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Abstract. A one-parameter family of binary inflation rules in one dimension is considered.
Apart from the first member, which is the well-known Fibonacci rule, no inflation factor is a
unit. We identify all cases with pure point spectrum, and discuss the diffraction spectra of
other members of the family. Apart from the trivial Bragg peaks at the origin, they have purely
singular continuous diffraction.

Despite various open questions on details, the theory of substitutions with pure point
spectrum is fairly well developed. In particular, for any given substitution on a finite alphabet,
pure pointedness of the spectrum can be decided algorithmically; see [1] and references therein.
For substitutions of constant length, the situation is even better due to Dekking’s result [7] and
its recent extension by Bartlett [6]. In general, however, the understanding of substitutions of
non-constant length with mixed spectrum is still rudimentary. Recent work has indicated that
progress in this direction is easier in the geometric setting of tiling spaces with natural tile sizes;
see [3] and references therein. We adopt this point of view here, too.

In this contribution, we consider the family of primitive substitution rules on the binary
alphabet {0, 1} defined by

̺m : 0 7→ 01m , 1 7→ 0 , with m ∈ N.

The substitution matrix is Mm = ( 1 1
m 0 ) with eigenvalues λ±

m = 1
2

(
1 ±

√
4m + 1

)
, which are

the roots of λ2 − λ − m = 0. The frequency-normalised Perron–Frobenius (PF) eigenvector is
(1, λ+

m − 1)t/λ+
m, whose entries are the relative frequencies of the two letters. The corresponding

left eigenvector reads (λ+
m, 1), which is our choice of the interval lengths for the corresponding

geometric inflation rule. Up to scale, this is the unique choice to obtain a self-similar inflation

tiling of the line from ̺m; see [4, Ch. 4] for background.
From now on, we will mainly work with the tiling system on the real line. Note that ̺1

defines the ubiquitous Fibonacci tiling, which is well-known to have pure point spectrum, both
in diffraction and in dynamical sense [8, 4, 5]. For m = 2, we obtain a system that is equivalent
to the period doubling chain, as can be seen by choosing a =̂ 0 and b =̂ 11 which establishes
a mutual local derivability (MLD) rule; see [4, Secs. 4.5.1 and 9.4.4] for details on the period
doubling system. More generally, λ+

m is an integer if and only if 4m+1 is a square. This precisely
happens for m = ℓ(ℓ+1) with ℓ ∈ N, giving λ+

m = ℓ+1 and λ−
m = −ℓ. Similar to the m = 2 case,

any of these systems can be recoded as a constant length substitution, via a =̂ 0 and b =̂ 1ℓ+1.
The induced substitution is a 7→ abℓ, b 7→ aℓ+1, which has a coincidence in the first position.
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Figure 1. Illustration of the self-similar inflation rule derived from ̺3.

Consequently, one has pure point spectrum by Dekking’s criterion [7]. In all remaining cases, the
PF eigenvalue is irrational, but fails to be a Pisot–Vijayaraghavan (PV) number, which means
that none of the corresponding tilings can have non-trivial point spectrum [9, 2]. In particular,
the only Bragg peak is the trivial one at k = 0. So far, we have the following result.

Theorem 1 Consider the inflation tiling defined by ̺m. For m = 1 and m = ℓ(ℓ + 1) with

ℓ ∈ N, the tiling has pure point diffraction, which can be calculated with the projection method.

For all remaining cases, the pure point part of the diffraction consists of the trivial Bragg peak

at 0, while the remainder of the diffraction is of continuous type. �

The first example with continuous component emerges for m = 3, where λ± = 1
2

(
1 ±

√
13

)
.

Let us discuss this case in some more detail (the other non-PV cases are fairly analogous).
The concrete inflation rule for this case is illustrated in Figure 1. With ̺ := ̺3, consider the
bi-infinite fixed point w of ̺2 with legal seed 0|0 obtained as

0|0 ̺2

7−→ w(1) = 0111000|0111000
̺2

7−→ . . .
̺2

7−→ w(i) i→∞−−−−→ w = ̺2(w);

see [8, 4] for background. The corresponding tiling, via the left endpoints of the two types of
intervals, leads to a Delone set

Λw =
{
. . . ,−1−3λ,−3λ,−2λ,−λ, 0, λ, 1+λ, 2+λ, 3+λ, 3+2λ, . . .

}
⊂ Z[λ],

where λ = λ+
3 from now on. Defining the hull Y := {t + Λw | t ∈ R}LT

with the closure being
taken in the local topology (LT), we obtain a topological dynamical system (Y, R) under the
translation action of R. This system is strictly ergodic, which means it is minimal (because Y

coincides with the local indistinguishability (LI) class of Λw) and uniquely ergodic (since there
is a unique probability measure µ

Y
, defined by the uniformly existing patch frequencies).

One important consequence is that every Λ ∈ Y has the same autocorrelation and the same
diffraction measure as Λw, which are thus also called the autocorrelation and diffraction of the
dynamical system. More generally, given any Λ ∈ Y, we consider the weighted Dirac comb
ω :=

∑
x∈Λ u(x)δx with general complex weights u(x) ∈ {u0, u1} according to the interval type.

Then, the corresponding autocorrelation γu is of the form

γu =
∑

z∈Λ−Λ

ηu(z) δz with ηu(z) = lim
r→∞

1

2r

∑

y,y+z∈Λr

u(y) u(y + z),

with Λr := Λ ∩ [−r, r].
Since we do not have any projection method at our disposal for the further analysis, other

tools are needed. It has recently been shown in [3] that the pair correlation functions of a
primitive inflation tiling satisfy a set of exact renormalisation relations that help to unravel the
spectral type of the diffraction. Partitioning Λ = Λ(0)∪̇Λ(1) into the two point types, one can
define the pair correlation functions as

νij(z) = lim
r→∞

card
(
Λ

(i)
r ∩ (Λ

(j)
r − z)

)

card(Λr)
=

1

dens(Λ)
lim

r→∞

card
(
Λ

(i)
r ∩ (Λ

(j)
r − z)

)

2r
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for i, j ∈ {0, 1}. These functions are well-defined for any z ∈ R, non-negative and satisfy the
symmetry relations νij(z) = νji(−z). Moreover, νij(z) > 0 if and only if z ∈ Λ(j) − Λ(i), which
is a consequence of strict ergodicity.

The autocorrelation coefficients ηu(z) can now be expressed as

ηu(z) = dens(Λ)
∑

i,j∈{0,1}

ui νij(z)uj

and similar expressions will later emerge for the diffraction measure γ̂u. As follows from [3, 2],
one has the following result.

Theorem 2 The pair correlations functions νij satisfy the linear renormalisation equations

ν00(z) =
1

λ

(
ν00

(
z
λ

)
+ ν01

(
z
λ

)
+ ν10

(
z
λ

)
+ ν11

(
z
λ

))
,

ν01(z) =
1

λ

(
ν00

(
z−λ

λ

)
+ ν00

(
z−1−λ

λ

)
+ ν00

(
z−2−λ

λ

)
+ ν10

(
z−λ

λ

)
+ ν10

(
z−1−λ

λ

)
+ ν10

(
z−2−λ

λ

))
,

ν10(z) =
1

λ

(
ν00

(
z+λ

λ

)
+ ν00

(
z+1+λ

λ

)
+ ν00

(
z+2+λ

λ

)
+ ν01

(
z+λ

λ

)
+ ν01

(
z+1+λ

λ

)
+ ν01

(
z+2+λ

λ

))
,

ν11(z) =
1

λ

(
3 ν00

(
z
λ

)
+ 2 ν00

(
z+1
λ

)
+ 2 ν00

(
z−1
λ

)
+ ν00

(
z+2
λ

)
+ ν00

(
z−2
λ

))
.

Subject to the condition that the support of each νij is Λ(j) − Λ(i), the solution space of this

infinite system of linear equations is one-dimensional. �

Via Υij :=
∑

z∈Sij
νij(z) δz, the pair correlation functions are turned into pure point measures.

The autocorrelation measure γu can now be written as γu(E) = dens(Λ)
∑

i,j∈{0,1} ui Υij(E)uj ,
where E ⊂ R is any bounded Borel set. Taking the Fourier transform, one obtains the diffraction
measure as

γ̂u(E) = dens(Λ)
∑

i,j∈{0,1}

ui Υ̂ij(E)uj ,

where the Fourier transform of each term can be shown to exist [3]. Now, the renormalisation

relations from Theorem 2 induce measure-valued relations for the Υ̂ij , which have to be satisfied
for each part of their Lebesgue decompositions separately. An analysis of the asymptotic
behaviour of the absolutely continuous components shows that the only contribution compatible
with local integrability of the Radon–Nikodym densities and the translation boundedness of
γ̂u is the trivial one, which means that no absolutely continuous component is possible [2].
Consequently, one has the following result.

Theorem 3 The diffraction measure γ̂u, which is the same for all Λ ∈ Y, has the pure point

part
∣∣2λ−1

13 u0 + 7−λ
13 u1

∣∣2 δ0. The remainder of γ̂u is singular continuous. �

To give an impression of the singular continuous part, let us choose u0 = 1 − λ and
u1 = 1. With this choice, the Bragg peak at 0 is extinct, so γ̂u is purely singular continuous,
with ηu(0) = (6λ − 3)/13 ≈ 0.832. Consequently, the distribution function F defined by
F (x) := γ̂u

(
[0, x]

)
is continuous, with average slope given by ηu(0); see Figure 2 for an

illustration. Note that F is strictly increasing, despite the appearance of ‘flat’ regions which
resemble plateaux.

Let us close by commenting on the other non-Pisot members of our inflation tiling family. So,
let m be any integer such that the pure point part of the diffraction, according to Theorem 1,
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Figure 2. Sketch of the distribution function F for the singular continuous diffraction measure
discussed in the text. The average slope of F is ηu(0), which is indicated by a straight line.

is trivial. Then, with our choice of interval lengths from the beginning, the Bragg peak at the
origin has intensity

I0 =
∣∣dens(Λ) (u · vPF)

∣∣2 =

∣∣u0 + (λ+
m − 1)u1

∣∣2

4m + 1
,

where dens(Λ) = λ+
m

2λ+
m−1

= λ+
m+2m
4m+1 and vPF is the PF frequency vector from above.

For each such inflation tiling, the pair correlation functions are again well-defined, and
satisfy a set of exact linear renormalisation relations in analogy to Theorem 2. Completing
the corresponding analysis on the Fourier side, our analysis indicates that we can never have an
absolutely continuous component. A numerical calculation of the distribution function analogous
to F above produces graphs that are very similar to the one shown in Figure 2.
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