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Abstract—Congestion management in electric transmission 

systems is one of the most important challenges for power 

systems with high penetration of renewable energy. System 

congestion occurs when the desired power flow cannot be 

transmitted through the network without violating system 

operating limits. In order to prevent severe system damage, a 

significant number of congestion management methods have 

been developed, including nodal pricing, load shedding, 

curtailment of renewable energy generation, generator 

rescheduling, optimal transmission switching, etc. Most of these 

methods, however, do not comply with the optimal operation of 

conventional power plants subjected to dynamic constraints 

(manoeuvrability, start-up and shut down times, etc.). In this 

paper, the rescheduling generation (or re-dispatch optimization) 

problem is solved using a modified particle swarm optimization 

(PSO) algorithm which accounts for start up as well as shut 

down times, and the manoeuvrability of conventional power 

plants. 

Index Terms--Congestion management, Particle swarm 

optimization, Transmission system 

I. INTRODUCTION  

In order to promote competition in the electricity 
generation industry, many countries continue to replace 
traditionally regulated monopolistic markets comprised of 
vertically integrated utilities with competitive power markets. 
Although the competitive model contributes to an overall 
increase in operational and financial efficiency, it entails 
several challenges. Generating companies are forced to install 
power plants in areas with the highest rate of return. 
Consequently, low-cost power generation is concentrated in a 
particular region and is favoured by both close and distant 
consumers [1]. 

In counties with renewable energy policy targets where 
electricity companies are mandated to provide a particular 
percentage of generated power from renewable energy sources 
the situation can be further aggravated. In Germany, for 
example, low-cost energy is mainly generated in the north 
where the coal transportation cost is minimal (coal is supplied 

to the north of the country via the North and Baltic Seas), the 
wind is strong and offshore wind farms are installed [2].  

Transmission of electrical energy is bounded by system 
operating limits such as thermal, stability and voltage. In [3], 
available transfer capability is obtained using the linear 
method based on the power transmission distribution factor 
(PTDF) matrix. Prediction and correction techniques, for 
example, the continuation power flow (CPF) method are used 
[4]. A method generally adopted in the power industry to 
compute total transfer capability is the repetitive power flow 
(RPF)[5].  

When an electricity transmission system is unable to 
transmit all the desired electrical power without violating 
system operating limits, it is said to be congested. Congestion 
also occurs due to sudden increase on load, loss of generation 
and other equipment failures [6]. It can harm power quality, 
cause equipment damage and even lead to widespread 
blackouts. Congestion management is an approach whose goal 
is to control the transmission system, so that all power flows 
remain within operational limits. In [7], authors provide a 
classification of congestion management methods. Methods 
can be either technical or non-technical, and pricing or non-
pricing. Technical methods such as curtailment of the 
congested transaction, changing transformer taps, operating 
FACTS devices, etc. are all non-pricing [8]. Optimal 
topological configuration (or the optimal transmission 
switching (OTS) problem) was discussed in [9]. Authors in 
[10], applied the genetic algorithm to solve OTS problems for 
the Italian power system. Nodal pricing, zonal pricing and 
market split are examples of non-technical pricing methods 
[11, 12]. 

The most commonly used congestion management method 
is generator rescheduling (GR) or re-dispatch (RD), where in 
order to clear congestion, the Independent System Operator 
(ISO) may request some power plants to increase generation 
whereas others would be required to decrease it [13]. As 
result, the ISO incurs costs, which will be eventually included 
in consumer electricity bills. Therefore, the re-dispatch 
optimization problem, aimed at minimizing such costs, is of 



paramount importance. Many optimization techniques have 
been applied to solve problems of the power system industry. 
Traditional optimization methods such as linear programming 
are used [14-17] to solve dispatch, optimal power flow and 
VAR optimization problems. Another powerful algorithm in 
this group is Mixed Integer Programming (MIP). This 
technique is used to optimize the operation of pump-storage 
hydro power stations, emissions and costs of thermal units, 
and scheduling of combined heat and power plant [18-20]. 
Dynamic programming is used to solve unit commitment 
problems [21]. Traditional optimization algorithms may not be 
as efficient as intelligence search methods when dealing with 
practical power system problems [22]. For instance, authors in 
[23] use the genetic algorithm to reduce the locational 
marginal price when solving the GR problem. In [2], generator 
sensitivities to the power flow on congested lines, i.e. the 
dependence of nodal power change to the power flow change, 
was discussed when dealing with GR by the PSO method. 

In different countries and regions different congestion 
management methods are adopted. This paper considers a case 
study using the German power system, where only one 
wholesale price is allowed and low-cost generating units are 
concentrated in one particular region. Congestion management 
is realized using an optimal RD method. We assume a perfect 
competition in the market meaning that power plants submit 
their bids according to the marginal cost (i.e. quadratic cost 
functions are used). The optimization problem is solved using 
the PSO method, introduced in Section 2. With an increased 
number of renewable energy sources in a power system, the 
operation of traditional power plants still needs to be 
optimised based on physical limitations. These limitations 
(manoeuvrability, start up time, shut down time, etc.) are 
accounted for in the problem definition presented in Section 3. 
Section 4 elaborates on how the PSO algorithm is modified so 
that it can simultaneously minimize re-dispatch costs of each 
hour and each day resulting in an improved convergence. The 
case study is presented in Section 5. Conclusions are listed in 
Section 6. 

II. PARTICLE SWARM OPTIMIZATION 

The Particle Swarm Optimization method is a powerful 
and simple evolutionary algorithm developed at the end of the 
20th century by Kennedy and Eberhart [25]. It was inspired 
by behaviour patterns of social communities (e.g. birds or 
fish) which search for food or better living conditions. It was 
recognised that some birds flying in the flock are not familiar 
with the exact position of their destination, however they 
know the location closest to it. Their strategy is to look for 
the destination around some area based on the cumulative 
knowledge. 

In an optimization problem, each member of the 
community is represented by a particle. The community 
(comprised of these particles) is called a swarm. The position 

of each i-th  particle denoted by 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖1, … , 𝑥𝑖𝑁) is the 
first fundamental property of the N-dimensional particle and 
is a potential solution to the problem. A personal best denoted 

by 𝑌𝑖 = (𝑦
𝑖1

, 𝑦
𝑖1

, … , 𝑦
𝑖𝑁

) is the second fundamental property 

of a particle. Finally, 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖1, … , 𝑣𝑖𝑁) is a velocity of 

the particle. The fundamental property of the swarm is called 
a global best (G= (𝑔1, 𝑔1, … , 𝑔𝑁)). 

At the initial moment, the particle positions as well as their 
velocities are assigned randomly. As PSO is an evolutionary 
method, particles flying in the multidimensional space 
approach the optimum from iteration to iteration. At the end of 
each iteration, the particle positions are evaluated with respect 
to the objective function. With n being the number of iteration 
and f  the objective function, the personal best of each particle 
is updated according to the following equation: 

𝑌𝑖,𝑛 = {
𝑋𝑖,𝑛   𝑖𝑓 𝑓(𝑋𝑖,𝑛) < 𝑓(𝑌𝑖,𝑛)

𝑌𝑖,𝑛    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
  (1) 

Particles share this information with other members of the 
swarm by updating the global best as: 

𝐺𝑖,𝑛 = {
𝑌𝑖,𝑛       𝑖𝑓 𝑓(𝑌𝑖,𝑛) < 𝑓(𝐺𝑛−1)

𝐺𝑛−1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
 (2) 

To get the new position, particles use scaled values of both 
personal and global best as shown in Figure 1 and Equations 
(3) and (4). 

 

Figure 1.  Visual representation of a PSO method. 

𝑉𝑖,𝑛+1 = 𝑤 × 𝑉𝑖,𝑛 + 𝑐1 × 𝑟1 × (𝑌𝑖,𝑛 − 𝑋𝑖,𝑛) +    

𝑐2 × 𝑟2 × (𝐺𝑛 − 𝑋𝑖,𝑛)         (3) 

𝑋𝑖,𝑛+1 = 𝑋𝑖,𝑛 + 𝑉𝑖,𝑛+1    (4) 

where w is the inertia weight; c1 and c2 are acceleration 
coefficients; and r1 and r2 are uniformly distributed random 
numbers between 0 and 1. 

The main advantage of the PSO method over traditional 
optimization algorithms is that the objective function is not 
required to be differentiable and there is no need to predefine 
initial parameters.  In addition, the method is able to avoid 
trapping into local solutions and can be parallelized. The main 
drawback of the PSO method is that optimization constraints 
are usually transformed into penalty functions and added to 
the objective function. Therefore, some optimum particle 
positions may be ignored which may result in bad 
convergence. This paper suggests an alternative technique for 
dealing with this problem. 



III. CONGESTION MANAGEMENT 

A. Sensitivity analysis 

In accordance with Kirchhoff’s second Law, any change 
in the generated nodal power will entail power flows 
redistribution. However, every line has a different sensitivity 
to such changes. This phenomenon is accounted for by 
sensitivity analysis methods. Depending on the desired 
computational speed and accuracy, different approaches such 
as AC and DC load flow solutions (LFS), or AC and DC 
power transmission distribution factors (PTDF) are used. 

This paper adopts the AC PTDF method, which is 
expressed by the following equation [3]: 

(𝐷𝑖−𝑗)𝑚−𝑛
=  

∆𝑃𝑖−𝑗

∆𝑇𝑚−𝑛
   (5) 

where D is the sensitivity (PTDF) matrix;  ∆𝑃𝑖−𝑗 the change in 

active power flow between nodes i and j; and ∆𝑇𝑚−𝑛 the 

change in transaction between m and n. 

B. Dynamic constraints 

Electric power plants are operated in compliance with 
applicable codes and regulations [26]. Main constraints are 
the minimum and maximum power plant outputs depending 
on time t: 

𝑃𝐺 𝑖,   𝑚𝑖𝑛 < 𝑃𝐺𝑖(𝑡) < 𝑃𝐺 𝑖,   𝑚𝑎𝑥   (6) 

The gradient of a power plant or its manoeuvrability is 
defined as the ability of the power plant to increase or 
decrease power output during a time increment ∆𝑡: 

𝑃𝐺𝑖(𝑡) − 𝑃𝐺𝑖(𝑡 − 1) ≤ 𝑈𝑅𝑖  for power increase  (7) 

𝑃𝐺𝑖(𝑡) − 𝑃𝐺𝑖(𝑡 − 1) ≤ 𝐷𝑅𝑖  for power decrease  (8) 

Minimum up and down times describe how long a power 

plant has to remain in up state (𝑇𝑖
𝑜𝑛) and down state (𝑇𝑖

𝑜𝑓𝑓
) 

respectively. For example, a steam turbine has to be warmed 
up or cooled down when changing operating modes. 
Inequalities (9) and (10) express these phenomena. 

[𝑋𝑖
𝑜𝑛(𝑡 − 1) − 𝑇𝑖

𝑜𝑛] × [𝐼𝑖(𝑡 − 1) − 𝐼𝑖(𝑡)] ≥ 0 (9) 

[𝑋𝑖
𝑜𝑓𝑓(𝑡 − 1) − 𝑇𝑖

𝑜𝑓𝑓
] × [𝐼𝑖(𝑡) − 𝐼𝑖(𝑡 − 1)] ≥ 0  (10) 

where 𝑃𝐺𝑖(𝑡) is the power generated at node i;  𝑃𝐺 𝑖,   𝑚𝑖𝑛  and  

𝑃𝐺 𝑖,   𝑚𝑎𝑥  are the lower and upper limits of a power plant i; 

𝑈𝑅𝑖 and 𝐷𝑅𝑖 the ramp up and down limits of the power plant 

i;  𝑋𝑖
𝑜𝑛 and 𝑋𝑖

𝑜𝑓𝑓
 the duration of a power plant being online or 

offline before time t; and 𝐼𝑖(𝑡) the commitment status of unit 

i at time t (e.g. “1” or “0”). 

C. Problem formulation 

Objective function 

𝑚𝑖𝑛𝐶 = 𝑚𝑖𝑛 ∑ ∑ (
𝐼𝑖(𝑡)×𝑏𝑖×∆𝑃𝐺𝑖 + 

+𝐼𝑖(𝑡)×(1−𝐼𝑖(𝑡−1))×𝑆𝑈𝑖+

+𝐼𝑖(𝑡−1)×(1−𝐼𝑖(𝑡))×𝑆𝐷𝑖

)
𝑁𝐺
𝑖=1

𝑁𝑡
𝑡=𝑡0

 (11) 

where 𝑏𝑖  is the incremental or decremental price bids 
submitted by generators (in this paper for simplicity reasons  

𝑏𝑖 =
𝑑𝑐𝑖(𝑃𝐺𝑖)

𝑑𝑡
|

𝑃𝐺𝑖
0

 with 𝑐𝑖 being a power plant’s cost function);  

𝑁𝑡 is the considered time interval;  𝑁𝐺 the number of 
generating units participating in re-dispatch; and 𝑆𝑈𝑖 and 𝑆𝐷𝑖 
the start-up and shut down costs. 

System power balance 

∑ ∑ ∆𝑃𝐺𝑖(𝑡)
𝑁𝐺
𝑖=1

𝑁𝑡
𝑡=𝑡0

= 0  (12) 

Security constraints 

|∑ (𝐷𝑖−𝑗)𝑚−𝑛
× ∆𝑃𝐺𝑖(𝑡)

𝑁𝐺
𝑖=1 | ≤ ∆𝑃𝑖−𝑗 𝑚𝑎𝑥      (13) 

where ∆𝑃𝑖−𝑗 𝑚𝑎𝑥 = (𝑃𝑖−𝑗 𝑚𝑎𝑥 − 𝑃𝑖−𝑗
0 ) is the incremental 

power flow limit and 𝑃𝑖−𝑗
0  the power flow prior rescheduling. 

Additionally, dynamic constraints of conventional 
generating units (6-10) presented in section b are taken into 
account in the implemented model. 

IV. CONGESTION MANAGEMENT USING PARTICLE SWARM 

OPTIMIZATION 

The optimization problem formulated in the previous 
section considers multiple time periods where the objective is 
to minimize the overall cost as well as the cost of each 
separate instance. In order to be able to solve this problem 
using particle swarm optimization, the method has to be 

modified. The particle’s position (𝑋𝑖) is set to be equal to the 
incremental power in generating nodes (∆𝑃𝐺𝑖). The swarm is 
subdivided into several families, each representing a single 
moment of time as shown in Figure 2.  

 

Figure 2.  Hierarchy of a swarm. 

The family’s objective is to minimize the cost of re-
dispatch both as an isolated unit and as part of a swarm. This 
can be achieved by replacing some fundamental properties of 
the traditional particle. As a result, a modified particle has 
two personal best positions, i.e. personal best as a member of 

the family (𝑌𝑖,𝑛
𝑓𝑎𝑚𝑖𝑙𝑦

) and as a member of swarm (𝑌𝑖,𝑛
𝑠𝑤𝑎𝑟𝑚). 



Global best of the swarm undergoes the same subdivision as 
shown in Figure 3. 

 

Figure 3.  Visual representation of a  modified PSO method. 

Finally, Equations (3)-(4) can be replaced with (14)-(15) 
according to the proposed concept. 

𝑉𝑖,𝑛+1
∗ = 𝑤 × 𝑉𝑖,𝑛 + 𝑐1 × 𝑟1 × 

× [𝑐11 × 𝑟11(𝑌𝑖,𝑛
𝑓

− 𝑋𝑖,𝑛) + 𝑐12 × 𝑟12(𝑌𝑖,𝑛
𝑠 − 𝑋𝑖,𝑛)] 

+𝑐2 × 𝑟2 × [𝑐11 × 𝑟11(𝐺𝑖,𝑛
𝑓

− 𝑋𝑖,𝑛) + 𝑐12 × 𝑟12(𝐺𝑖,𝑛
𝑠 − 𝑋𝑖,𝑛)]  (14) 

𝑋𝑖,𝑛+1 = 𝑋𝑖,𝑛 + 𝑉𝑖,𝑛+1
∗    (15) 

where 𝑐11 and 𝑐12 express how much the swarm’s and the 

family’s knowledge respectively influence the search. 

V. CASE STUDY 

A modified PSO method, explained in the previous 
section, was implemented in MATLAB and studied on the 8-
bus system shown in Figure 4.  

The proposed network has one level of voltage (110kV), 
ten lines (for simplicity, lines have the same length and per 
unit parameters) and four generation units.  

 
 

Figure 4.  The 8-bus test network. 

The network can be subdivided into two areas, which are 
area 1 with low cost generating capacity, and area 2 with 

high-cost generation and variable demand. Cost functions and 
constraints of generating units are presented in Table 1. 

TABLE I.  INPUT DATA 

Gen. 

bus 

Production Cost Start-up cost 
Ramp 

limits 

Time 

limits 

a b c α β τ 𝑼𝑹𝒊 𝑫𝑹𝒊 on off 

1 0.006 7.3 500 1460 650 3 55 55 2 2 

2 0.003 5.1 200 2100 950 4 55 55 2 2 

5 0.009 10.5 50 2100 950 5 15 15 2 2 

6 0.008 8.5 10 1180 625 2 15 15 2 2 

 

Due to the change of demand, lines 1-5 and 2-6 became 
overloaded, as shown at the bottom of Figure 5. Generating 
unit (Gen 6) with the highest cost of production in the second 
area had to be re-dispatched down, whereas the power plant 
(Gen 1) with the lowest power cost in area 1 was re-
dispatched up, thus clearing system congestion. 

 

Figure 5.  Rescheduling due to line overloads. 

In order to find the optimum solution to the problem, 
several independent swarms are used with the different 
velocity coefficients values as shown in table 2. 

TABLE II.  VELOCITY COEFFICIENTS 

Swarm w wdamp c1 c2 c11 c12 

1 1 0.99 2 2 0.1 0.9 

2 0.5 0.99 1 2 0.1 0.9 

3 0.5 0.99 0.5 2.5 0.1 0.9 

 

Swarms of type 2 and 3 yield more stable results and have 
better convergence, as depicted in Figure 6. 
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Figure 6.  Convergence of PSO method with several swarms. 

VI. CONCLUSION 

The paper presents a congestion management 
methodology for deregulated electric power systems with a 
large share of renewable energy sources. In order to address 
congestion, the optimal generator rescheduling problem 
considering dynamic limitations of conventional power plants 
was solved using the particle swarm optimization method. In 
order to improve the ability of the method to satisfy multiple-
time objectives several adjustments are proposed. The swarm 
with its global goal is subdivided into several families each 
having their own objectives. The suggested technique was 
tested on the 8-bus power system divided into two areas with 
low and high costs of generation. Optimal rescheduling of 
conventional power plants considering their manoeuvrability, 
start-up and shut-down times is obtained, resulting in a 
congestion free power system. 

ACKNOWLEDGMENT  

The authors acknowledge the contributions of Christian 
Klabunde from Otto-von-Guericke University Magdeburg in 
the model development, and Zane Smith from University of 
Tasmania for proof-reading the paper. 

REFERENCES 

[1] F. Flores-Espino, T. Tian, I. Chernyakhovskiy, and M. Mercer, 
“Competitive Electricity Market Regulation in the United States: A 

Primer,” National Renewable Energy Lab., Denver, CO, Tech. Rep. 

NREL/TP-6A20-67106, Dec. 2016. 
[2] Ariette Nuessler, “Congestion and redispatch in Germany. A model-

based analysis of the development of redispatch”, Ph.D. dissertation, 

Inst. of Energy Econom., Univ. of Cologne, Cologne, 2012. 
[3] N.D.Ghawghawe, and K.L.Thakre “Application of Power Flow 

Sensitivity Analysis and PTDF for Determination of ATC,” in Proc. 

2007 IEEE PEDES. 
[4] Mun-Kyeom Kim ;  Dong-Hyeon Kim ;  Yong Tae Yoon ;  Sang-Seung 

Lee ;  Jong-Keun Park “Determination of Available Transfer Capability 

Using Continuation Power Flow with Fuzzy Set Theory,” in Proc. 2007 
IEEE Power Engineering Society General Meeting. 

[5] Y. Ou ;  C. Singh “Assessment of available transfer capability and 

margins,” in Proc. IEEE Transactions on Power Systems ( Volume: 17, 
Issue: 2, May 2002), pp. 463 – 468. 

[6] A. Yousefi, T. T. Nguyen, H. Zareipour, O. P. Malik, "Congestion 

management using demand response and facts devices", International 

Journal of Electrical Power & Energy Systems, vol. 37, no. 1, pp. 78-

85, 2012. 

 [7] K. Mwanza, Y. Shi, "Congestion management: re-dispatch and 
application of facts," Ph.D. dissertation, Dep. of Energy and 

Environment, Goteborg, Sweden, Chalmers Univ. of Technology, 2006. 

[8] A. Swami, "Transmission Congestion Impacts on Electricity Market: 
An overview," Proc. in IJETAE, vol. 3, 2013. 

[9] Emily B. Fisher, Richard P. O’Neill, Michael C. Ferris “Optimal 

Transmission Switching” IEEE transactions on power systems, VOL. 
23, NO. 3, AUGUST 2008 

[10] G. Granelli, M. Montagna, F. Zanellini, P. Bresesti, R. Vailati, and M. 

Innorta, “Optimal network reconfiguration for congestion management 
by deterministic and genetic algorithms,”  in Proc. Elect. Power Syst. 

Res., vol.76, pp. 549–556, 2006. 
[11] Scott M. Harvey, William W. “Nodal and Zonal Congestion 

Management and the Exercise of Market Power,” Harvard University, 

2000. 
[12] Daniel Kirschen, Goran Strbac “Fundamentals of Power System 

Economics”, John Wiley & Sons Ltd, UK 2004. 

[13] Nurul Idayu Yusoff ;  Abdullah Asuhaimi Mohd Zin ;  Azhar Bin 

Khairuddin, “Congestion management in power system: A review,” in 

Proc. Of 2017 3rd International Conference on Power Generation 

Systems and Renewable Energy Technologies (PGSRET), Johor Bahru, 
Malaysia, pp. 22-26. 

[14] Said Ahmed-Zaid “Optimal load flows using linear programing” 1980. 

[15] O. Alsac, J. Bright, M. Prais, and B. Scott. “Further Developments in 
LP Based Optimal Power Flow.” IEEE Trans. Power Systems, 5(3), pp. 

697-711, 1990. 

[16] G.D. Irrisari, L.M. Kimball, et al. “Economic Dispatch with Network 
and Ramping Constraints via Interior Point Methods.” IEEE Trans. 

Power Systems, 13, 236-242, 1998. 

[17] I.A. Farhat M.E. El-Hawary “Interior point methods application in 
optimum operational scheduling of electric power systems”, IET Gener. 

Transm. Distrib.,   Vol. 3, Iss. 11, pp. 1020–1029, 2009 

[18] Mohammad RezaNorouzi , AbdollahAhmadi, et al., “Mixed integer 
programming of multi-objective security-constrained hydro/thermal 

unit commitment”, Renewable and Sustainable Energy Reviews 29, pp. 

911-923, 2014. 
[19] Alberto Borghetti, Claudia D’Ambrosio, Andrea Lodi, Silvano 

Martello, “An MILP Approach for Short-Term Hydro Scheduling and 

Unit Commitment With Head-Dependent Reservoir.” IEEE transactions 
on power systems, vol. 23, no. 3, 2008. 

[20] Jong Suk Kim, Thomas F. Edgar, “Optimal scheduling of combined 

heat and power plants using mixed-integer nonlinear programming.” 
Energy, 77, pp. 675-690, 2014. 

[21] S.Usha Rania, C. H. Padmanabha Rajua, “A Solution to Unit 

Commitment Problem via Dynamic Programming and Particle Swarm 
Optimization” International Journal of Current Engineering and 

Technology, Vol.3, No.4, 2013. 

[22] Soliman Abdel-Hady Soliman, Abdel-Aal Hassan Mantawy “Modern 
Optimization Techniques with Applications in Electric Power 

Systems”, Springer Science 2012. 

[23] A. Eladl, S. Kaddah, E. Haikal, “Optimal Generation Rescheduling for 
Congestion Management, LMP Enhancement and Social Welfare 

Maximization,” in Proc. Of 2017 Nineteenth International Middle East 

Power Systems Conference (MEPCON), Menoufia University, Egypt, 
pp. 1190-1194. 

[24] S. Dutta and S. Singh, “Optimal rescheduling of generators for 

congestion management based on particle swarm optimization,” in 
Proc. IEEE Trans. Power System., vol. 23, pp. 1560-1569, 2008. 

[25] A. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proc. 

IEEE Int. Conf. Neural Networks, Nov. 29–Dec. 1 1995, vol. IV, pp. 
1942–1948. 

[26] C. Wang, S. M. Shahidehpour, “Effects of ramp-rate limits on unit 
commitment and economic dispatch”, Proc. in 1993 IEEE Transactions 

on Power Systems, Vol. 8, No. 3. pp. 1341-1350. 

 


