need to be included in the time series. The signal to noise
ratio is very important as improvement can only be verified
if two competing methods are compared on imagery with
similar SNR. The second statement is also intuitive as a more
accurate estimates of the features can be derived if there are
more samples available. The covariance matrix C; is only
valid under ideal conditions, as with most orthogonality and

C, =L ®)

fundamental harmonics conditions are seldom satisfied. A
more accurate covariance matrix for an application could be
expressed as

2 2
cb:%Hezcz, 9)

where € denotes an increase in estimation uncertainty. The
variable e unfortunately is not constant for all time indices.
There are many reasons for this to list: (1) different start
of rainfall season causing significant increases in variations
of time series representing natural vegetation, (2) seasonal
drought, (3) land cover change, etc. The limitation is as we
increase the length @ of the temporal sliding window we re-
duce the first term, but we might also include non-stationary
events into the window which in effect increase .

This was important in our study area as certain parts of the
province received irregular volume of annual rainfall which
causes damage to the natural vegetation. This significantly
varies annual spectral reflectance values which could nega-
tively impact feature estimation if the window increases to
longer than one annual seasonal cycle. There is also the prob-
lem that the distribution of features (given no noise) might be
overlapping between different classes, which means you can
never achieve perfect separation of land cover classes.

4. EXPERIMENTAL RESULTS

The data set consist of 29.5km? changed and 808 km? no
changed time series (1497 vegetation time series and 1735
settlement time series). Sequential sub-sequences were ex-
tracted from each time series to classify. Land cover change
was declared when a natural vegetated time series perma-
nently transition to the settlement class. A Multi-Layer Per-
ceptron (MLP) neural network was used to classify the sub-
sequences in a post-classification approach.

In the feature extraction step the magnitude of the fast
Fourier transform on the sub-sequences was computed. Se-
lecting only a few Fourier components for analysis is stan-
dard [4, 5], and for our experiments we only considered the
mean and annual Fourier components. The MLP comprises
an input layer, one hidden layer and an output layer. All
hidden and output layers used a tangent sigmoid activation
function in each node. The weights in the training phase of
the MLP were determined using a steepest descent gradient
optimization method, with gradients estimated using back-
propagation. The results for all our experiments are shown
in table 1.

We investigate three different spectral band combinations
in our experiments [6]: (1) NDVI, (2) first two spectral bands
and (3) all seven spectral bands. There was a general improve-
ment in classification and change detection accuracy (increase
true positive rate and decreased false positive rate) when us-
ing more combinations of spectral bands. This was because



Table 1: Classification and change detection accuracy using an MLP on the extracted sub-sequences. Classification entries
presents the average accuracy in percentage along with the corresponding standard deviation. The change detection entries give

the average true positive rate along with the false positive rate in parenthesis.

Spectral band Class Sliding window length Q)
6 months 12 months 18 months
NDVI Vegetation 69.7+7.8 72.8+53 73.9+48
Settlement 81.5+5.0 832437 84.8=£3.1
Change detection  69.2(30.0)  70.2(29.5)  71.9(29.2)
Bands 1-2 Vegetation 81.4+43 831+41 852+37
Settlement 86.3+3.4 86.8+2.7 881422
Change detection ~ 77.6(22.4) 78.2(21.3) 78.7(20.7)
Bands 1-7 Vegetation 93.1+2.1 9444+16 945+£1.5
Settlement 93.8+1.6 952+1.1 96.3+1.0
Change detection  90.5(9.6) 90.8(9.4)  91.0(8.9)

the MLP could derive a more complex hyper-plane to sepa-
rate the land cover classes. We also observe an significant
improvement when increasing the length of the temporal slid-
ing window () in all experiments. This supports our hypoth-
esis that a longer sequence of measurements reduces the er-
ror variance in estimating the features which results in more
accurate computation of their respective class label. We do
not have the ability to reduce the SNR in our images, but we
can easily decrease the SNR to verify the second part of the
bound. By adding white Gaussian noise to our time series it
was found that all experimental results deteriorated. Increas-
ing the length of the temporal sliding window also increases
the variable €, which provides an upper bound to the classifi-
cation/change detection accuracy.

S. CONCLUSION AND DISCUSSION

In this paper we show the covariance matrix derived from
estimating features used to classify land cover classes. The
level of uncertainty has a direct effect on the performance of
the change detection capabilities when using a machine learn-
ing method. This creates a lower bound on the performance
which can be achieved. In our case we computed the mag-
nitude of the Fourier components as features, which under
the assumption that all frequencies contained within tempo-
ral sliding window are multiple harmonics of the fundamen-
tal frequency and all are orthogonal to each other, allows us
to show equation 8 derived in [2]. The error variance in our
features reduces the ability of the machine learning method
to separate different land cover classes. In addition it is also
important to ensure proper meaningful analysis of time series
features [3].

Our experimental results and lower bound shown in equa-
tion 9 indicates that increasing the length of the temporal slid-
ing window improves the estimates of the features. The bound
also states that improving the SNR also improves the estima-
tion of the feature. The classification and change detection ac-

curacy are improved by increasing the length of the temporal
sliding window. Increasing the length of the sliding window
also has the potential chance of increasing the error factor e.
This is because the features estimated between different years
might vary and increasing the length of the temporal sliding
window adversely affect the variation. This can be seen in the
results shown in table 1 where the classification and change
detection performance slowly plateau. This objective is thus
to maximize the length of the temporal sliding window to im-
prove change detection and classification accuracy.

6. REFERENCES

[1] P. Coppin et al., “Digital change detection methods in
ecosystem monitoring: A review,,” International Journal
of Remote Sensing, vol. 24, pp. 1565-1596, 2004.

[2] S.M. Kay, Fundamentals of Statistical Signal Processing,
Prentice Hall, Upper Saddle River, New Jersey, 07458,
first edition, 1993.

[3] B.P. Salmon et al., “Unsupervised land cover change
detection: Meaningful sequential time series analysis,”
IEEE Journal of Selected Topics in Applied Earth Obser-
vation and Remote Sensing, vol. 4, pp. 327-335, 2011.

[4] R. Juarez and W. Lui, “FFT analysis on NDVI annual
cycle and climatic regionality in northeast brazil,” Int. J.
Climatol., vol. 21, pp. 1803-1820, 2001.

[5] M. Jakubauskas, D. Legates, and J. Kastens, ‘“Crop
identification using harmonic analysis of the time-series
AVHRR NDVI data,” Computers and electronics in agri-
culture, vol. 37, pp. 127-139, 2002.

[6] B.P. Salmon et al., “The use of a multilayer perceptron
for detecting new human settlements from a time series of
MODIS images,” International Journal of Applied Earth
Observation and Geoinformation, vol. 13, pp. 873-883,
2011.



