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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

In order to develop an acceptable real-time control approach in terms of accuracy and computation time in industrial and 
commercial applications, the based Back Propagation Neural Network (BPNN) approach was introduced into the discharge 
pressure optimization process of the transcritical CO2 heat pump systems. The relevant characteristic variables concerning to the 
discharge pressure was minimized by the Group Method of Data Handling (GMDH) method, and the relevance of all the 
variables with the optimal rejection pressure were investigated one by one. Prediction error of different type neural network were 
compared with each other. Finally, the performance of neural network based transcritical CO2 system was compared with that of 
conventional empirical correlations-based systems in terms of the optimal discharge pressure, which showed that the novel PSO-
BP prediction model provides an innovative and appropriate idea for developers and manufacturers. 
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Nomenclature 

A training sample                                              Q            loss function 
B testing sample                                                T             temperature 
b            estimated parameters                                     W threshold value from input layer to hidden layer  
C            prediction sample                                          w threshold value from hidden layer to output layer 
E            expected value                                              Y output variables 
f             function                                                         y              output values 
P            pressure 

1. Introduction 

Transcritical CO2 heat pump system has the characteristics of green environmental protection, high energy saving 
and wide application, which can provide 60 to 90 ˚C of hot water in a wide range of ambient temperatures [1, 2]. It 
combines the energy saving function of heat pump with the excellent environmental protection performance of CO2. 

For a better application, researchers have done many investigations to enhance the system performance, including 
improvement of the system COP [3], decrease of the power consumption [4] and so on. Lots of parameters affected 
the system COP. It was widely known that the system COP increased firstly but then decreased with the increasing 
discharge pressure, thus leading to the existence of an optimal rejection pressure [5]. 

Many researchers have investigated the optimal discharge pressure of the CO2 heat pump, and put forward many 
empirical correlations [6-10]. However, Aprea and Maiorino [11] found that the mathematic correlations failed to 
predict the real rejection pressure in their experiment. Meanwhile, Cecchinato et al. [12] developed sets of 
mathematic models to simulate the optimal discharge pressure, and stated that results deviated from the one 
predicted by current correlations of other researchers. Actually, the optimal discharge pressure often varied with the 
different heat pump designs, different operation condition and even the aging problem. With a real-time controller 
through the comparison of the transient COP, the heat pump might work in the high system performance operations. 
Nevertheless, it will consume much time for a dynamic operation heat pump when a traditional real-time controller 
was used, resulting in a long time that the pump actually not run at the optimal condition. 

In the present paper, a novel prediction model based on statistical data handing method was introduced for the 
optimal discharge pressure prediction. Thousands of original data were recorded from the traditional real time 
control CO2 heat pump, and the PSO-BP neural network was developed to predict the optimal rejection pressure 
according to the original data sample. The group method of data handling-type (GMDH) method was applied to 
investigate the significance of different parameters on the optimal discharge pressure. Results showed the better 
prediction performance, and it could be used in the real-time control for better system performance. 

2. Transcritical CO2 heat pump and its system performance 

2.1. Working principle of CO2 heat pumps 

A typical transcritical CO2 heat pump heat pump is made up of four major components, which are a compressor, 
a gas cooler, a throttling valve and an evaporator. The vapor is firstly compressed in the compressor to the high-
pressure vapor. Then, it flows into the gas cooler, where the gas is cooled to a low temperature gas. The gas cooler is 
the main component which provides heating capacity in a heat pump. After that, the low temperature gas is throttled 
in a throttling valve, and the working fluid turns into the liquid with a much lower temperature. Eventually, the low 
temperature liquid absorbs heat from the surroundings, and it evaporates into the saturated superheated vapor.  

2.2. The optimal discharge pressures 

Fig.2 depicts the p-h diagram of the transcritical CO2 cycle. As shown in Fig.3, it could be obviously seen that 
the system COP increased firstly with the increasing discharge pressure and then decreased gradually. 



	 Xiang Yin  et al. / Energy Procedia 160 (2019) 451–458� 453 Author name / Energy Procedia 00 (2018) 000–000  3 

 
Fig.1. Typical schematic CO2 heat pump 

 

  
Fig.2. p-h diagram of a CO2 heat pump Fig.3. Relationship of COP with the increasing discharge pressure 

 

3. Transcritical CO2 heat pump and its system performance 

3.1. GMDH method 

In order to confirm the most important factor that heavily affected the optimal discharge pressure, the GMDH 
method was introduced in the presented paper. Fig.4 gives the data handing model of the GMDH method. 

 

Fig.4. Data handing model of the GMDH method 
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3.2. Samples 

The original data were obtained from three-separated CO2 heat pump. Meanwhile, the heat pumps were all 
equipped with the transient pressure control based on the comparison of the system COP. As for the dynamic 
pressure control heat pump system, it needs a long time to get the stable condition, and all the data used for the data 
handing were selected from the stable condition. The data was collected every 5 minutes but only recorded the 
stable one. After a long practical operation, 8418 groups of the data were obtained, which were the original data.  

3.3. Mathematic model of GMDH method 

The Kolmogorov-Gabor Polynomial is used as the reference function. 
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The intermediate model is established based on the training sample, and then the parameters are estimated. The 
outside criterion is depicted in the following. 
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The transfer function is: 
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Fig. 5.  (a) Probability of evaporative temperature; (b) Probability of ambient temperature; (c) evaporator outlet temperature; (d) Probability of 
gas cooler outlet temperature; (e) Probability of water outlet temperature; (f) Probability of water inlet temperature; (g) Probability of discharge 

temperature;(h) Probability of suction temperature; (i) Probability of suction pressure 
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3.4. Relevance of the variable with the optimal discharge pressure 

The number of training sample increased from 2 to 8148, and the maximum random number of the random 
permutation for the training sample are 50. Here, the total number of the feature extraction were 407,350. The 
probability of the variable reflected the importance of the parameters. Fig.5 gives probabilities of selected variables. 
The discharge temperature, the suction temperature and pressure sometimes directly affected the discharge pressure, 
so they were not the appropriate variable due to none independence. Probabilities of the evaporative temperature are 
always higher than 10%, and the values are relative stable. It could be considered as the high relevance with the 
optimal discharge pressure. According to the similar principle, the four most relevant characteristic variables were 
the ambient temperature, the evaporative temperature, the gas cooler and water outlet temperature. 

4. Transcritical CO2 heat pump and its system performance 

4.1. Model of neural network 

There are six main type neural network. As the most mature technology and widely application neural network, 
the BP neural network is introduced in the present paper for the prediction of the optimal discharge pressure. Fig.6 
shows the typical topological structure of the BP neural network. The input layer of the network is the variable of 
the heat pump. The output layer is the predicted optimal pressure. The transfer function is listed as below. 
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where w is the weight value, and the a is the threshold value.  
Learning rules of the BP network is the changing of the weight value, and the supervised learning type is used.  
The input of the node in the hidden layer is calculated as follows. 
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The output of the node in the hidden layer is listed as below. 

1
( ) ( )

M

i i ij j i
j

y net x   


    (8) 

 

Fig.6. Prediction model of the optimal discharge pressure with PSO-BP method 
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The output of the node in the output layer is: 
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    The error transferred from the output to the input, and the weight and threshold value were corrected every time 
due to the gradient descent method. The transfer function of the error is: 
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    In the BP neural network, the weight value was corrected during the error transfer time after time, so it had the 
strong ability of the parallel computing. However, it still had some disadvantages, including the deficiency of the 
saturation resistance, the low convergence efficiency and the long computing period. Therefore, the additional 
method was required to avoid the local optimum value efficiently in the prediction model.  

To avoid the local optimization value and improve the prediction accuracy, different algorithms were combined 
with BP neural network for the optimization. Two different method, including GA-BP (Genetic Algorithms) and 
PSO-BP (Particle Swarm Optimization) were both introduced. GA-BP network utilized genetic algorithms to 
improve the BP neural network. In the PSO-BP network, the Particle Swarm Optimization was used for the 
optimization of the weight and threshold value. All the weight and threshold value were reserved in the particle. 
With the fitness calculation, the optimal value was obtained from the iterative calculations. There were four main 
steps in the PSO-BP network, including population initialization, particle fitness, particle optimization and BP 
network training. 

4.2. Prediction performance of different type network 

To compare the prediction performance of the three-type network, the regression analysis was introduced here, 
which could be used to analyze the relevance of different variables. The regression analysis was the prediction 
model in the Big Data Analysis, and the linear coefficient was often applied for the accuracy evaluation. The TR and 
V linear regression coefficient were the coefficient of predicted and expected value in the network-training, 
network-validation sample, network-testing and whole network samples. The value of MSE was the maximum 
iterations, and the higher value resulted in the more accurate prediction because of the larger iterations. As shown in 
Fig. 7, almost all the linear regression coefficient of the PSO-BP network were the largest. The PSO-BP network 
also had the largest iterations. 

 

 

Fig.7.  The prediction performance of the three-type neural network Fig.8.  The prediction error of the three-type neural network 

Fig. 8 illustrates the prediction error of the three-type network. Although there was no huge error difference 
among the three-type neural network, the error of the PSO-BP prediction model was the least one. The average 
prediction error was about 1.6%. Therefore, the PSO-BP neural network was selected in the present paper for the 
optimal discharge pressure prediction. 

TR linear regression coefficient  
V linear regression coefficient  
TE linear regression coefficient 
A linear regression coefficient 
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5. Transcritical CO2 heat pump and its system performance 

 

Fig.9 The optimal discharge pressure prediction of the current correlations  

 

Fig. 10. The prediction of PSO-BP neural network 

Table 1. Current empirical correlations of optimal discharge pressure  
 Prediction correlations Application range 
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For the better operation performance of the transcritical CO2 heat pump, different empirical correlations had been 
proposed by different researchers, which are shown in table 1. However, the correlations had different application 
range. Fig.9 gives the prediction error of different correlations that satisfied the application range in the sample. The 
solid black line is the optimal discharge pressure that from the experimental sample. Although some of the points 
have good prediction performance, there are still a large number of the data deviating far from the optimal value. 
Current predictions failed to predict the optimal discharge pressure. 

However, the PSO-BP prediction model always shows the good prediction performance, as depicted in Fig.10. 
The mathematic model of the CO2 heat pump was not enough to evaluate the optimal rejection pressure, and the 
coupled factor mainly partly affect the results. Only one or two variables cannot be well used to predict the optimal 
discharge pressure. The network that was developed in the presented paper can be used for the real-time control 
during the CO2 heat pump practical operation. 

6. Conclusion 

In this paper, a novel model based on the statistical method was introduced for the application of the real-time 
control of the optimal discharge pressure in a transcritical CO2 heat pump. The original data were recorded from 
three heat pumps from the engineering operation case, and the group data handing method was utilized to 
distinguish the relevance between the parameters and the optimal discharge pressure. Four variables, including the 
ambient temperature, evaporative temperature, gas cooler and water outlet temperature, were selected as the input 
layer for the prediction of neural work. After comparison of the BP network, GA-BP and PSO-BP network, the 
PSO-BP neural network was finally chosen to predict the optimal discharge pressure due to the highest accuracy. 
Results showed that the prediction values were well agreement with the experimental ones, while the current 
empirical correlations often failed to evaluate the optimal rejection pressure. 
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