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Abstract—Penetration of distributed energy resources in dis-
tribution networks is predicted to increase dramatically in the
next seven years, bringing with it the opportunity for utilities
to have a greater presence at low levels of the network. To
achieve this effectively, utilities will require accurate short term
load forecasts. This paper presents a novel neural network-based
load forecasting system that applies recent advances in neural
attention mechanisms. The forecasting system is trained and
assessed on ten years of historical half-hourly load, weather,
and calendar data to produce a 24-hour horizon half-hourly
online forecast. When forecasting during anomalous peak holiday
periods on a feeder that has a typical load of less than 1000k VA
the forecasting system achieves a MAPE of 7.4% and a mean
error of -15kVA. The forecasting system is implemented in a
residential battery trial and is able to successfully forecast major
peaks with sufficient lead time and accuracy to enable the fleet of
batteries to charge ahead of time and provide network support.

Index Terms—load forecasting, machine learning, DER

I. INTRODUCTION

Electricity distribution networks, and the way in which they
are managed, are currently going through a significant transi-
tion, with perhaps more change over the last ten years than in
the previous hundred. Until recently, generation and load were
largely viewed and managed separately: power was produced
almost exclusively by large, centralised generating units, and
was consumed by customers after routing via the transmission
and distribution networks. Networks were designed and built
for demand profiles which were relatively stable over time,
with demand forecasting at distribution feeder level required
primarily for long term network planning purposes only. In-
creasingly, power is both consumed by customers connected to
the distribution network and is also generated and manipulated
by distributed energy resources (DER) within the distribution
network, often behind the meter of individual consumers. The
impact of increasing levels of DER in the system creates,
among other things, both a need and an opportunity to more
actively manage distribution networks, while also resulting in
a generally less predictable net demand profile.

DERs are controllable devices in the power network that
generate, store, and/or consume power. This includes solar
photovoltaic generation (PV), battery storage, and electrical
vehicles. In Australia, the dominant DER technology deployed
to date is solar PV, with over 1.8 million systems now
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reportedly installed on residential properties [1]. It is widely
anticipated that battery storage and electrical vehicle uptake
may be just as rapid [2].

The Tasmanian distribution network, meanwhile, is forecast
to experience significant increases in these technologies by
2025:

¢ 680% increase in battery storage capacity (from 11MWh
to 7SMWh) [3]

e 170% increase in PV installation capacity (from 130MW
to 220MW) [3]

e 39% of new car sales will be electrical vehicles - the
highest in the country [4]

The changing nature of the distribution network presents an
opportunity to maximize the use of existing assets by delaying
the need for network augmentations, while also providing
customers with a more reliable supply of power. For example,
batteries could be used to peak-shift, reducing maximum
feeder load. However, to achieve this reliably and with optimal
use of available DER generally requires sophisticated meth-
ods to optimize the power flow to and from the distributed
resources.
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Fig. 1. Bruny Island in southeast Tasmania experiences significant increases
in load during holiday periods and was used as a case study for the load
forecaster.




One method to achieve this coordination of DER in distri-
bution networks is presented in [5] and has been implemented
on Bruny Island, Tasmania as part of the CONSORT project
(CONSumer energy systems providing cost-effective grid sup-
pORT). Bruny Island, shown in Figure 1, is a popular holiday
destination and during peak periods — such as Easter morning
and afternoon peaks — the submarine feeder supplying the
island becomes overloaded and is supplemented by a diesel
generator located on the island. The aim of the CONSORT
project was to effectively peak shift the load away from
the morning and afternoon peaks to prevent the use of the
generator.

To fulfil such an objective while using the available dis-
tributed resources optimally, the CONSORT project relies
upon having an accurate, online, 24-hour horizon forecast at
the feeder level. However, load forecasting methods commonly
employed in industry are neither intended to forecast with
high accuracy over a time period this short nor at the feeder
level. [6]. An improved method for producing accurate feeder-
level forecasts is not only highly desirable for this project, but
will also in the future become a critical element of active
distribution network management more generally.

In this paper, a novel neural network-based day-ahead
feeder level load forecasting system is developed, with its
performance evaluated using ten years of historical demand
data for training and testing. We implement the forecast live
on Tasmania’s Bruny Island distribution network, enabling the
CONSORT project’s residential battery systems to effectively
support the network during periods of peak demand.

II. FORECASTING SYSTEM ARCHITECTURE

Recurrent Neural Networks (RNN) have recently been pop-
ular for load forecasting in electricity networks [7]. However,
RNNSs have been out-performed by the Transformer [8] model
in several domains including machine translation [8] (where
the architecture was first proposed and applied), medical time
series forecasting and regression [9], and image generation
[10]. The Transformer is a purely attention-based neural
network model and does not rely on recursion like traditional
RNNs. This allows a larger degree of parallelism to reduce
training time, while also allowing the model to effectively
handle long-range dependencies in the inputs.

The proposed forecasting system uses a Transformer neural
network model combined with similar period selection.

A. Similar Period Selection

Load profiles are influenced by exogenous data such as
weather, day of the week, and holiday type [11]. A simple
and intuitive method of load forecasting is to find periods
in the past with similar exogenous data to the period being
forecast and then use the load profiles from these past periods
to form a forecast [12]. However, these similar period methods
can be insufficient to capture complex patterns, especially over
holiday periods which occur only once per year [13].

The forecasting system was provided with historical load
and weather profiles from periods that had similar exogenous

data to the period of the load profile being forecast. Similar pe-
riods were identified by first finding candidate similar periods
an integer multiple of 1 year +30 days away from the period
being forecast. These candidates were then filtered down to
periods with exactly matching hour and minute.

Then the weighted Euclidean distance between the period
being forecast and each candidate similar period was cal-
culated using the following features: maximum future tem-
perature, minimum future temperature, maximum past load,
current holiday type, current day of the week, current day
of the month, and current month of the year. The holiday
type indicates the current holiday — Easter or Christmas for
example — and is encoded as a time series of integers with
a different integer for each holiday. When the holiday type
always occurs on the same date each year then the month of
the year and day of the month were used, whereas when the
holiday type always occurs on the same day of the week each
year then the day of the week was used. The candidate similar
periods with the lowest Euclidean distance were selected as
the final set of similar periods.

When training and testing the model the similar periods
were selected from both the past and the future, as the train and
test datasets were only five years each. It was assumed that,
for testing, there were no changes in the patterns underlying
the load profile over the duration of the testing set.
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Fig. 2. The Transformer architecture.

B. Transformer

The transformer neural network architecture, shown in fig-
ure 2, was introduced by [8] in 2017 and at the time was the



state of the art in neural machine translation. This architecture
follows the standard sequence-to-sequence/encoder-decoder
architecture: the encoder transforms an input sequence X =
(x1,...,xp) into a latent representation Z = (z1,...,2n),
and the decoder transforms Z into an output sequence ¥ =
(Y4, .-, Ypr), Where x;, y, and z; are of arbitrary dimension.
This matches the requirements of a load forecasting system,
where P is the length of the time series input, x; is of
dimension equal to the number of variables in the input time
series, R is the length of the time series output, and y; is of
dimension equal to the number of variables in the output time
series. The latent representation Z is used solely by the model
as an internal representation of the input data.

The encoder is constructed of a stack of L identical lay-
ers, each containing two sub-layers. The first is multi-head
self-attention and the second is a position-wise feed-foward
network. Both sub-layers have a residual connection around
them and are fed into a normalization layer.

The decoder is similar to the encoder except for a third layer
which implements multi-head attention on the outputs of the
encoder. The input to the decoder is the previous output of
the decoder, but shifted right by one. This requires an iterative
approach to be used to predict all points in the time series. The
self-attention in the decoder is masked so that when evaluating
a query at time ¢ it does not assign large weights to keys/values
occurring after ¢ in time, making the decoder autoregressive.

The individual components of the transformer are discussed
in the following sections.

C. Input Embedding

The input X € RT*¥ where the rows represent 7" points in
time and the columns represent IV time series, is embedded by
applying a dense layer to produce an embedded Y € RT*4,
where d is the hidden dimension of the model and d is the
same for both the encoder and the decoder. This is intended
to allow the neural network to learn the relationships and
dependencies between the different input time series. The
embedded representation is given by Equation 1, with learned
weights W € RV*4 and a learned bias vector b € RY.

Y = max(0, XW +b) (1)

D. Positional Encoding

The model has no way of telling the position or order of
each element in the input, so this information is injected in
the positional encoding layer. This is done by using a learned
lookup table to add the same value to the inputs at both test
and train time depending on their position in time in the input.

Specifically, a matrix lookup table of embeddings E € RT*4
is added to the embedded inputs as per Equation 2.
Y=X+FE )

E. Multi-Head Attention

The primary innovation of the Transformer architecture
is multi-head attention. Generic attention and dot-product

attention will now be described as these are prerequisite to
describing multi-head attention.

Given a single query vector and a set of key and value pairs
(with each key and each value being a vector), an attention
function matches the query to the keys to produce a weight for
each key by applying an arbitrary fitness function. These key
weights are then used to create an output vector comprised of
the weighted sum of the values, where each value’s weight is
the weight assigned to its corresponding key.
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Fig. 3. Multiheaded attention (b) splits the key, query, and value matrices
and applies scaled dot product attention (a) on each in parallel before
concatenating the result to return the data to its original dimension.

Scaled dot-product attention, shown in Figure 3 (a), is a
specific implementation of an attention function. It uses the
dot product of the query and each key to generate the weights,
which are then passed through a softmax function such that
the sum of all weights is equal to 1. In practice, the query
row vectors are combined into a single matrix, @, allowing
cheap matrix calculations to be used to evaluate the attention
outputs in parallel. The keys and values are represented by
row vectors in K and V, respectively.

The dot product of the keys and queries is scaled (hence the
name) by multiplying it by 1/+/dy, with dj being the key and
query dimension, to prevent the dot product from becoming
large when dy, is large as this may cause the softmax gradient
to become very small and affect the gradient descent training.

The causal mask shown in Figure 3 is used exclusively in the
decoder self-attention to prevent the attention function from
matching any query to a key that occurs after itself in time.
This is achieved by leaving the lower triangular portion of
the matrix untouched and setting the other values to be large
negative numbers, indicating a very poor match.

Multi-head attention, shown in Figure 3 (b), applies a
separate dense layer to each of the values, queries, and
keys. The dense layer is applied per Equation 1 with learned
weights W € R4¥¢ and a learned bias vector b € R?. The
outputs of the dense layers are then split along the last axis
into h sets, or heads. As a result the key, query, and value
dimension is reduced by a factor of h to %. Scaled dot-product
attention is then run independently on each set. The results are
concatenated and put through a final dense layer to produce
the output of the attention function. The dense layer function



on the output is defined by Equation 1 where W € R¥*4 s
a learned weight matrix and b € R? is a learned bias vector.

The dense layer combined with the split allows the multi-
head attention to pick out information from different subspaces
in the input and direct these to different attention heads. This is
in contrast to a single head which must average all subspaces.

F. Feed-forward

The feed-forward layer is a two layer network with a
rectified linear unit in the middle. Given an input X € R7*9,
the output Y € RT*9 is populated by Equation 3 where
W, € RdX4d, b, € R4d, Wsy € R4d><d, and by, € RY are
learned weights and biases.

Y = max(0, XW; + b;)Ws + by €)]

G. Decoder Dense Output

The output of the decoder is passed through a dense layer
to project the hidden dimension to the desired dimension of 1.
The layer is implemented per Equation 1 where W € R%*1 is
a learned weight matrix and b € R! is a learned bias vector.
By adjusting the dimension of W and b the network could be
modified to perform multiple forecasts simultaneously.

H. Residuals & Normalization

Residual connections [14] are applied around each sub-
layer. That is, the output of each sub-layer is given by
Y = X + subLayer(X) where subLayer(X) is the original
output of the sub-layer. The outputs are then normalized by
applying layer normalization [15], as per Equation 4 where
g and o, are the mean and variance of x respectively.

_ X .

Y. = ()
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1. Dropout and Training

To help prevent overfitting to the training data, dropout
[16] is applied during training at the output of both positional
encoding layers, and immediately after the softmax operation
in all multi-head attention layers. Additionally, the encoder
inputs, decoder inputs, and expected outputs were summed
with randomly distributed noise with a mean of 0 and standard
deviation of 0.01 before being supplied to the model during
training.

The model is trained using the Adam optimizer [17] and a
modified sum of errors squared loss function. Given a vector
y of predictions from the model and a vector 4y’ of expected
predictions the loss function [ is given by

R
1= (g =) x [y 5)
t=0

where c is a model hyperparameter. For ¢ > 0 this function
accentuates loss when the actual value is large — making the

model more accurate at forecasting peaks.
When testing or being used for inference, the decoder out-
puts are generated sequentially one at a time. After each output
value is generated it is shifted right by one and populated

in the decoder input and the model is executed again until
all the outputs have been generated. Values that have not yet
been generated are set to zero in the decoder input. These
zero values do not affect the output of the decoder, as the
decoder self-attention is masked so that it does not make use
of them. When training, the decoder input is set to the known
expected value and the model is executed — and the learnable
parameters updated — a single time.

III. CASE STUDY
A. Bruny Island

Bruny Island, shown in Figure 1, is located approximately
two kilometres off the coast of south-east Tasmania with a
permanent resident population of approximately 800 people.
The island is a popular holiday destination, with Easter periods
typically experiencing an influx of up to 500 cars in a single
day. The island is supplied by two feeders, depicted in Figure
4, with one feeder supplying a small portion of the island to
the North and the other supplying the main portion of the
island to the South. This case study deals only with the feeder
supplying the main portion of the island.

During holiday period morning and afternoon peaks the
submarine feeder reaches its capacity and a diesel generator
located on the island is used to reduce the feeder load. The
substantial increase in load over the Easter holiday period for
multiple years can be seen in Figure 5.

To avoid the use of the generator, the CONSORT project
installed a set of residential batteries on the island for the
purposes of peak-shifting. These batteries are coordinated by
the network aware coordination algorithm (NAC). In order to
peak-shift while making efficient use of the batteries, the NAC
requires an accurate forecast of load with a 24-hour horizon
and 30-minute resolution.

BRUNY
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Feeder B
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Fig. 4. Single line schematic of distribution network on Bruny Island. The
majority of load is in the South of the island, fed from submarine feeder A,
while a small load in the North is supplied by submarine feeder B.

B. Data and Model Configuration
The following data was available from 2009-2018:
o Apparent power at reclosers R1 through R4 (Figure 4).
o Temperature at Lenah Valley, Tasmania (50km from
Bruny Island).
o Apparent power consumption at St Helens, Tasmania.
This data was averaged to 30 minute resolution and split
into a training set containing data from October 2009 through

September 2014, and a testing set containing data from Octo-
ber 2014 through April 2018.
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Fig. 5. Easter load on Bruny Island 2008 through 2017, showing the
significant increase in load over this period when compared to the surrounding
days. Unusable missing/bad data can also be seen in this graph.

The network was supplied with data from the previous
and future 24 hours, for a total input sequence length of 96
(representing 48 hours at 30 minute resolution). The output
sequence length was 48 (24 hours).

The following time series were supplied to the model input:

o Apparent power from recloser R1 (Figure 4), with future

values set to zero.

o Temperature.

o Day of the week as an integer from 0 to 6 (local time).

¢ Minutes since midnight (local time).

e Boolean 1 or 0 indicating whether it is a holiday.

« Holiday type.

When used for inference, temperature forecasts were ob-
tained from the Bureau of Meteorology.

Additionally, five similar periods were identified using data
from R1 by the process described in section II-A. The data
over the similar periods for each of the following time series
was provided as input:

o Reclosers R1, R2, R3, and R4 (Figure 4) (as separate

time series).

o St Helens recloser.

o Lenah Valley temperature.

In total, 36 time series were provided as input to the model.
St Helens was included because it was observed to display
similar patterns to Bruny Island around holiday periods.

The forecasting system was configured with the parameters
in table I, with the upper section giving transformer model
parameters and the lower section giving weights used for
similar period selection.

C. Results

The forecaster was first evaluated on historical data around
Easter 2018, shown in Figure 6. Notably, the forecaster was
able to accurately predict the first large peak. This is in
contrast to load forecasting models which sometimes tend
toward trivially repeating the previous day’s load.

The performance of the forecaster was evaluated on every
Easter, Queen’s Birthday, and July school holiday period from
2015 through 2018 (2018 excludes July). The results are
shown in Figure 7, showing the mean absolute percentage error
(MAPE) as a function of forecast horizon. The mean MAPE
is 7.4%. Furthermore, the errors between predicted and actual

TABLE I
CASE STUDY MODEL PARAMETERS.
Parameter  Description Value
L Number of encoder and decoder layers 4
d Hidden dimension 32
h Number of attention heads 4
D Dropout fraction 0.2
c Loss function modifier 3
- Training batch size 16
Maximum future temperature weight 10
- Minimum future temperature weight 20
- Maximum past load weight 30
- Holiday type weight 1e9
- Day of week weight le6
- Day of month weight le6
- Month of year weight le6
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Fig. 6. Forecasts over the Easter 2018 period. The black dashed line is the
actual recorded load, and all previous forecasts are shown in grey. The single
system is able to transition smoothly between normal and holiday periods.

load are fairly evenly distributed around -15 kVA, shown in
Figure 8. This indicates that the model has some room for
improvement when predicting large holiday peaks, but overall
this is evidence that the model has been able to generalize from
the training data, as the training data is mostly comprised of
normal days.

When implemented live on the Bruny Island distribution
network, during the July 2018 school holiday period, the
forecaster was observed to reliably forecast large demand
peaks. This enabled the fleet of distributed batteries to be
used effectively in providing network support via net demand
peak reduction. An accurate forecast, issued early enough in
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Fig. 7. Mean absolute percentage error of each point in the forecast when
evaluated on every Easter, Queen’s Birthday, and July school holiday period
from 2015 through 2018 (2018 excludes July). The mean MAPE is 7.4%.
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Fig. 8. Distribution of forecast error when evaluated over the same periods
as Figure 7. The error has a mean of -15 kVA.

advance of the occurence of the demand peak, was observed
to give the batteries adequate time to store energy in the lead
up to, and discharge during the demand peak period. In at
least one instance over the test period this was sufficient to
avoid the island’s diesel generator from being used at all,
when it otherwise almost certainly would have been required.
Data collected during this peak demand period can be seen
in Figure 9. The upper section shows 24 hours of historical
load in black, plus the most recent 24-hour horizon forecast
in dashed black (recalculated every five minutes) and all old
forecasts in grey. The lower section shows the battery charge
rate, where a negative value of battery charge rate indicates
the batteries are supporting the grid.

Typically the generator is switched on when load exceeds
1050 kVA. During the first peak the graph shows the batteries
supplying between 50 and 100 kW to the island. Without
this support from the batteries, the generator would have been
required to operate.
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Fig. 9. The forecaster was able to predict the major peak (top, 21 July 18:00),
enabling the batteries, rather than the generator, to support the island (bottom).

IV. CONCLUSION

This paper presents a novel neural network-based load
forecasting system and applies it to Bruny Island, Tasmania,
allowing a fleet of residential batteries to effectively support
the network during major peaks. The single load forecasting
system was able to accurately predict peaks both during
anomalous holiday periods and during periods of normal load,
with a mean MAPE of 7.4% and a mean error of -15kVA.
It is expected that this system would be equally applicable

to any distribution feeder, and could be trivially expanded
to perform multiple forecasts simultaneously by adjusting
the output dimension of the final dense layer of the neural
network.
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