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ABSTRACT
Introduction. The patient admission scheduling (PAS)
problem is a class of scheduling problems that must be han-
dled by the managers of the hospital admission systems. The
problem arises when patients arriving at the hospital need
to be allocated to beds in an optimal manner, subject to the
availability of beds and the needs of patients.

The PAS problem in a dynamic context, as analysed in
Ceschia and Schaerf [2] and Lusby et al. [6], considers a
scenario in which random arrivals and unknown departures
of patients are gradually revealed over the planning horizon.
The problem was formulated as an integer programming
model, and various procedures for computing the optimal
solution were proposed. Ceschia and Schaerf [2] developed a
metaheuristic algorithm based on simulated annealing and
neighborhood search. Lusby et al. [6] developed an adaptive
large neighbourhood search procedure to solve the problem.

Although the arrivals and departures of patients are in
general random, the models in [2, 6] assumed deterministic
inputs such as a fixed length of stay for each patient, and a
fixed number of arrivals at the start of each day. Here, we
build on the analysis in Lusby et al. [6], and develop a model
for the PAS problem in a dynamic context, which captures
the random dynamics of the flow of the patients.

Our aim here is to develop an improved mathematical
model to solve the PAS problem in a dynamic environment
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with random arrivals and departures. At the start of each
day we record new information about the registered patients,
newly arrived patients and future arrivals (including emer-
gency patients and scheduled arrivals), and then determine
an optimal assignment of patients to beds. Our goal is to
provide a decision support tool for the patient scheduling
process to be used by hospital administrators and planners.

Notation. We use similar notation to Demeester et al. [3]
and Turhan and Bilgen [8] for the parameters and variables
of our model, with some minor changes.

• Patients are classified into three groups, admitted pa-
tients, planned patients, and emergency patients. Ad-
mitted patients are patients that are successfully ad-
mitted to the hospital, and allocated to a bed. Planned
patients have not been admitted to the hospital as
yet, but have pre-determined admission dates, denoted
by dplanp . Emergency patients are patients whose ad-
mission date is equal to their registration date, that
is, dplanp = dregp , since their admission cannot be post-
poned and is unplanned.

• Patients are denoted by p, with p ∈ P, where P is
the set of all patients. Also let M ⊂ P be the set
of all male patients, and F ⊂ P be the set of all
female patients. Patients have the following properties:
admission date and a discharge date, age and gender,
required treatment, and room preference.

• Days are denoted by d, with d ∈ D, where D =
{0, 1, . . . , D} is the set of all days in the planning period
of the time horizon. Further, let dp ∈ Dp be the admis-
sion day of patient p, where Dp = {dplanp , · · · , dmaxp } ⊆
D is the set of acceptable days for patient p to be
admitted to the hospital.

• The length of stay (LoS) of patient p is denoted by
Lp. This is a random variable recording the number
of days patient p will stay in the hospital till he/she
gets discharged. We assume Lp takes values `p =
0, 1, . . . , `maxp , for some positive integer `maxp .

• A hospital consists of different wards. Typically, each
ward is specialized in treating one kind of pathology
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such as cardiovascular diseases, oncology, or derma-
tology, which is considered as the major specialism of
the ward as in Demeester et al. [3]. Wards can also
perform other treatments as minor specialisms. Wards
are denoted by Wi, i = 1, . . . ,W , where W is the total
number of wards in the hospital. Wards can support
one or more specialisms Su, u = 1, . . . , S, where S is
the total number of specialisms. We write

Su ∼ Wi (1)

when specialism Su is available in ward Wi, and

S(p) = Su (2)

when patient p requires specialism Su. Patients ad-
mitted to ward Wi may have to be in a particular age
range, between some minimum a(Wi) and maximum
A(Wi).

• Rooms are denoted by r, with r ∈ R = {1, . . . , R},
where R is the total number of rooms in the hospital.
We write

r ∈ Wi (3)

when room r is in ward Wi ⊂ R. A room can be
described by its age policy, gender policy and by its
special features, such as the presence of oxygen, ni-
trogen, telemetry or television. A room may support
one or more different specialisms Su, depending on the
room features. Rooms have a specified gender policy,
which is one of the following; male only M , female
only F , depends on the gender of the first patient SG
(same-gender policy), or all genders are allowed N . It
is preferable to not assign male and female patients
to the same room at the same time. We denote by
RM ,RF ,RSG,RN ⊂ R the sets of all rooms with
policies M,F, SG,N , respectively.

• The capacity of room r is denoted by κr. This is the
total number of beds in room r.

• Assignment σ is the collection of decisions xp,r,d(σ) and
yp,d(σ) defined as,

xp,r,d(σ) =





1 if patient p is assigned
to room r on day d

0 otherwise,
(4)

yp,d(σ) =





1 if patient p is
admitted on day d

0 otherwise,
(5)

and note that yp,d(σ) = 1{d = dp(σ)}, where 1{.} is
an indicator function.

• In order to calculate the violation of gender policy, we
define the presence of male, female and both patients
in room r on day d as follows,

mr,d(σ) =





1 if there is at least one male
patient in room r on day d,

0 otherwise,
(6)

fr,d(σ) =





1 if there is at least one female
patient in room r on day d,

0 otherwise,
(7)

br,d(σ) =





1 if both genders are present
in room r on day d,

0 otherwise.
(8)

• Given patient p, the required features of a room for
allocation are grouped into two categories, needed room
feature (NRF ), and preferred room features (PRF ).
Given feature j of some room r, we write

NRFj(p, r)(σ) =





1 if the needed room feature
is provided

0 otherwise.
(9)

Similarly, we write

PRFj(p, r)(σ) =





1 if the prefered room feature
is provided

0 otherwise.
(10)

• Transfer means relocating a patient from one room
to another during their stay. As it is described by
Demeester et al. [3], transfers can be planned or un-
planned, the latter should be avoided if possible. As
an example of a planned transfer, a patient might be
transferred from surgery to an intensive care unit, and
after recovery they might be transferred to another
ward. An unplanned transfer could be due to a short-
age of resources such as beds or rooms. The transfer
of patient p from room r to another room r∗ on day d
is recorded using variable

tp,r,r∗,d(σ) = 1{xp,r,d−1(σ) = 1, xp,r∗,d(σ) = 1, r∗ 6= r}.
(11)

That is, tp,r,r∗,d(σ) = 1 when patient p was transferred
from room r to room r∗ 6= r on day d, and tp,r,r∗,d(σ) =
0 otherwise.

• Let Qr,d(σ) be the event that a gender conflict is ob-
served in room r on day d, given assignment σ. Also,
define the random variable br,d(σ) such that br,d(σ) = 1
if the event Qr,d(σ) occurs, and br,d(σ) = 0 otherwise.
That is,

br,d(σ) = 1{Qr,d(σ)}. (12)

Then the mean value of br,d(σ) is equal to the proba-
bility of the event Qr,d(σ) occurring, with

E(br,d(σ)) = Pr(Qr,d(σ)). (13)

Denote by Am,d(σ) and Af,d(σ) the events that all
males have left the room before day d, and that all
females have left the room before day d, respectively.
Fr,d is the set of all female patients assigned to room r
on day d, that is Fr,d = {p ∈ F : xp,r,d(σ) = 1}, and
Mr,d is the set of all male patients assigned to room
r on day d, which is Mr,d = {p ∈ M : xp,r,d(σ) = 1}.
Then,

1− Pr(Qr,d(σ)) = Pr(Am,d(σ)) + Pr(Af,d(σ))

−Pr(Am,d(σ) ∩Af,d(σ))

=
∏

Mr,d

xp,r,d(σ)Pr(Lp < d− dp(σ))

+
∏

Fr,d

xp,r,d(σ)Pr(Lp < d− dp(σ))

−
∏

Mr,d∪Fr,d

xp,r,d(σ)Pr(Lp < d− dp(σ)).

(14)
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• Let Zp,r,d(σ) be a random variable such that, given
assignment σ, Zp,r,d(σ) = 1 if patient p is in room r on
day d, and Zp,r,d(σ) = 0 otherwise.

• Let Yr,d(σ) =
∑
p∈P Zp,r,d(σ) be a random variable

recording the number of patients in room r on day d,
given assignment σ, and (E(Yr,d(σ))− κr) be the ex-
pected excess in room r on day d. We then have

E(Yr,d(σ)) = E

(∑

p∈P
Zp,r,d(σ)

)

=
∑

p∈P
E (Zp,r,d(σ))

=
∑

p∈P
Pr (Zp,r,d(σ) = 1)

=
∑

p∈P
xp,r,d(σ)Pr(Lp ≥ d− dp(σ)). (15)

• We define the following cost functions, which we later
use as coefficients in the objective function. Let cp,r,d
be the cost of assigning patient p to a room r on day d.

Let c
(T )
p,r,r∗,d be the cost of transferring patient p from

room r to room r∗ on day d, with c
(T )
p,r,r,d = 0. Let

c
(G)
r,d be the penalty incurred for the violation of gender

policy in room r on day d. Let c
(O)
r,d be the penalty

incurred when the capacity κr of room r is exceeded

on day d. Let c
(De)
p,d be the penalty incurred for the

admission delay of patient p on day d.

Using the parameters and variables mentioned above, we
now construct a stochastic integer programming model with
suitable constraints due to patients medical needs and age,
room capacity, and gender policy, similar to Lusby et al. [6],
with suitable modifications. These include hard constraints
that must be met and soft constraints that can be violated
when necessary, but which are subject to cost penalties.

Hard constraints. For a solution to be feasible, it has to
satisfy the following set of hard constraints (16)-(21). First,
we set the room capacity constraints,

∑

p∈P
xp,r,d(σ) ≤ κ̂r, ∀r ∈ R, ∀d ∈ D, (16)

where κ̂r ≥ κr is some maximum allowed threshold for the
total number of patients in room r, after taking into account
an overstay risk.

Next, patient p should be assigned to ward Wi that is
suited for the patient’s age, denoted Ap. The minimum age
limit a(Wi) and maximum age limit A(Wi) allowed in ward
Wi should be respected. Therefore,

xp,r,d(σ)1{r ∈ Wi} ≤ 1{a(Wi) ≤ Ap ≤ A(Wi)},
∀p ∈ P, r ∈ R, d ∈ D. (17)

Furthermore, a patient p should be assigned to a ward Wi

with a suitable specialism Su, for some u. Therefore,

xp,r,d(σ)1{r ∈ Wi, S(p) = Su} ≤ 1{Su ∼ Wi},
∀p ∈ P, r ∈ R, d ∈ D. (18)

Additionally, the medical treatment of a patient p may
require that he/she is assigned to a room r with special
equipment or other features required for the treatment. That
is, when making decision xp,r,d(σ) = 1 we must have r such
that NRFj(p, r) = 1, when patient p requires room feature j.
Therefore,

xp,r,d(σ) ≤ 1{NRFj(p, r) = 1}, ∀p ∈ P, r ∈ R, d ∈ D.
(19)

Also, patients have to be admitted within the planning
horizon, and so

∑

d∈Dp

yp,d(σ) = 1, ∀p ∈ P. (20)

Moreover, if patient p is admitted on day d̄, the patient
must appear in some room r the following `maxp − 1 nights,
which gives,
∑

r∈R
xp,r,d(σ) ≥ yp,d̄(σ),

∀p ∈ P, d = d̄, . . . , d̄+ `maxp − 1, d̄ ∈ Dp.
(21)

Soft constraints. The set of soft constraints (22)-(25) cor-
responds to desirable conditions that do not have to be met,
but are subject to penalties.

Ideally, patients should be allocated as per their gender to
an appropriate room r with its specified gender policy. We
evalute the presence of a female patient fr,d(σ) in room r on
day d is using

fr,d(σ) ≥ xp,r,d(σ), ∀p ∈ F , ∀r ∈ RSG, ∀d ∈ D,
(22)

and the presence of a male patient mr,d(σ) using

mr,d(σ) ≥ xp,r,d(σ), ∀p ∈M, ∀r ∈ RSG, ∀d ∈ D.
(23)

To determine when both genders are present br,d(σ) we use
the following constraint,

br,d(σ) ≥ mr,d(σ) + fr,d(σ)− 1, ∀r ∈ RSG,∀d ∈ D.
(24)

The transfer of patients is handled using the following
constraint,

tp,r,r∗,d(σ) ≥ xp,r,d(σ)− xp,r,d−1(σ),

∀p ∈ P,∀r ∈ R, ∀d = 2, . . . ,D. (25)

Some other desirable conditions could also be considered.
A patient who asked for a single room, in case of lack of
single rooms should preferably be assigned to a twin room.

In addition to major medical treatment, a patient p may
need to undergo other minor medical treatments within de-
partment Wi in a room r with special equipment to treat
the patient assigned, which requires some minor specialism
S` for some suitable `.
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A patient p may prefer a room r with features that in some
degree correspond to the specialism that is required to treat
the patient’s clinical condition. That is, it is preferable to
have PRFj(p, r) = 1, when patient p prefers room feature j.

Objective function. We define the stochastic objective
function as the total expected cost incurred over the planning
horizon D = {0, 1, . . . ,D}, and write it as a sum of the
following cost components. The first component captures the
cost of assigning patient p ∈ P to room r ∈ R on day d ∈ D.
The second component calculates the cost of transferring
patient p ∈ P from room r ∈ R to another room r∗ ∈ R on
day d ∈ D. The third component determines the penalty
incurred for the violation of gender policy in room r ∈ R on
day d ∈ D. The fourth component determines the penalty
incurred when the capacity κr of room r ∈ R is exceeded
on day d ∈ D. The fifth component computes the penalty
incurred when the admission of patient p ∈ P is delayed
beyond the maximum acceptable admission day dmaxp on day
d ∈ D. The resulting expression is stated as,

min
σ

{ ∑

p∈P

∑

d∈D

∑

r∈R
cp,r,d × xp,r,d(σ)× Pr(Lp ≥ d− dp(σ))

+
∑

p∈P

∑

d∈D

∑

r∈R
c
(T )
p,r,r∗,d × tp,r,r∗,d(σ)× Pr(Lp ≥ d− dp(σ))

+
∑

d∈D

∑

r∈R
c
(G)
r,d × Pr(Qr,d(σ))

+
∑

d∈D

∑

r∈R
c
(O)
r,d ×

(
max{0, E(Yr,d(σ))− κr}

κ̂r − κr

)

+
∑

p∈P
c
(De)
p,d ×

∑

d∈D

(
d− dplanp

dmaxp − dplanp

)
× yp,d(σ)

}
, (26)

where max{0, E(Yr,d(σ))− κr} is the expected number of
patients in room r on day d above the capacity of room r,
given assignment σ.

Random arrivals and departures. In order to model the
random departures, we assume that the random variable
Lp that records the LoS of the type-p patient, and takes
values `p = 0, 1, . . . , `maxp , for some positive integer `maxp ,
follows a discrete phase-type distribution in Latouche and
Ramaswami [5, Chapter 2] and Neuts [7] with parameters
that depend on p.

That is, we consider a discrete-time Markov chain with
state space V = {0, 1, . . . , `maxp }, where `maxp is an absorbing
state, and one-step transition probability matrix P given by

P∗ =

[
P p
0 1

]
, (27)

for some matrix P = [Pi,j ]i,j=0,1,...,`max
p −1 and (column) vec-

tor p = [pi,`max
p

]j=0,1,...,`max
p −1, and the initial distribution

(row) vector τ = [τi]i=0,1,...,`max
p −1.

We then assume that the random variable Lp follows dis-
crete phase-type distribution with parameters τ and P, which
models time till absorption in the above chain,

Lp ∼ PH(τ ,P), (28)

which gives, for `p = 0, 1, . . . , `maxp ,

Pr(Lp = `p) = τP`pp, (29)

Pr(Lp ≤ `p) = 1− τP`p1, (30)

where 1 is a (column) vector of ones of appropriate size.
We use these expressions in order to evaluate the first two
components of the objective function in (26).

In order to include the random arrivals that may occur
during the planning horizon, we apply an approach similar
to Kumar et al. [4]. We simulate random arrivals (from a
suitable distribution) multiple times, resulting in a number of
possible solutions. We then compare the different solutions
by running simulations over some long time period, and then
choose the preferred solution.

For example, suppose that the arrivals of patients (emer-
gency or scheduled) occur according to a Poisson process
with rate λp per day, for type-p patient, for all p ∈ P, where
patient type is determined by their medical needs, age and
gender. We generate the random arrivals of emergency pa-
tients in the time horizon [0, D], using standard simulation
methods. As one possibility, for each patient type p, assume
that dDλpe arrivals have occurred during the time interval
[0,D], and then draw the random arrival times from a dis-
crete uniform distribution on {0, 1, . . . ,D}. We then add
the set of such generated patients to the problem, and solve
it using the model in (26), treating these patients as regis-
tered patients, and so, patients that are known to the system.

Solution approach. We use simulation in order to gener-
ate random inputs for our model, and apply metaheuristic
algorithms, similar to [6], including greedy search, adaptive
neigbourhood search and simulated annealing, to solve the
stochastic integer program. In our algorithm, we set the
initial solution to be the optimal solution of the algorithm
in [6], and compare our results with those of Lusby et al. [6].
The results of the application of our model will be reported
in [1].

1. REFERENCES
[1] A. K. Abera, M. M. O’Reilly, B. R. Holland, M. Fackrell,

and M. Heydar. On the decision support model for the
patient admission scheduling problem with random
arrivals and departures: Solution approach. In
preparation.

[2] S. Ceschia and A. Schaerf. Modeling and solving the
dynamic patient admission scheduling problem under
uncertainty. Artificial Intelligence in Medicine,
56(3):199–205, 2012.

[3] P. Demeester, W. Souffriau, P. De Causmaecker, and
G. Vanden Berghe. A hybrid tabu search algorithm for
automatically assigning patients to beds. Artificial
Intelligence in Medicine, 48(1):61–70, 2010.

[4] A. Kumar, A. M. Costa, M. Fackrell, and P. G. Taylor.
A sequential stochastic mixed integer programming
model for tactical master surgery scheduling. European
Journal of Operational Research, 270(2):734–746, 2018.

[5] G. Latouche and V. Ramaswami. Introduction to Matrix
Analytic Methods in Stochastic Modelling. ASA SIAM,
1999.

13



[6] R. M. Lusby, M. Schwierz, T. M. Range, and J. Larsen.
An adaptive large neighborhood search procedure
applied to the dynamic patient admission scheduling
problem. Artificial Intelligence in Medicine, 74:21–31,
2016.

[7] M. F. Neuts. Matrix-Geometric Solutions in Stochastic
Models: an Algorithmic Approach. Dover Publications
Inc., 1981.

[8] A. M. Turhan and B. Bilgen. Mixed integer
programming based heuristics for the patient admission
scheduling problem. Computers and Operations
Research, 80:38–49, 2017.

14


