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ABSTRACT
We apply physical interpretations to construct algorithms
for the key matrix G in discrete-time quasi-birth-and-death
(dtQBD) and its z-transform G(z) , motivated by the work
on stochastic fluid models (SFMs) in [13]. In this method-
ology, we first write a summation expression for G(z) by
considering a physical interpretation similar to that of an
algorithm in [13]. Next, we construct the corresponding it-
erative scheme, and prove its convergence to G(z).

In particular, here we consider the physical interpretation
of Algorithm 1 for Ψ(s) in [13], and use a similar physical
interpretation for G(z) partitioned into three sections, each
expressed in terms of matrices analogous to block matrices
in the fluid generator Q(s) in stochastic fluid models.

1. INTRODUCTION
We consider stochastic fluid models (SFMs) and quasi-

birth-and-death processes (QBDs), which are key processes
in the literature of matrix-analytic methods (MAMs). We
exploit the similarities between them in order to apply anal-
ogous physical interpretations to construct new expressions
and algorithms for the key matrix G in discrete-time QBDs
(dtQBDs) and its z-transform G(z).

Many expressions in the theory of SFMs, including those
for the matrix Ψ(s), have underlying physical interpreta-
tions, which are obtained by deconstructing sample paths
into various components, and then writing corresponding
expressions in terms of fluid generator Q(s) [9, 11, 12, 13].

Here, we apply a physical interpretation and conditioning
similar to that used in the construction of [13, Algorithm 1]
for matrix Ψ(s) in SFMs to derive an expression and algo-
rithm for the matrix G(z).

The main algorithms for QBDs were generated with phys-
ical interpretations where the set of included sample paths
were partitioned, according to the iteration count, by the
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maximum level reached. The linearly-convergent algorithms
then had a linearly increasing maximum level, while the
quadratically convergent algorithms had a geometrically in-
creasing maximum level.

Such a partitioning was not entirely appropriate when al-
gorithms were being developed for SFMs. Instead, in [11,
Sections 3.1-3.5], sample paths included in the matrix Ψ(s)
were partitioned according to a key level, y, and the be-
haviours on the required three sample path components were
carefully controlled: starting at level 0 and reaching level y,
leaving level y before returning to level y, and starting at
level y until reaching level 0 for the first time. Each of these
components can be expressed in terms of the fluid genera-
tor Q(s).

To construct an analogous algorithm for G(z), we use a
similar partitioning principle and three sample path com-
ponents to construct the iterations for G(z). We express
each component in terms of the matrix M(z), the dtQBD-
equivalent of the fluid generator Q(s).

2. PRELIMINARIES

2.1 Discrete-time QBDs
Consider a dtQBD, denoted {Xt : t = 0, 1, 2, . . .}, on a

two-dimensional state space {(n, i) : n ≥ 0, 1 ≤ i ≤ m},
with level variable n and phase variable i, and the one-step
transition probability matrix

P =




B A+ 0 0 · · ·
A− A0 A+ 0 · · ·
0 A− A0 A+ · · ·
0 0 A− A0 · · ·
...

...
...

...
. . .



, (1)

where matrices B,A+,A−,A0 are square matrices of or-
der m such that, for all i, j ∈ {1 ≤ i ≤ m},

[B]ij = P (Xt+1 = (0, j) | Xt = (0, i)), (2)

[A+]ij = P (Xt+1 = (n+ 1, j) | Xt = (n, i)), (3)

[A−]ij = P (Xt+1 = (n− 1, j) | Xt = (n, i)), (4)

[A0]ij = P (Xt+1 = (n, j) | Xt = (n, i)). (5)

Discrete-time QBDs have been used to analyse a variety of
real-life situations including modelling embedded queues [16]
and maintenance [14]. The analytical expressions for the
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key quantities in the transient and stationary analysis of
this model have led to powerful algorithms. The derivations
of both the analytic expressions and subsequent algorithms
appear in [1, 6, 16].

We now define a key building block used in the construc-
tion of the algorithm in later sections.

Definition 1. For complex number z inside the unit disk,
let the matrices M+(z) = [M+ij(z)]1≤i,j≤m and M−(z) =
[M−ij(z)]1≤i,j≤m be given by

M+(z) =
∞∑

n=0

(A0z)
nA+z = (I−A0z)

−1A+z,

M−(z) =
∞∑

n=0

(A0z)
nA−z = (I−A0z)

−1A−z.

For an irreducible discrete-time QBD, (I−A0z)
−1 exists [17].

The entry [M+(z)]ij is the probability generating func-
tion (PGF) of the time taken for the process to reach level (n+ 1)
for the first time and do so in phase j, whilst avoiding
level (n−1), given the process starts in level n > 0 in phase i
at time zero.

The entry [M−(z)]ij is the PGF of the time taken for the
process to reach level (n − 1) for the first time and do so
in phase j, whilst avoiding level (n + 1), given the process
starts in level n > 0 in phase i at time zero.

The particular quantity we consider in this paper is the
matrix G(z). Before defining G(z), we define τ as the time
taken to first reach level (n− 1). Then the (i, j)-th entry of
the matrix G(z) is defined

[G(z)]ij = E[zτI{τ <∞, Xτ = (n−1, j)}|X0 = (n, i)], (6)

where [G(z)]ij records the PGF of the time taken for the
process to reach level n − 1 for the first time and do so in
phase j, given the process starts in level n at phase i. Note
,I{·} denotes the indicator function throughout the paper.

For 0 ≤ z ≤ 1, the matrix G(z) is the minimal non-
negative solution [17] to

G(z) = A−z + A0zG(z) + A+z(G(z))2. (7)

Transforming this into a fixed-point equation by using the
recommended iteration by Neuts [17], and then representing
in terms of M+(z) and M−(z), we get

G(z) = M−(z) + M+(z)(G(z))2 (8)

or G(z) = (I−M+(z)G(z))−1M−(z). (9)

2.2 SFMs
Consider a SFM, denoted {(ϕ(t), X(t)) : t ≥ 0}, with

phase variable ϕ(t) ∈ S = {1, . . . , n} and level variable X(t)
with lower bound at zero, such that:

• the phase process {ϕ(t) : t ≥ 0} is an irreducible
continuous-time Markov chain (CTMC) with state space
S and generator T = [Tij ]i,j∈S ,

• the level variable X(t) changes at rate dX(t)/dt =
cϕ(t) at time t wheneverX(t) > 0, and at rate max{cϕ(t), 0}
whenever X(t) = 0.

SFMs have been used in the analysis of a variety of real-life
situations, including telecommunications systems [19], risk

assessment [7], power generation systems [10] and congestion
control [18].

The stationary and transient analysis of SFMs and power-
ful algorithms for the numerical evaluations of various per-
formance measures can be found in [2, 3, 4, 5, 11, 13, 20].

We now define the key building blocks in SFMs used in
the construction of the algorithms in [10, 11, 12, 13, 21].
Let S+ = {i ∈ S : ci > 0}, S− = {i ∈ S : ci < 0}, S0 =
{i ∈ S : ci = 0}. Block matrices Q++(s) and Q−−(s) in the
fluid generator Q(s) introduced in [12] are analogous to the
building blocks M+(z) and M−(z) in QBDs, respectively.

Definition 2. For s ∈ C with R(s) ≥ 0, let

Q(s) =

[
Q++(s) Q+−(s)
Q−+(s) Q−−(s)

]
, (10)

where

Q++(s) = C−1
+ [T++ − sI − T+0(T00 − sI)−1T0+],

Q−−(s) = C−1
− [T−− − sI − T−0(T00 − sI)−1T0−],

Q+−(s) = C−1
+ [T+− − T+0(T00 − sI)−1T0−],

Q−+(s) = C−1
− [T−+ − T−0(T00 − sI)−1T0+].

The physical interpretation is reliant on the following defi-
nitions of the in-out fluid h(t) and the first time for h(t) to
hit some y > 0. For any t ≥ 0, define the random variable

h(t) =

∫ t

u=0

|cϕ(u)|du, (11)

interpreted as the total amount of fluid that has entered or
exited the buffer X(·) during the time interval [0, t], and
referred to as the in-out fluid [12] of the process X(·). Also,
for any y > 0, define the random variable

ω(y) = inf{t > 0 : h(t) = y}, (12)

interpreted as the first time at which the in-out fluid of the
process X(·) reaches y.

Subsequently, the physical interpretation of [eQ++(s)y]ij
as shown in [12] and extended in [21] is the Laplace-Stieltjes
Transform (LST) of the distribution of time for the in-out
fluid to reach y for the first time and do so when the pro-
cess is in phase j ∈ S+ whilst avoiding phases in S−, given
that the in-out fluid starts at 0 and the process starts in
phase i ∈ S+.

Further, let θ(x) = inf{t > 0 : X(t) = x} be the first pas-
sage time to level x. For i ∈ S+, j ∈ S−, and s ∈ C, where
R(s) ≥ 0, [Ψ(s)]ij is given by the conditional expectation

[Ψ(s)]ij = E[esθ(x)I{θ(x) <∞, ϕ(θ(x)) = j}|X(0) = x, ϕ(0) = i].
(13)

The physical interpretation of [Ψ(s)]ij is the LST of the
time taken for the process to hit level x for the first time
and does so in phase j, given the process starts from level x
whilst avoiding levels below x.

3. LOWEST-TROUGH ALGORITHM
We construct a lowest-trough algorithm (LT) for the ma-

trix G(z) by considering the physical interpretation of the
sample path corresponding to Algorithm 1 for matrix Ψ(s)
in [13]. Algorithm 1 partitions all relevant sample paths ac-
cording to the lowest-trough observed in any sample path,
corresponding to Ψ(s), occurring at level y.

In this section, we first summarise Algorithm 1 in [13] by
stating the iterative scheme, the integral equation equivalent
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to the iterative expression, and the physical interpretation
of the expression. Next, we apply a similar physical inter-
pretation to derive a summation equation for G(z). Further,
we construct an iterative scheme resulting from that equa-
tion, denoting by GLT

n (z) the matrix calculated in the n-th
iteration of the scheme. Finally, we let the corresponding
algorithm be called the LT Algorithm, and prove its conver-
gence to G(z).

3.1 Algorithm 1 for Ψ(s) in SFMs.
Algorithm 1 in [13] is based upon the following iterative

scheme, which continues until an appropriate stopping cri-
terion is met.

1. Let Ψ0(s) = 0.

2. For n = 0, 1, 2, . . ., let Ψn+1(s) be the unique solu-
tion to

Q++(s)Ψn+1(s) + Ψn+1(s)Q−−(s)

= −Q+− −Ψn(s)Q−+(s)Ψn(s). (14)

For s ≥ 0, the above iterative scheme converges to the
minimal non-negative solution of the Riccati equation for
Ψ(s) [11, 13].

As described in [13], equation (14) is equivalent to

Ψn+1(s) =

∫ ∞

y=0

eQ++(s)y(Q+−(s)

+Ψn(s)Q−+(s)Ψn(s))eQ−−(s)ydy, (15)

which has the following physical interpretation, after defin-
ing Φn as the set of sample paths contributing to Ψn.

Each sample path contributing to [Ψ(n+1)(s)]ij has three
stages outlined below and depicted in Figure 1.

1. Given the process starts at level 0 in phase i ∈ S+, the
process remains in some phases in S+ ∪ S0 until the
process reaches level y in phase i1 ∈ S+ whilst avoiding
any transitions into S−. The LST corresponding to
this stage is [eQ++(s)y]ii1 .

2. Given the process starts at level y in phase i1 ∈ S+,
the process:

• Either makes a transition from phase i1 to i2 ∈ S−
with instantaneous LST rate [Q+−(s)]i1i2 .

• Or, the process leaves level y in phase i1 ∈ S+,
before returning to level y in some phase i3 ∈ S−
along a path in Φn with LST [Ψn(s)]i1i3 .

Then the process makes a transition from phase
i3 to phase i4 ∈ S+ with instantaneous LST rate
[Q−+(s)]i3i4 .

The process then leaves level y in phase i4 ∈ S+,
before returning to level y in some phase i2 along
a path in Φn with LST [Ψn(s)]i4i2 .

The LST rate corresponding to this stage is
([Q+−(s) + Ψn(s)Q−+(s)Ψn(s)]i1i2).

3. Given the process starts from level y in phase i2 ∈ S−,
the process remains in some phases in S− ∪ S0 until
the process drains to level 0 and does so in phase j,
whilst avoiding any transitions into S+. The LST of
the time taken to complete this stage is [eQ−−(s)y]i2j .

By integrating over all possible y, all possible sample paths
are captured in (15).

y

0

Stage 1

i1

i

[eQ++(s)]ii1

Stage 3

i2

j

[eQ−−(s)]i2j

Stage 2

or

[Q+−(s) + [Ψn(s)Q−+(s)Ψn(s)]i1i2

i1 → i2

∈ Φn ∈ Φn

i1 i2

Figure 1: A sample path for Ψn+1(s) from equa-
tion (15) for a particular y.

3.2 Lowest-trough algorithm for G(s) in dtQBDs
We now construct the LT Algorithm using a similar physi-

cal interpretation to that of Algorithm 1 in [13], as described
in Section 3.1 above. Let G0(z) = 0 and define ΩLTn , n ≥ 0,
as the set of sample paths contributing to Gn(z).

Suppose that the process starts from level 1 in phase i
and first reaches level 0 in phase j. Then for each sample
path contributing to Gn(z) the following three stages must
occur, also depicted in Figure 2.

1. Given the process starts at level 1 in phase i, the pro-
cess reaches level k in some phase i1 without making a
downwards transition. The PGF corresponding to this
stage is [M+(z)k−1]ii1 .

2. Given the process starts from level k in phase i1, the
process:

• Either makes a transition to level (k−1) in phase
i2, without reaching leve (k+1), with PGF [M−(z)]i1i2 .

• Or, the process first reaches level (k + 1) for the
first time whilst avoiding level (k − 1), and does
so in some phase i3. The corresponding PGF is
[M+(z)]i1i3 .

Next, given the process starts from level (k+1) in
phase i3, it reaches level k for the first time and
does so in some phase i4 along a path ΩLTn . The
corresponding PGF is [Gn(z)]i3i4 .

The process must repeat the above at least one
more time ending at level k in some phase i5 under
the same restrictions. The corresponding PGF is
[
∑∞
`=2(M+(z)Gn(z)))`]i1i5 . Finally, the process

makes a transition from level k in phase i5 to level
(k − 1) in phase i2.

The PGF corresponding to this stage is [M−(z) +∑∞
`=2(M+(z)Gn(z)))`M−(z)]i1i2 .

3. Finally, given the process starts from level (k − 1) in
phase i2, the process first drains to level 0 in phase j
without making an upwards transition. The PGF cor-
responding with this stage is [M−(z)k−1]i2j .

By stages 1 – 3 above and partitioning on k ≥ 1, we obtain
the following expression,

Gn+1(z) =
∞∑

k=1

M+(z)k−1

(
I +

∞∑

`=2

(M+(z)Gn(z)))`
)

M−(s)k

=
∞∑

k=1

M+(z)k−1((I−M+(z)Gn(z))−1

−M+(z)Gn(z))M−(z)k. (16)
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k
k − 1

1
0

Stage 1

i1

i

[M+(z)k−1]ii1

Stage 3

i2

j

[M−(z)k−1]i2j

Stage 2

or

[M−(z) +
∑∞
`=2(M+(z)Gn(z)))`M−(z)]i1i2

i1

i2

i1

i2

Figure 2: A sample path for GLT
n+1(z) from equa-

tion (16) for a particular k.

We use [15, Theorem 3] below, where ρ(·) represents the
spectral radius of a given matrix.

Lemma 1. Equation

X = AXB + C, (17)

for appropriately sized matrices A, B and C, has the unique
solution given by

X =
∞∑

k=0

AkCBk (18)

if and only if ρ(A)ρ(B) < 1.

After applying Lemma 1, we express equation (16) as the
iterative scheme

GLT
0 (z) = 0, (19)

GLT
n+1(z)−M+(z)GLT

n+1(z)M−(z) (20)

=
(

(I−M+(z)GLT
n (z))−1 −M+(z)GLT

n (z)
)

M−(z),

to construct the LT Algorithm and then show its conver-
gence to G(z).

Lemma 2. GLT
n (z) converges to G(z) as n→∞.

Proof: Firstly, let Ω be the set of sample paths that con-
tribute to G(z) and recall that ΩLTn is the set of sample paths
that contribute to the n-th iteration of GLT

n (z). The phys-
ical interpretation of GLT

n (z) is the PGF of the time taken
to traverse paths in ΩLTn ⊆ Ω, and so 0 ≤ GLT

n (z) ≤ G(z).
Now, from the physical interpretation, for all n, the sam-

ple paths contributing to GLT
n (z), ΩLTn must also contribute

to G(z), that is ΩLTn ⊆ Ω. Now, consider an arbitrary sam-
ple path in Ω. That path must either have a single peak at
some level k ≥ 1 or a minimum trough at some level k. As
such that path is counted by the n-th iteration of ΩLTn for
all n sufficiently large to allow for the necessary sample path
components. Since the sample path was chosen arbitrarily,
then all sample paths in Ω are contained within ΩLTn for

some n. The result follows.

4. NUMERICAL EXAMPLE
Consider the six-phase dtQBD version of Example 1 in [8],

with

A+ =




0.0151 0.3021 0 0 0 0
0 0.0151 0.3021 0 0 0
0 0 0.0151 0 0 0
0 0 0 0.0151 0.3021 0
0 0 0 0 0.0151 0
0 0 0 0 0 0.0151



,

(21)

Algorithm 1 LT Algorithm for calculating G(z)

Input: A−, A0, A+

Set a real ε > 0, z ∈ Re > 0.
Set:
M+(z) = (I−A0z)

−1A+z,
M−(z) = (I−A0z)

−1A−z, and
GLT
n (z) = 0.

while ||GLT
n+1(z)−GLT

n (z)||∞ > ε do
Compute:
C = ((I−M+(z)GLT

n (z))−1 −M+(z)GLT
n (z))M−(z)

Solve:
X −M+(z)XM−(z) = C
Set:
GLT
n (z) = X

end while
Output: G(z) ≈ GLT

n (z)

Work Count:
One matrix inversion, two matrix products, and solv-

ing the Sylvester equation, for approximately 61m3 float-
ing point operations per iteration.

A0 =




0.6344 0.0302 0 0 0 0
0.0302 0.6042 0.0302 0 0 0

0 0.0302 0 0.0302 0 0
0 0 0.0302 0.6042 0.0302 0
0 0 0 0.0302 0 0.0302
0 0 0 0 0.0302 0.0302



,

(22)
and

A− =




0.0181 0 0 0 0 0
0 0.0181 0 0 0 0
0 0 0.0181 0.9063 0 0
0 0 0 0.0181 0 0
0 0 0 0 0.0181 0.9063

0.9063 0 0 0 0 0.0181



.

(23)
We set the stopping criterion to ε = 10−12.
The algorithm achieved the desired precision in the pro-

duction of the matrix

G =




0.7831 0.0149 0.0016 0.1084 0.0015 0.0905
0.6538 0.0492 0.0030 0.1889 0.0018 0.1033
0.0533 0.0016 0.0183 0.9180 0.0002 0.0087
0.7426 0.0015 0.0016 0.1270 0.0022 0.1252
0.0650 0.0001 0.0000 0.0040 0.0182 0.9126
0.9489 0.0002 0.0000 0.0017 0.0006 0.0485



,

(24)
LT algorithm converges in 60 iterations with an average

time of 0.015 seconds on a Dell OptiPlex 7450 AIO.

5. CONCLUSION
We constructed a linearly-convergent lowest-trough algo-

rithm for G(z) by applying physical interpretation analo-
gous to that of Algorithm 1 for Ψ(s) in [13].

Future work includes using similar methodology to con-
struct further algorithms through their physical interpreta-
tion. That is, we partition sample paths according to some
key level k, derive the corresponding iterative schemes, and
numerically compare them with the existing algorithms.
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