Enhancing Network Embedding with Implicit
Clustering

Abstract. Network embedding aims at learning the low dimensional
representation of nodes. These representations can be widely used for
network mining tasks, such as link prediction, anomaly detection, and
classification. Recently, a great deal of meaningful research work has
been carried out on this emerging network analysis paradigm. The real-
world network contains different size clusters because of the edges with
different relationship types. These clusters also reflect some features of
nodes, which can contribute to the optimization of the feature represen-
tation of nodes. However, existing network embedding methods do not
distinguish these relationship types. In this paper, we propose an un-
supervised network representation learning model that can encode edge
relationship information. Firstly, an objective function is defined, which
can learn the edge vectors by implicit clustering. Then, a biased random
walk is designed to generate a series of node sequences, which are put into
Skip-Gram to learn the low dimensional node representations. Extensive
experiments are conducted on several network datasets. Compared with
the state-of-art baselines, the proposed method is able to achieve favor-
able and stable results in multi-label classification and link prediction
tasks.

Keywords: Network embedding - Feature learning - Edge representa-
tion - Network mining.

1 Introduction

Social networks, paper citation networks, gene regulatory networks and oth-
er large-scale networks have penetrated into all aspects of our real life. These
networks usually have complex structure and large scale. Moreover, the high
dimensional and sparse characteristics of networks have brought unprecedent-
ed challenges to existing network mining technologies. To solve these problems,
network embedding is designed to learn the low dimensional representation of
nodes, while preserving the structure and inherent characteristics of the net-
work. It can be effectively used by vector-based machine learning models for
mining tasks, including node classification, personalized recommendation, and
link prediction, etc. [2,13,17]

Following the initial ideas in network embedding [17,22], recent techniques
such as DeepWalk [17] and node2vec [13] learn node representation using ran-
dom walks sampled in the network. Thereafter, Cao et al. [5] developed a GraRep
model, which integrates the global structure information of the network into the
learning process. They adopt the idea of matrix decomposition, achieve the di-
mensionality reduction by decomposing the relationship matrix, and thus obtain

the network representation of nodes. Tang et al. [19] proposed a large-scale in-
formation network embedding method called LINE that preserves both the first-
order and second-order proximity. Wang et al. [20] designed a Structural Deep
Network Embedding (SDNE) model, which maintains the proximity between
2-hop neighbors through deep automatic encoders. Recently, Ribeiro et al. [6]
developed a novel and flexible model, called Struc2vec, which uses hierarchical
structure to measure the similarity of nodes at different scales, and constructs a
multi-layer network to encode the similarity of nodes and generate the structure
context for nodes.

However, most of the aforementioned methods mainly focus on the existence
of edges between nodes and ignore the differences between edges. A node may be
connected with other nodes for different relationship types. The edges with the
same relationship types can form a cluster. These clusters hide abundant infor-
mation. For example, the similarity between the inner vertices within the same
cluster is relatively higher than that within the different clusters. The clusters
reflect auxiliary information for network representation learning, and contribute
to the generation of more accurate node vectors. In this paper, we propose an
unsupervised model for network representation learning, which can strengthen
the use of the first-order proximity of network structure and improve accuracy
of preserving two-order proximity. Our main contributions can be summarized
as follows:

— We propose an unsupervised model for network representation learning,
called NEWEE, which can utilize the information of node neighbors as well
as the information of the relationship types between nodes.

— We propose a new way to distinguish the relationship types for edges, which
can learn similar vectors from similar relationship types without labeling
data, and only use the structure information of the network itself.

— Extensive experiments on several datasets demonstrate that our proposed
method produces significantly increased performance over the current state-
of-the-art network embedding methods in most cases.

The rest of this paper is organized as follows; Section 2, briefly outlines a
list of related works and our motivation. Detailed steps of the proposed method
are presented in Section 3. Section 4, presents the experiment results, and com-
parison with completing algorithms. Finally, this paper is concluded in Section
5.

2 Related Work

Traditional network representation learning methods include network represen-
tation learning based on spectral method, such as locally linear embedding
(LLE) [18] and laplacian eigenmaps based on manifold assumption [3]. In ad-
dition, there is optimization based representation learning for networks, a low-
dimensional representation of network can be grasped by optimizing an objec-
tive function. Representative algorithms include mapping to homogeneous model

Enhancing Network Embedding with Implicit Clustering 3

(MTH) [9], content diffusion kernel (CDK) [4], and content-based source diffu-
sion kernel (CSDK) [4]. Some scholars improve the description of node content
by introducing network information based on subject probability model. Rep-
resentative methods include Link-PLSA-LDA [15], relational topic model (RT-
M) [23] and probabilistic latent document network embedding (PLANE) [10].
These methods cannot be applied to generalized node feature representation.
Besides, most of above-mentioned methods are expensive in calculation and non-
expandable for large networks.

Nowadays, representation learning methods are widely applied in the field of
natural language processing (NLP), among which, a representative one is word
embed-ding [14]. The researchers believe that words with similar contexts should
also have similar semantics. The word vectors obtained through unsupervised
learning method have achieved excellent performance in many tasks.

Inspired by the above method, the researchers began to apply word embed-
ding into feature learning of network nodes [7,8]. Perozzi [17] discovered that the
number of words appearing in text corpus and the number of visits for nodes by
random walk from network obey exponential distribution. Therefore, Perozzi [17]
considered that the Skip-Gram model could be transplanted to representation
learning of network as well, and DeepWalk model was propsed [17]. The simi-
lar method is Node2vec [1], a process of adjusting random walk by introducing
depth first and breadth first strategies based on DeepWalk. Struc2vec [6], an-
other type of node embedding strategy, is based on random walk, which finds
similar embedding on nodes that are structurally similar. Wang et al. [21] de-
veloped an innovative network representation learning framework, called Graph-
GAN, which unifies generative models and discriminative models. The LINE [19]
method combined first-order proximity with second-order proximity, which was
as the final representation of nodes. The definition of first-order proximity and
second-order proximity as follows:

Definition 1 (first-order proximity) Given a network G= (E, V), for any
two nodes v; and v;. If there is an edge between two nodes, i.e. e;; € E, Then
there is a first-order prozimity between v; and vj.

Definition 2 (second-order proximity) Given a network G= (E, V), for
any two nodes v; and v;. If there is a common neighbor between two nodes, i.e.
there is a node vy. e, € E, e;, € E, Then there is a second-order proximity
between v; and v;.

Although these methods are fast and effective, all existing methods mainly
consider the existence of a link between nodes instead of the difference between
these links. Therefore, we propose a new way to distinguish these relationship
types, which can encode the edges to update network by implicit clustering, and
without labeling data. Then a biased random walk from the updated network
can generate more accurate node sequences.

3 The Proposed Model

The problem in this paper is how to construct a suitable model for network
representation learning, which can map the networks data to a low-dimensional
vector space. Each low-dimensional vector represents one node, and the relation-
ships between these vectors reflect the first-order and the second-order proximity
between nodes.

3.1 Framework

In this section, we describe the main steps of NEWEE model. The flow-graph
of the proposed model is shown in Fig. 1. The NEWEE model is divided into
three phases, which are described in the following procedure:

1. The edge sampling is used to optimize an objective function, and to learn a
low-dimensional representation for each edge in the network. If the relation-
ship type of two edges is similar, their vectors are similar as well;

2. By learning the edge vectors from the first phase, a biased random walk is
adopted, which can increase the similarity of the two edge vectors before and
after walking;

3. The node sequences are obtained from the second phase as the input of Skip-
Gram. The original Skip-Gram model only indirectly preserves part of the
first-order proximity. Therefore, the improvement of the original Skip-Gram
model is made to enhance the similarity between directly connected nodes.

@
© 6 6 &
® & 6
® ® G O

|

Input I Output
Matrix Matrix

® @

@ & >
[
@ @]

Hidden
Representation

@
©

[
@@

Projection Sampled
Laver Softmax
Y Classifier
(a) Encode edge (b) Biased random walk generation (¢) Embedding with improved Skip-Gram

Fig. 1. Overview of NEWEE model: (a) Encode edge: Reconstruct the network and
learn a low-dimensional representation for each edge in network. If the relationship
type of two edges is similar, their vectors are similar as well; (b) The node sequences
generated by biased random walk from the network; (¢) Embedding with improved
Skip-Gram.

Enhancing Network Embedding with Implicit Clustering 5

3.2 Encode Edge

The purpose for encoding edges is to learn a low-dimensional representation for
each edge of the network. If the relationship types between two edges are similar,
their vectors are also similar. We have noticed that a node can be clustered
with other nodes due to different relationship types, so the node neighbors can
be divided into different neighbor clusters, and the relationship types among
different neighbor clusters are different. That means we only need to train one
model, which ensures the similarity of the inner edges of the same neighbor
clusters, is higher than that of the outer edges of the clusters. Here, we first
introduce the concept of self-centered network.

Definition 3 (self-centered network) Given a network G = (E, V). For
any node v; in G, its self-centered network is G = (E, I/) The node set V
includes the node v; and its neighbors, and E represents the set of edges between
all nodes in V.

Each node has its own self-centered network. Fig. 2 (left) shows the self-
centered networks of node a. The neighbors of node a are divided into two
neighbor clusters of C; and C;, b and ¢ belong to C;. We have also noticed
that most of the edges in (] also exist in the self-centered networks of b and
¢, as shown in Fig. 2 (middle and right). In general, the closer the cluster is,
the more edges exist simultaneously in the self-centered networks of the multiple
nodes within the cluster; conversely, if multiple edges exist simultaneously in the
self-centered networks of multiple nodes, the multiple edges should belong to the
same cluster. Thus, we cannot only avoid explicitly calling clustering algorithm
to cluster the node neighbors, but also use the nature of the network itself to
implicit clustering.

Fig. 2. The self-centered networks of nodes a (left), b (middle) and ¢ (right).

In order to make the similarity of edge vectors of the same self-centered
networks higher than that of the other self-centered networks, the objective
function is defined as follows:

max Z Z log P (vle) (1)
veV’ e€E’

Where P(v|e) is the probability that the network is the self-centered network
of node v when the edge is e. To achieve the purpose of making the edge vectors

of the same self-centered networks similar, we regard it as a binary classification
problem, and use the logical regression as the classification method to reconstruct
the probability function. The negative sampling technique [16] is used to speed
up the training. For Yu € V, we first define the following indication function:

I”(u):{é:Z;Z 2)

For a given node v, the set of negative sampling is NST'(v). The probability
function (1) is reconstructed by using negative sampling technique as follows:

P (vle) = Hue{v}UNSTC(v)P(u|e)
Jo(eTow), IM(u)=1 (3)
P (ule) = { 1 E o (e)TO“) , IV (u) =0

Where o is the sigmoid function. The parameter 6* is the vector of node
u. e is the vector of edge e, and is the final output. It is obtained by bitwise
operations of the vectors of two ends of edge. In order to adapt to both the
directed networks and the undirected networks, the average operation is used.
That is, two ends of edge e are respectively v; and v;. The edge vector e; ; is
denoted as follows:

’U7;+Uj

: (4)

€ij =

The final objective function is:

max Z Z Z L (v,e,u)

veV' ¢; ;B ue{v}UNST 13 (v) (5)
L(v,e,u) =1"(u) -log [0 (egﬂ“)] +[1=1"(w)]-log [l -0 (e%@“)]

We use gradient descent method to optimize the formula (5). First, we con-
sider the gradient of L(v, e, u) on 6*.

OL (v eig,u) (g;ﬁ’j’u) = 8%2“ {1 (u) - log [0 (63:]0“)] +1=1I"(w)] log[l—0 (63:]0“)]}

=I"(u)[1-0 (ezjﬁu)] eij—[1—1°(u)]o (ezjﬁu) eij
= [IU (u) — 0 (eZTJH“)} ei,j
(6)
The update formula of 6" is:
0" =0"+n [I” (u) — o (eiT’jG“)] €ij (7)

Where 7 is the learning rate. Then, we consider the gradient of L(v, e, u)
about e; j. Because e; ; and 6% are symmetrical in L(v, e, u), it is easy to obtain
the following formula:

Enhancing Network Embedding with Implicit Clustering 7

oL (U7€i7j7u) v T pu u

e, =M@, ®)
According to the continuous derivation rule and the symmetry of v; and v;

in €ij-

OL (v,e;5,u) 1

o = 5 1MW) = o (el;6)] 6" 9)
The update formula of v; is:
v = v; + g 3 (1% (u) — o (F,0")] 6 (10)

we{v}UN ST 3 (v)

The update formula of v; is same to v;. If inputting the self-centered networks
of multiple nodes, the following situations will occur:

— The similarity between the inner edges within the same self-centered net-
work will be higher than that within the different clusters. For example,
when inputting the self-centered networks of the nodes a, b, ¢, and the edges
similarity in clusters C; and C5 will be constantly strengthened;

— The similarity between edges within the different self-centered networks will
be weaken. For example, when inputting the self-centered networks of the
nodes a, b, ¢, and the similarity between edges in clusters C; and Cy con-
stantly weaken.

3.3 Learning node features

This section mainly describes how to use the edge vectors obtained in the first
phase to train nodes. Like the article [1,17], which first obtain a series of node
sequences by random walk from the network, but we adopt a biased random walk.
In particular, by learning the edge vectors from the first stage, the similarity of
the two edge before and after walking can be increased, so that the preservation
accuracy of the second-order proximity of the network structure can be improved.
Then, the node sequences are as the input of Skip-Gram model.

Biased random walk. After the first phase, we get a network with edge
vectors, which preserves the relationship types information. Then, a series of
node sequences are obtained by a biased random walk from the network. If the
started node is vy, the next walk node is randomly selected from its neighbors
as v1. If the current walk node is v, (k > 1), the selection of the next walk node
vi+1 follows the following probability distribution:
w, eps €EF

11
0, otherwise (11)

P (vgy1 = zlog = v, 051 = 1) = {

Where 7 is a normalization constant. 7(¢, v,) is a transition probability of
walking from node ¢ to node v and then walking from node v to node z:

M if =1
7 (t,v,x) = ¢ similarity (et v, €vq), if c#tande,, € E (12)
0, otherwise

Where g is a return parameter and set to 0.5. In addition, we use cosine
similarity to calculate similarity.

o €Et,v* Eux
lecoll - [lev.q|l
Where ¢, and e, , are the vectors of edge e, and e, , respectively. They

are learned from the first phase. Each node in the network is taken as the walk

started node of the sequence in turn, and sampling the neighbors® according to
the selection probability distribution of neighbors. For each walk started node

19, we do biased random walk from the network to get a node sequence with

length I After repeating the above operation r times, a series of node sequences

are obtained.

Example. There are two node sequences of (v1, v2, v3, vy, v5) and (vy, v,
v, U1, Us) (Fig. 3). The nodes v3 and vg have similar contexts, so they can
learn the similar learning representations. In order to get the node sequences
of (1) and (2), the edge vector e should be similar to ey 3, and the edge
vector ey should be similar to e; 2. That is, the edge vector ez 3 should be
similar to ez ¢. If adopting the random walk method of DeepWalk, it may get
the node sequences of (2), (3), and (4). v3 and vg may have similar left and right
neighbors vy and v4, but due to the uncertain relationship type, it is difficult to
have the opportunity to reappear both v; and v5 in the nodes extending forward
and backward, which greatly reduce the context similarity of v3 and vg. On the
contrary, if the relationship types between nodes (v3 and vg) and their neighbors
(v2 and vy) are not similar, the conclusion of v3 similar to vg is not credible even
their contexts are similar.

According to the rule of NEWEE model for generating node sequences, any
two connected edges have a high similarity in the sequence. If the two node se-
quences are similar, the edges of the two sequences are also similar. Conversely,
If the nodes have different relationship types with their neighbors. As shown (2)
and (3), with the sequence extends the similarity of the learned vector represen-
tation of vg and vg is decreased.

Improved Skip-Gram. As mentioned above, we have enhanced the utiliza-
tion of first-order proximity. The objective function of Skip-Gram can achieve
similar vectors from nodes with similar contexts. We make the improvement to
it as follows:

(13)

similarity (et.v, €v.q)

[T pwid)— [[pene)] plwld) (14)

weC (w) e jEE weC(w)
Where p(v;, v;) is used to preserve first-order proximity, and defined as:

! The alias sampling algorithm [12] method can be used to complete the sampling
process in the time complexity of O(1).

Enhancing Network Embedding with Implicit Clustering 9

M)
®)
®)
)

Fig. 3. An example of the influence of relationship type information on the node se-
quences (same type lines mean similarity relationship type).

p(vi,v;) =0 (viij) (15)
Where v; and v; are vector representations of node v; and v; as context nodes

respectively. When the sequences are put into the improved Skip-Gram model,
the nodes with similar contexts will be similar.

3.4 Complexity Analysis

In the first phase, the time complexity of training the edge vectors is O(| V|-kndi),
where | V| is the number of nodes in the network, k is the average degree of nodes,
n is the number of negative sampling, d is the dimension of edge vectors, and 4
is the number of iterations. The parameters n, d and ¢ are constants. The time
complexity of the first phase is linear correlation with the number of nodes | V.

The second phase includes random walk and training a Skip-Gram model.
The time complexity of random walk is O(|V|-kdrl), where r is walk times, [is
the length of the node sequence, these parameters are all constants. The time
complexity of the random walk is also linear correlation with the number of
nodes | V. As for training a Skip-Gram model, its time complexity is O(swnds),
where s is the number of nodes in the input document and w is the size of the
context window. The time complexity of training a Skip-Gram model is linear
correlation with the number of nodes s. Therefore, the overall computational
time complexity of NEWEE is O(| V|-kndi+|V|-kdri4-swndi).

4 Experiments

In this section, we mainly consider the method of quantitative analysis for the
NEWEE model. In order to fully describe the effectiveness of our model, the
experiments are conducted on the two tasks of link prediction and multi-label
classification. For the sake of verifying the robustness and efficiency, the ex-
periments are performed from the perspectives of parameters sensitivity and
the running time for learning different size networks. Furthermore, we also ap-
ply the same networks in the competing algorithms, including DeepWalk [17],

10

LINE [19], AANE [8], Stru2vec [6], GraphSAGE [7] and Node2Vec [1]. The pa-
rameters of the six comparison algorithms are set in such a way that they either
take advantage of the default settings suggested by the authors or adjust them
experimentally to find the best Settings. After applying these network embed-
ding algorithms, the representation of low-dimensional nodes can be obtained
respectively.

4.1 Parameter Settings

The default settings of our parameters are mostly consistent with those in article
[20]: the negative sampling parameters ny and ny are both set to 5. The vector
dimensions d; and dy are both set to 128. The number of walks started per node
r is 10. Each sequence length [and the size of context window w is set to 80
and 10 respectively.

4.2 Evaluation Metrics

For link prediction, we use precision@k and Mean Average Precision (MAP) to
evaluate the performance. Their definitions are listed as follows:

preciston@k is a metric, which gives equal weight to the returned instance.
It is defined as follows:

|{€i,j|viavj € V,mde;v (ei,j) < k,Ai’j =].}|
k

Where E is a hidden edge set hidden in the network. e; ; represents an
edge between nodes v; and v;. index(¢; ;) is the ranked index of an edge ¢; ; in

PrecisionQk =

(16)

prediction results. AA; ; = 1 indicates an edge ¢;,; exists in E'.

Mean Average Precision (MAP) is a metric with good discrimination
and stability. Compared with Precision@k, MAP pays more attention to the
instances of ranked ahead in prediction results. It is defined as follows:

Zill PrecisionQi - /\; Z?:l AP (5)
‘E//| Q

Where Ai is an indicator function. When the i-th prediction result is hit,
the value A7 is 1, otherwise, it is zero. @) is query times.

For multi-label classification, we adopt Macro-F1 and Micro-F1 as evaluation
indexes. Specifically, Suppose C is a label set and A is a label. We denote TP (A),
FP(A) and FN(A) as the number of true positives, false positives and false
negatives in the instances which are predicted as A, respectively. F1(A) is the
F1-measure for the label A. Micro-F1 and Macro-F1 are defined as follows:

AP =

, MAP = (17)

Pr— 2aecTP(4) R S ace TP (4)
Sace TP T FPA) " T OPAFENA)
Macro—Fle Micro—Fl:ZPT'R

IC| ’ Pr+R

Enhancing Network Embedding with Implicit Clustering 11

4.3 Multi-label Classification

Multi-label classification is an important task to measure the effectiveness of
network representation. We select three social networks to perform multi-label
classification task in this experiment. The detailed statistics of datasets can be
summarized in Table 1. For Blogcatalog, we randomly select 10% to 90% of
nodes as training data. For Flickr and Youtube, we randomly select 1% to 10%
of nodes as training data. We run 5 times for each algorithm and recorded the
mean values in our results.

Table 1. Statistics of the dataset.

dataset | V] |E| |Average degree|Label number
Blogcatalog| 10,312 | 333,983 64.9 39
Flickr 80,513 5,899,882 146.7 195
Youtube |1,138,499|2,945,443 5.25 47

The results are shown in Fig. 4. For the Blogcatalog dataset, when the ratios
of training data are 10% and 20%, the Micro-F1 value of NEWEE is slightly
lower than the values of other models. For other ratios of training data, NEWEE
and Stru2vec perform well, especially when setting 50% of nodes as training data,
our model is 10% higher than Stru2vec on Macro-F1.

Node2Vec is superior to DeepWalk, but it has no advantage only on the
Youtube dataset. The Micro-F1 value of Node2Vec is lower than DeepWalk.
Because Youtube network is relatively sparse and the randomness of sampling
neighbor nodes is reduced, therefore, the walk strategy of Node2Vec cannot
bring obvious improvement. On the contrary, LINE performs well on the sparsest
Youtube network, but not on other datasets. Because LINE preserves the first-
order proximity well. Our model not only controls the way of walks, but also
strengthens the utilization of first-order proximity. Therefore, the performance
of NEWEE is superior to Node2Vec and LINE.

The performance of DeepWalk and GraphSAGE is the worst among the
network embedding methods. The reason is that they do not well capture the
network structure. Based on the above results, although the proposed method
does not perform best on different types of networks, overall, compared with the
other six algorithms, our model shows good performance.

4.4 Link Prediction

We conduct the link prediction task on arXiv GR-QC [11] to test our model. The
dataset arXiv GR-QC is a collaboration network of papers. It has 5,242 nodes
and 14,490 edges. Each node represents an author. If two authors cooperate to
write a paper, there is an undirected edge between the two nodes. We randomly
hide some edges from the network as test samples, and the remaining part of
the network as training samples. The nodes vectors are obtained after training,

12

[—=— Node2Vec—s— LINE—4— DeepWalk—v— AANE—+— Stru2vec—<— GraphS AGE—»— NEWEE|
45

=
S
o

Blogcatalog Flickr Youtube
v
. /7.//
20 — / o
— e
—~ 30 v / =
: T
2 T
T A o
b == =

15 5 25
10% 20% 30% 40% 50% 60% 70% 80% 2% 3% 4% % 6% 1% 8% 9% 2% 3% 4% 5% 6% 7% 8% 9%

[—=—Node2Vec—s— LINE—a— DeepWalk—v— AANE—+— Stru2vec—«— GraphSAGE—»— NEWEE‘
48 45 50

Blogcatalog Flickr Youtube

“ 2
4
10

35

Micro-F1

30

32

25 35
10% 20% 30% 40% 50% 60% 0% 80% 2% 3% 4% 5% 6% 7% 8% 9% 2% 3% 4% 5% 6% 7% 8% 9%

Percentage Percentage Percentage

Fig. 4. Macro-F1 scores and Micro-F1 scores on Blogcatalog, Flickr, and Youtube.

and the cosine similarity between the two nodes is calculated. We consider that
there may be an edge between the two nodes with larger similarity. We conduct
two experiments: The first evaluates the performance; the second evaluates the
performance impact of different sparsity of networks on link prediction.

Table 2. precision@k values of arXiv GR-QC on link prediction task.

Method |P@10|P@100|P@200|P@300|PQ@500|PQ@800|PQ@1000
Node2vec | 0.51 | 0.42 | 0.36 | 0.31 0.26 | 0.25 0.24
LINE 043 | 0.22 | 0.17 | 0.15 | 0.19 | 0.21 0.21
DeepWalk | 0.42 | 0.27 | 0.31 | 0.31 0.26 | 0.24 0.25
AANE 0.65| 048 | 031 | 0.37 | 0.31 0.27 0.30
Stru2vec | 0.61 | 0.41 0.34 | 0.36 | 0.35 | 0.31 0.29
GraphSAGE| 0.39 | 0.35 | 0.28 | 0.20 | 0.21 0.29 0.23
NEWEE |0.71| 045 | 0.35 | 0.40 | 0.38 | 0.34 | 0.31

For the first experiment, we extract 15% of edges from the network, and use
Precision@k as evaluation criterion. The value k increased from 2 to 1,000. The
results are shown in Table 2. NEWEE is slightly better than other models in
most cases. For the second experiment, we change the ratio of edges extracted
from the network and use MAP as evaluation criterion. The experimental results
are shown in Fig. 5. The results show that NEWEE is always better than the
other six models. The performance of LINE and GraphSAGE is poor, because

Enhancing Network Embedding with Implicit Clustering 13

the LINE method relies more on first-order proximity. When the ratio of edges
extracted reaches 80%, the damage to first-order proximity is more serious, so
the effect of LINE has been greatly reduced. In addition, we find that with the
increase of the ratio of edges extracted from the network, the effect of the seven
models increases first and then decreases. This is because an increase in the ratio
of edges extracted means an increase in the set of test samples. Therefore, the
probability hitting the correct edge is decreased. On the other hand, as the ratio
of edges extracted increases, the less information is provided for training. When
the benefit of increasing the test samples can no longer offset the loss caused by
the reduction of training samples, the effect of model begins to decline.

0.10

0.08

0.06

MAP

—=—LINE
—e— DcepWalk
—4—Node2Vec
—v— NEWEE
—— GraphSAGE
—4— AANE

—— Stru2vec
0.00 - T T T T T T T
0.1 02 03 0.4 05 0.6 0.7 0.8

0.04 4

0.02 o

Ratio of removed cdges

Fig. 5. Influence of ratio of removed links.

4.5 Parameter Sensitivity

In this section, the sensitivity of our model to parameters is tested. In addition to
the parameters currently being tested, other parameters keep the default value.
Multi-label classification task on Blogcatalog is performed to show the effect.
Firstly, the effect of the edge vector dimension and the node vector dimension
on NEWEE model are evaluated respectively. The results are shown in Fig. 6
((a) and (b)). Along with the increase of dimension, the performance of the
model is slightly improved since the larger dimension can store more information.
Especially for the edge vectors, they contain more information than node vectors.
Therefore, the influence of edge vector dimension on NEWEE model is slightly
more obvious than that of node vector dimension. In addition, the effect of
random walk parameters (walk times r and walk length [) on the model is tested.
The results are shown in Fig. 6 ((c) and (d)). With the increase of r and [value,
the performance of the model is improved rapidly and then became relatively
stable. The two parameters can also improve the performance of NEWEE model
due to that the random walk can traverse more paths from the network to

14

provide more useful information. However, when the two values increase to a
certain value, the provision of information becomes redundant.

44 34

33

324

LT.* 314
2
S 301
=
.) 294 . .
—s— Edge vector dimension —s— Edge vector dimension
394 —e— Node vector dimension 28 —e— Node vector dimension
38 : T T T T 27 r T T T T
0 50 100 150 200 250 0 50 100 150 200 250
(a) Vector dimension (b) Vector dimension

36 44
344
42

& 32 (2
=} o
3 304 S 40
< =
= =
28 38
—=— Random walk times —=— Random walk times
26
—e— Random walk length 364 —— Random walk length
2445 : : r T : r r . T ; ; ; T ; T
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

(©) (d)

Fig. 6. Effect of different parameters on performance of NEWEE model.

4.6 Scalability

This section mainly analyzes the test time of the NEWEE model on different
scale networks. We use the Python package NetworkX? to generate Erdos-Renyi
random (ER) networks as the original data of the model. The number of nodes
of the networks are set from 100 to 1,000,000, and the node degree is set to 10.

Fig. 7 shows the run time of each phase of NEWEE model. It can be seen
that the time consumption of NEWEE model has a linear correlation with the
number of nodes. Among all the phases, the longest time-consuming part is the
random walk of the second phase. This is principally because the NEWEE mod-
el needs to calculate the transition probability matrix before random walking,
which involves cosine similarity calculation, and is a relatively time-consuming
operation. For training the edge vectors in the first stage and training the node
vectors (Skip-gram) in the second phase, the model uses negative sampling and
asynchronous random gradient descent method to improve efficiency respective-
ly. Therefore, these two processes take very little time, especially for the first

2 NetworkX is a Python package for the creation, manipulation, and study of the
structure, dy-namics, and functions of complex networks, and the package can be
found at https://networkx.github.io/documentation/stable/

Enhancing Network Embedding with Implicit Clustering 15

—a— The [irst phase

—=e— The second phase

—4— The second phase: Random walk
—w— The second phase: Skip-gram

Log of training time (secs)

Log of number of nodes

Fig. 7. NEWEE: time vs. number of nodes.

phase, the training speed is very fast. To sum up, the NEWEE model can be
applied to large scale real-world networks.

5 Conclusion

This paper presents an unsupervised network representation learning model,
called NEWEE, which can not only preserve the information of neighbor n-
odes, but also preserve the information of the relationship types between nodes
and their neighbors. By performing multi-label classification and link prediction
tasks on several real-world networks, our model can achieve excellent perfor-
mance. Moreover, we provide a new way to distinguish relationship types with-
out labeling data, and it is scalable, and can be applied to large-scale real-world
networks.

References

1. Aditya Grover, J.L.: node2vec: Scalable feature learning for networks. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.
855-864 (2016)

2. Bandyopadhyay, S., Kara, H., Biswas, A., Murty, M.N.: Sac2vec: Information net-
work representation with structure and content (2018)

3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. Advances in Neural Information Processing Systems 14(6), 585-591
(2001)

4. Bourigault, S., Lagnier, C., Lamprier, S., Denoyer, L., Gallinari, P.: Learning social
network embeddings for predicting information diffusion pp. 393-402 (2014)

5. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global
structural information. In: ACM International on Conference on Information and
Knowledge Management. pp. 891-900 (2015)

6. Figueiredo, D.R., Ribeiro, L.F.R., Saverese, P.H.P.: struc2vec: Learning node rep-
resentations from structural identity pp. 385-394 (2017)

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs (2017)

Huang, X., Li, J., Hu, X.: Accelerated Attributed Network Embedding (2017)
Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes for
classifying in heterogeneous social networks. pp. 373-382 (2014)

Le, T.M.V., Lauw, H.W.: Probabilistic latent document network embedding pp.
270-279 (2014)

Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. Acm Transactions on Knowledge Discovery from Data 1(1),
2 (2007)

Li, A.Q., Ahmed, A., Ravi, S., Smola, A.J.: Reducing the sampling complexity of
topic models pp. 891-900 (2014)

Li, J.H., Wang, C.D., Huang, L., Huang, D., Lai, J.H., Chen, P.: Attributed network
embedding with micro-meso structure. In: International Conference on Database
Systems for Advanced Applications. pp. 20-36 (2018)

Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word rep-
resentations in vector space. arXiv: Computation and Language (2013)

Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models
for text and citations. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, Usa, August. pp. 542-550 (2008)
Neelakantan, A., Shankar, J., Passos, A., Mccallum, A.: Efficient non-parametric
estimation of multiple embeddings per word in vector space. Computer Science
(2015)

Perozzi, B., Alrfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 701-710 (2014)

Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. Science 290(5500), 2323-2326 (2000)

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding 2(2), 1067-1077 (2015)

Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: ACM SIGKD-
D International Conference on Knowledge Discovery and Data Mining. pp. 1225-
1234 (2016)

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., Guo, M.:
Graphgan: Graph representation learning with generative adversarial nets (2017)
Yoshua, B., Aaron, C., Pascal, V.: Representation learning: a review and new
perspectives. IEEE Transactions on Pattern Analysis & Machine Intelligence 35(8),
1798-1828 (2013)

Zhang, A., Zhu, J., Zhang, B.: Sparse Relational Topic Models for Document Net-
works (2013)

