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Abstract—The majority of recent large-scale blackouts have
been caused by voltage instability. A prompt on-line assessment
of voltage stability for preventive corrective control of electric
power systems is one of the key objectives for Control centers.
The use of classical approximation methods alone is complicated.
Therefore, several modified methods combined with machine
learning algorithms enabling security assessment in real time
have been proposed over the last years. The paper presents an
automatic intelligent system for on-line voltage security control,
which is based on the model of decision trees Proximity Driven
Streaming Random Forest (PDSRF). In this case, the combination
of original properties of PDSRF and capabilities of L-index as
a target vector makes it possible to provide the functions of
dispatcher warning, localization of critical nodes, and ensure
direct interaction with the security automation systems. The
efficiency of the proposed system was demonstrated using various
test schemes of IEEE.

Index Terms—power system, voltage security, control, random
forest, security assessment, L-index.

I. INTRODUCTION

Analysis of mechanisms of the development of large scale
blackouts makes an emphasis on the voltage instability as a
main reason for blackouts in electric power systems [1, 2]. En-
hancement of the relay protection systems, voltage controllers,
synchronous compensators as well as an increase in generator
rotor speed led to a rise in the power flow dynamic stability
limits of electric power systems, which allowed transmission
of large amounts of power at considerable distances. Against
the background of the rise in the transfer capability, it becomes
necessary to meet the requirements for a necessary level of
system security by providing sufficient backup sources of
reactive power, which is not always fully implemented. This,
in turn facilitates voltage instability, which can lead to voltage
collapse in a large-scale power system.

In a general case to assess voltage stability in power system
in real time, we state the problem of finding the distance of an
operating point from voltage stability. The measure obtained
may be qualitative or quantitative. The qualitative measure
normally requires less computation time compared to the quan-
titative. It does not provide an estimate of exact power reserve
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in megawatts but determines some dimensionless number (that
normally varies from 0 to 1), which can be interpreted as a
stability indicator.

By definition, such indicators of security are scalar mag-
nitudes and are determined by monitoring of a change in
certain parameters of electric power systems. These stability
indices seem quite convenient for dispatchers, first of all, to
generate respective preventive control actions. According to
[3] all voltage stability indices of power systems are divided
into two main parts: Jacobian matrix based voltage stability
indices and system variables based voltage stability indices.

The first group of indices normally requires considerable
computational efforts, which imposes limitations on their
application for the real-time security assessment. Much less
time is necessary to calculate the second group of indicators.
This is associated with the fact that their calculation requires
only the elements of the admittance matrix and some system
variables such as bus voltages or power flow through the lines.
Both types of indices vary in the range from 0 to 1 where 0
is no-load and 1 – voltage collapse.

In the traditional statement, the application of such stability
indices implies a purely algorithmic approach where the
specified equations or partial derivatives are used to calculate
numerical values of these indices for each current state of
power system. However, as the practice of operation shows,
such an approach has a number of significant downsides.
These are: low robustness to erroneous inputs; computational
complexity erroneous identification of states, and some others
[4].

One of the effective solutions to this problem is the use of a
combination of traditional approaches on the basis of voltage
stability indices and machine learning algorithms. The main
idea here lies in an intelligent model learning to independently
determine current value of an assumed indicator on the basis of
input data, thus identifying the current state of power system.
As the studies [5,6] show such a modified approach makes it
possible to neutralize the drawbacks of traditional algorithmic
approaches owing to the original properties of the machine
learning technologies.

The authors tested the most popular machine learning mod-
els such as neural networks, support vector machines, various



decision tree algorithms that have been proposed recently to
solve the problems of security assessment of electric power
systems [6-8]. Capability of these algorithms to effectively
identify operating conditions of electric power systems was
demonstrated on various test schemes of IEEE involving
different stability indicators as target vectors for training the
models.

The calculations, however, show that when security is
assessed in real time the most effective algorithm in terms
of such criteria as accuracy, robustness, online adaptability
and versatility is the algorithm of Proximity Driven Streaming
Random Forest (PDSRF) proposed in [9]. Therefore, it is the
PDSRF algorithm implemented in the programming language
C++, which was used as a basis for the developed automatic
intelligent system for a real time security assessment of a
power system. Moreover, the combination of the original
properties of PDSRF algorithm and capabilities of L-index
as a target vector for training a model made it possible to
implement the following functions (1) the on-line alarming and
predicting of potential dangerous states; (2) control security
with localization of ”‘critical”’ nodes in power systems; (3)
interact with relay protection and automation systems.

II. PROXIMITY DRIVEN STREAMING RANDOM FOREST
ALGORITHM

In many papers devoted to the studies of the power system
security on the basis of decision trees, the authors suggest
using the model off-line and, instead of adaptation, periodi-
cally update the model [10,11]. However, even in the case of
retraining, the complete training of the model is associated
with additional time, which excludes the retraining in real
time. This problem can be solved by on-line methods, which
update the existing model, using new data without its total
restructuring [11]. A PDSRF algorithm employed in the paper
can serve as one of such models.

A. Streaming Classifier Based on Random Forest

For real power systems learning algorithms are supposed
to work in dynamic environments with data continuously
generated in the form of a stream on not necessarily equally
spaced time intervals. Data stream processing commonly relies
on single scans of the training data and implies restrictions on
memory and time. Changes caused by dynamic environments
(e.g. consumer behaviour in power systems) can be categorised
into sudden or gradual concept drift subject to appearance of
novel classes in a stream and the rate of changing definitions
of classes.

Ensemble methods enable to build a reliable decision rules
for feature space classification in the presence of many
possible states of the system. Methodologically ensemble
approaches allow concept-drift to be handled in the following
ways: base classifier adaptation, changing in training dataset
[12,13], ensemble aggregation rule changing or changing in
structure of an ensemble (pruning or growing). In this paper
we employ the PDSRF algorithm which exploit combinations
of these approaches.

Contrary to conventional algorithms we use the accuracy
weighted ensemble (AWE) method as an aggregation rule of
ensemble. This allows us to adapt the entire classifier by
changing the weights of the base learners. In order to obtain
the classifiers weight estimation we should store samples. For
this purpose we use a sliding windows approach which is used
in the periodically updated Random Forest [14]. The length of
this window is fixed and can be estimated by cross-validation.
For the sake of time and memory optimization Extremely
randomized trees [15] is used as a base learner instead of
original randomized trees.

B. Base Classifier Weighting Function and Forgetting strategy

Following the AWE approach proposed in [16] we use an
error rate to produce weights (1) of classifiers, where E is an
new block testing error for i-th classifier, is a small parameter

ωi =
1

E2
i (x) +∆

, (1)

One of the main problems in concept-drifting learning is to
select the proper forgetting strategy and forgetting rate [17].
The classifier should be adaptive enough to handle changes.
In this case different strategies can be more appropriate to
different types of drift (for example, sudden and gradual
drifts). In this paper we focus on gradual changes only. As
result, we propose ensemble pruning technique to handle the
concept drift. This technique uses the classic replace-the-looser
approach [17] to discard trees with high error on new block
samples.

C. Proposed algorithm

Thus, to predict the sample we propose the following
algorithm.

1) we use a stored window to find similar items using the
specified similarity metric;

2) we evaluate our current ensemble on similar examples;
3) we compute weights adherence to errors on k similar

samples.

On every chunk the algorithm tests all the trees to choose the
poorest base learner and replace it with new one trained on new
block data. This process is iterative while the ensemble error
on new block samples is higher than a specified threshold.

Based on the PDSRF algorithm, we developed an innovative
on-line approach to the assessment and control of voltage
security of power systems, implemented in the C++ program-
ming language. The main qualitative distinction of this method
from the other modern approaches is the PDSRF algorithm
capability to independently and adaptively change in real time
when serious changes occur in the received telemetry data
(generator tripping, sharp increase in load, etc.) without loss
of accuracy when identifying the power system operating
conditions. In fact, this makes it possible to switch from a
simple classifier of the system states to the intelligent detector
of abnormalities, i.e. dangerous pre-emergency states.



III. THE USE OF L-INDEX IN THE PROBLEM OF ONLINE
VOLTAGE SECURITY CONTROL

As said above it is more sensible to use system variables
based voltage stability indices of the power system in real
time. Therefore, in the study we use L-index, being one of
the effective indices from this group, as a target indicator of
system stability when training the PDSRF model.

The L-index is proposed by Kessel and Glavitsch in [18]
as an indicator of impeding voltage stability. Starting from
the subsequent analysis of a power line equivalent model,
the authors developed a voltage stability index based on the
solution to power flow equations. The L index is a quantitative
measure for the estimation of the distance of the actual state
of the system to the stability limit. The L-index describes the
stability of the entire system with the expression:

L = max
j∈αL

(Lj) (2)

where αL is a set of load nodes. Lj is a local indicator that
determines the buses which can be sources of collapse. The
L-index varies in a range between 0 (no load) and 1 (voltage
collapse) and used to provide meaningful voltage instability
information during dynamic disturbances in the system.

Kessel and Glavitsch reformulate the local indicator Lj in
terms of the power as:

L =
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where Y +
jj - transformed admittance; Uj - voltage of the

load bus j; S+
j - transformed complex power, which can be

calculated as Ṡ+
J = Ṡj +
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j∈αL, i 6=j
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- off-diagonal elements and leading elements of impedance
matrix.

The voltage stability indicators are known to be not only an
effective method to assess the system stability but also they
underlie the control of electric power system security. In [15]
the authors propose a variant of L-index calculation, which
was used to develop an L-Q sensitivity analysis method, which
eases the quantitative analysis of voltage influence between
different nodes

According to the basic differential property of the L-index
we devised a common analytical algorithm for reactive power
optimization. The algorithm can be used to determine the
required reactive power injection for the load node, ∆Q.
Based on the applied methodology, a large-scale power system
will operate in an optimal steady state under the minimum
Lsum = L1 + L2 + . . .+Lm which represents a sum of
local indices Lj . In this case the function of the first partial
derivative is defined as follows:

∂Lsum
∂∆Q

=


∂Lsum
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∂∆Qm

 =

=


∑

i∈αL, i 6=j
− 1
Uj

Xj1

U1

µ√
µ2+γ2

...∑
i∈αL, i 6=j

− 1
Uj

Xjm

Um

µ√
µ2+γ2

 = 0, (4)

where µ =
∑

i∈αL, i 6=j

(Qi+∆Qi)Xji

Ui
; γ =

∑
i∈αL, i 6=j

−P iXji

Ui
.;

The calculations carried out in [19] on different IEEE test
systems show that the application of this approach makes it
possible to improve the voltage stability by reactive power
injections at load nodes. The injections are calculated from
the L-index minimization conditions, and keep a system under
heavy load conditions away from instability boundaries. Nev-
ertheless, the authors state that despite the relative simplicity
of the calculation, this method requires considerable compu-
tational efforts and its application in the real time problems
can be complicated.

In this paper we suggest supplementing and modifying this
approach by using trainable models able to learn to calculate
both the global L-index for the security assessment of an entire
system, and the required injections ∆Q, when determining the
place and magnitude of corrective actions. This will allow us
to apply this methodology in real time.

IV. STRUCTURE OF AN AUTOMATIC INTELLIGENT SYSTEM

The general structure of the developed system is presented
in Fig. 1. The scheme shows that the proposed system consists
of two main models on the basis of the PDSRF algorithm local
and global.
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Fig. 1. Structural scheme of an automatic intelligent system for voltage
security control

Global model is trained to correctly identify the global L-
index on the basis of system variables of a power system
such as voltage at nodes, loads, power flows, etc. Here an
output value of the L-index is interpreted as a security signal
(indicator) of the entire power system. The local model on the
basis of the PDSRF algorithm, in turn, is trained to determine
the required reactive power injections ∆Q for load nodes.
The inputs for the local model are represented by the same



operating parameters and calculated values of the local L-index
at a current time instant. Training of the local PDSRF model
is based on the equation of partial derivative of expression (4).
As a result, the trained model is able to determine the values
∆Q to perform corrective and/or preventive control actions on-
line. Additionally, the security intelligent system can provide
local signals in the form of local L-indices for each load at
load node.

In the end, such a structure makes it possible to implement
the above functions of on-line alarming, localization and
interaction with automatic systems. For example, the system
signal on the basis of L-index, which is delivered to operator
through the visualization block, informs the dispatcher on
the general level of security in the analyzed power system
(high, low, emergency), and allows the operator to predict
(estimate) the extent to which the current state of the electric
power system is dangerous in terms of its closeness to voltage
collapse.

In the case of a dangerous state identification (low security)
the local signals on the basis of local L-index, formed by local
model, enable us to localize critical load nodes at which the
system is at its closest to the stability loss. The corrective
and/or preventive control actions can be implemented on-line
on the basis of the injections ∆Q generated by the local model
based on the PDSRF algorithm for load nodes. Such control
actions can both adjust the operating conditions in terms of
their optimality according to some economic criteria, or, in the
case of a decrease in security, keep the conditions away from
the instability boundaries.

It is important to note that the output signals of the alarming
system are delivered both to the operator and directly to the
operating automation. Interactions with the automation allow
us where necessary to correct the actions of agents, since it is
they that control the reactive power sources to regulate voltage
in order to prevent the development of an emergency process.
Operator, in turn, using the recommendations of the intelligent
system (in case of a security decrease), can adjust the protec-
tive relay settings by decreasing the settings with respect to
time, increasing sensitivity of startup signals of the emergency
control functions through the selection of an appropriate group
of settings, etc. Despite the fact that the proposed structure
suggests a certain interaction with dispatcher to control the
power system security, we see the main mechanism of the
developed intelligent system operation to be mostly automatic,
where many control actions are generated with the minimum
involvement of the operator.

V. TEST CALCULATIONS

The efficiency of the proposed intelligent system was tested
on IEEE 118 test system. The database of possible states of
the test system for model training was generated by quasi-
dynamic modeling in the MATLAB environment. At each
step of the load increase in the system, emergency events
are modeled randomly (Fig. 2). The disturbances included
losses of generation and connection of a large consumer at
specified nodes. A set of the obtained system states was used

to calculate the values of global L-index, and on the basis of
local indices Lj , the reactive power injections ∆Q were found
for each load node. As result, we computed the attribute values
and pre-classified based on the L-index the obtained states as
normal, alarm, emergency and collapse. These characteristics
were applied as class marks for training and testing the models
on the basis of the PDSRF algorithm. Global and local PDSRF
models are implemented in C++.

Fig. 2. Changes in voltage profiles of the IEEE 118 system

In order to make simulation data more close to behaviour
of real power systems we propose to add sharp change of
power load on some buses (Fig. 3). These changes can be
considered as a connection of big consumer. Thus the data
will contain concept-drift which should be efficiently handled
by classification algorithms.

Fig. 3. Voltage profiles at load buses with a concept-drift effect

The simulation results based on computation of local L-
index indicate that buses 103, 105, 106 and 110 are the critical
buses (Fig. 4). At this time the bus 105 is the more critical
bus for this system. This means that for IEEE 118 system the
voltage stability margin is limited by the outage of line 105.

The testing results of the PDSRF algorithm compared to the
other machine learning models are presented in Table 1.

As result, testing of the automatic intelligent system demon-
strated that the developed on-line approach on the basis of



Fig. 4. The local L-index values for one of steady-state condition of IEEE
118

TABLE I
ACCURACY OF VARIOUS MACHINE LEARNING ALGORITHMS ON REPARED

DATASET.

Algorithm Accuracy, % Kappa, %

Global PDSRF model 97.24 95.30
Support Vector Machine 81.54 64.92
Random Forest 96.01 93.24
Gradient Boosting Trees 93.64 89.41
Extreme Learning Machine 80.80 65.08

PDSRF method makes it possible to highly accurately identify
the system level of security in the test electric power system.
For example, the accuracy of state identification for the scheme
IEEE 118 made up 97.24% (Table 1) which is approximately
by 10% higher than the accuracy of other known intelli-
gent approaches presented in some international peer-reviewed
journals over the past years. These approaches include neural
networks of Kohonen, supporting vector machines, hybrid
neural network models, various algorithms of decision trees.
This means that in all the models, except the PDSRF model,
the accuracy declines at modeling of significant disturbances in
the system, i.e. they could not adapt in real time and required
additional training (updating).

Moreover, the calculations show that the proposed on-line
approach on the basis of PDSRF provides lower errors (root-
mean square error (RMSE) of order 13% for IEEE 118)
and high speed of solving process (about centiseconds for
each steady state of IEEE 118 compared to 30-40 minutes
in the traditional approach)1 when determining the additional
reactive power injections (Table 2). This fact makes it possible
to effectively apply the automatic intelligent system for moni-
toring to control security in power systems of large dimension
in real time.

The obtained values of additional injections were used for
reactive power compensation by using reactive power sources,
which decreased Lsum, whose increase is indicative of even

1All calculations were performed on the workstation c Intel processors (R)
Core (TM) i7-4930K @ 3.40 GHz 3.30GHz.

TABLE II
THE EFFICIENCY OF VARIOUS MACHINE LEARNING ALGORITHMS WHEN

DETERMINING THE ADDITIONAL REACTIVE POWER INJECTIONS

Algorithm RMSE MAE Train
time, s

Test
time, s

Local PDSRF model 0,1299 0,1116 4,812 0,00149
Support Vector Machine 0,1498 0,1254 3,441 0,00167
Random Forest 0,1502 0,1271 0,811 0,00153
Gradient Boosting Trees 0,1463 0,1234 4,671 0,00282
Extreme Learning Machine 0,1517 0,1282 0,021 0,00153

greater proximity of voltage collapse, first of all for the heavy
load and dangerous conditions of IEEE 118 system (Fig. 5).

Fig. 5. The curves Lsum before and after corrective control actions

VI. CONCLUSIONS

We devised an innovative on-line method for the assessment
and control of voltage security of power system, using the
technology of online decision trees, i.e. PDSRF, implemented
in the language C++. The main qualitative distinction of this
approach from the other modern approaches is the capability of
PDSRF to independently and adaptively change in real time in
case of serious changes in the received telemetry data without
loss of accuracy while identifying the conditions of electric
power system.

This paper presents a PDSRF model for voltage security
assessment based on the L-index as security label. This voltage
stability index which is based on fundamental Kirchoff-Laws
and can reflect the weak point where to locate the vulnerable
locations and can predict collapse point of the system. The bus
with the highest L-index value will be the most vulnerable bus
in the system and hence this method helps in identifying the
weak areas in the system which need critical reactive power
support.

Voltage stability L-index indicator have been employed
for security control using the PDSRF algorithm in order to
safely trace the concept drift in data stream and perform the
security assessment of the whole system. Experiments with
IEEE 118 system various failure scenarios have demonstrated
the efficiency of proposed approach. The on-line PDSRF



method can be to used for improving the voltage stability
margin in real time using reactive power sources, generator
excitation and on load tap changer transformers as controllers
for different loading conditions.
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