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Abstract - Prior studies have proposed methods to recover 
multi-channel electroencephalography (EEG) signal 
ensembles from their partially sampled entries. These 
methods depend on spatial scenarios, yet few approaches 
aiming to a temporal reconstruction with lower loss. The goal 
of this study is to retrieve the temporal EEG signals 
independently which was overlooked in data pre-processing. 
We considered EEG signals are impinging on tensor-based 
approach, named nonlinear Canonical Polyadic 
Decomposition (CPD). In this study, we collected EEG 
signals during a resting-state task. Then, we defined that the 
source signals are original EEG signals and the generated 
tensor is perturbed by Gaussian noise with a signal-to-noise 
ratio of 0 dB. The sources are separated using a basic non-
negative CPD and the relative errors on the estimates of the 
factor matrices. Comparing the similarities between the 
source signals and their recovered versions, the results 
showed significantly high correlation over 95%. Our findings 
reveal the possibility of recoverable temporal signals in EEG 
applications. 
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I. INTRODUCTION 
 
Nowadays, considerable interest has been dedicated to the 
development of several wearable electroencephalography 
(EEG) systems with dry sensors that collect and record 
different vital signs for an extended period. The long-term 
recording EEG data depends on low-power communication 
and transmission protocols. However, the performance of 
wearable EEG systems is bottlenecked mainly by the limited 
lifespan of batteries. Therefore, exploring data compression 

techniques can reduce the number of the data transmitted 
from the EEG systems to the clouds. Compressive sensing 
(CS), a novel data sampling paradigm that merges the 
acquisition and the compression processes, provides the best 
trade-off between reconstruction quality and low-power 
consumption compared to conventional compression 
approaches [1]. The CS suggests reconstructing a signal from 
its partial observations if it enjoys a sparse representation in 
some transform domain and the observation operator satisfies 
some incoherence conditions. 
 
Recently, recovering a spectrally temporal and spatial signal 
becomes of great interest in signal processing community [2]-
[3]. The spectrally spatial signal can be sparse in the discrete 
Fourier transform domain if the frequencies are aligned well 
with the discrete frequencies. In this case, signals can be 
recovered from few measurements by enforcing the sparsity 
in the discrete Fourier domain [4]. However, frequency 
information in practical applications generally take fewer 
values compared to the temporal domain, and leads to the loss 
of sparsity and hence worsens the performance of compressed 
sensing. To address this problem, total variation or atomic 
norm [5] minimization methods were proposed to deal with 
signal recovery with continuous sinusoids or exponential 
signals [6], but these methods did not touch to temporal EEG 
signals. Therefore, the signal reconstruction from its temporal 
sampled paradigm is recognized as a challenge of EEG signal 
processing. 
 
 

II. MULTI-VIEW EEG SIGNALS 
 
Given a time series recorded physiological data, all data 
samples were carried by a vector. The power spectrum 
analysis of the time series has often been applied for 
investigating physiological (e.g., EEG) oscillations by 
computational intelligence models [7-14] and associated 
healthcare applications [15-20]. Recently, multiple electrodes 
are often used to collect EEG data in the experiment. Indeed, 
in EEG experiments, there are high-order modes than the two 
modes of time and space. For instance, analysis of EEG 
signals may compare responses recorded in different subject 
groups or event-related potentials (ERPs) as trials, which 
indicates the brain data collected by EEG techniques can be 
naturally fit into a multi-way array including multiple modes. 
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The multi-way array is a tensor, a new way to represent EEG 
signals. Tensor decomposition inherently exploits the 
interactions among multiple modes of the tensor. In an EEG 
experiment, potentially, there could be even seven modes 
including time, frequency, space, trial, condition, subject, and 
group. In the past ten years, there have been many reports 
about tensor decomposition for processing and analyzing 
EEG signals [21-22]. However, there is no study particularly 
for tensor decomposition of EEG signals retrieval yet. 
 

 
III. MULTIDIMENSIONAL 

HARMONIC RETRIEVAL 
 
The fundamental models for tensor decomposition are 
Canonical Polyadic Decomposition (CPD) [23], and we 
expanded this framework to Nonlinear Canonical Polyadic 
Decomposition (NCPD) to fit EEG signals [24]. 
 
A. Definition 
Given a third-order tensor, a two-component canonical 
polyadic decomposition (CPD) is shown below: 
 
X  = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2 + E  
≈ a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2 = X1 + X2.                     (1) 
 
After the two-component CPD is applied on the tensor, two 
temporal, two spectral, and two spatial components are 
extracted. The first temporal component a1, the first spectral 
component b1, and the first spatial component c1 are 
associated with one another, and their outer product produces 
rank-one tensor X1. The second components in the time, 
frequency, and space modes are associated with one another, 
and their outer product generates rank-one tensor X2. The 
sum of rank-one tensors X1 and X2 approximates original 
tensor X. Therefore, CPD is the sum of some rank-one tensors 
plus the error tensor E. 
 
Generally, for a given Nth-order tensor X ∈ RI1 ×I2 …×IN,  
the CPD is defined as  
 
X = ∑ ($

%&' u(1) ◦u(2) ◦···◦u(N))+E = Xˆ+E ≈ Xˆ .             (2)                 

 

where X =u(1) ◦u(2) ◦···◦u(N), r=1, 2, ···, R; Xˆapproximates 
tensor X, E ∈ RI1×I2×···×IN ; and ||u(n)|| = 1, for n=1, 2, ···, 
N−1.   

U(n) = u(n) , u(n) , · · ·, u(n) ∈ RIn ×R denotes a component 
matrix for mode n, and n=1, 2, ···, N.  

In the tensor-matrix product form, Eq. (2) transforms into 

X=I ×1 U
(1) ×2 U

(2) ×3 ···×N U(N) +E=Xˆ +E.               (3) 

where I is an identity tensor, which is a diagonal tensor with 
a diagonal entry of one. 
 
Here, we used Tensorlab [25] for signal processing and tensor 
compositions. The batch algorithms, nonlinear least squares 
(NLS) algorithm, called cpd_nls, compute the CPD of the 
tensor formed by the slices in the window. 
 
B. Data 
One man with age 25 participated in the resting-state 
experiment with recording EEG signals at O1, Oz, and O2 
channels, who were asked to read and sign an informed 
consent form before participating in the EEG experiment. 
This study was approved by the Institutional Review Board 
of the Veterans General Hospital, Taipei, Taiwan. 
 
Three sources impinge on EEG signals with azimuth angles 
of 10°, 30° and 70°, respectively, and with elevation angles 
of 20°, 30° and 40°, respectively. We observe 200-time 
samples, such that a tensor T∈ℂ10×10×15 is obtained 
with tijk the observed signal sampled at time instance k. Each 
source contributes a rank-1 term to the tensor. The vectors in 
the first and second mode are Vandermonde and the third 
mode contains the respective source signals multiplied by 
attenuation factors. Hence, the factor matrices in the first and 
second mode denoted as A and E, are Vandermonde matrices 
and the factor matrix in the third mode is the matrix 
containing the attenuated sources, denoted by S  is the EEG 
raw data (source signal). Additionally, we defined the 
generated tensor is perturbed by Gaussian noise with a signal-
to-noise ratio of 0 dB. 
 
C. Signal separation and direction-of-arrival estimation 
 
The sources are separated by means of a basic CPD, without 
using the Vandermonde structure. The relative errors on the 
estimates of the factor matrices can be calculated with errors 
between factor matrices in a CPD (ERRCPD), called cpderr 
in Tensorlab. 
 
The ERRCPD  computes the relative difference in Frobenius 
norm between the factor matrix Un and the estimated factor 
matrix Uestn as: 
 
ERRCPDn = Norm(Un- Uestn × P × Dn)/ Norm(Un)          (4) 
 
Where the matrices P and Dn are a permutation and scaling 
matrix such that the estimated factor matrix Uestn is optimally 
permuted and scaled to fit Un. 
 
The optimally permuted and scaled version is returned as 
fourth output argument. If size (Uestn,2) > size(Un,2), then P 
selects size (Un,2) rank-one terms of Uest that best match 
those in U. If size (Uestn,2) < size(Un,2), then P pads the rank-



one terms of Uest with rank-zero terms. Furthermore, it is 
important to note that the diagonal matrices Dn are not 
constrained to multiply to the identity matrix. In other words, 
ERRCPDn returns the relative error between Un and Uestn 
independently from the relative error between Um and Uestm 
where m ~= n. 
 

IV. RESULTS 
 
A. The source of EEG signals 
 
The source of EEG signals is shown in Fig. 1, which includes 
the O1, Oz and O2 channels corresponding to source 1, 2 and 
3. 

 
Figure 1 The three sources of EEG signals. 

 
B. Visualisation of the tensor 
 
Here, as shown in Fig. 2, we visualized the third-order tensor 
T by drawing its mode 1, 2, and 3 slices using sliders to define 
their respective indices. The index i, j, and k indicate the 
representation scales for the third-order tensor.  
 
 
 

 
 

Figure 2 Visualize a third-order tensor with slices. 
 
 
C. Observed signals with and without noise 
 
We generated tensor perturbed by Gaussian noise with a 
signal-to-noise ratio of 0 dB. As shown in Fig. 3, we gave 
three observed signals with and without noise, for source 
EEG signals. 

 
 

Fig. 3 Three observed signals with and without noise. 
 

D. Signal separation 
 
The relative errors on the estimates of the factor matrices can 
be calculated with ERRCPD, which are 0.0504, 0.0487 and 
0.1634, respectively. The ERRCPD also returns estimates of 
the permutation matrix and scaling matrices, which can be 
used to fix the indeterminacies. The source signals and their 
recovered versions are compared in Fig. 4. 
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Figure 4 The original and recovered source signals. 

Additionally, we have conducted the correlation between 
original and recovered source signals, and the outcome 
showed the over 95% correlation with the significance level 
(p < 0.05). 
 
E. Direction-of-arrival estimation and missing values due to 
broken sensors 
 
The direction-of-arrival angles can be determined using the 
shift-invariance property of the individual Vandermonde 
vectors. This gives relative errors for the azimuth angles of 
0.0303, 0.0069 and 0.0058, and for the elevation angles of 
0.0061, 0.0114 and 0.0098.  
 
Since Tensorlab is enable to process full, sparse and 
incomplete tensors, the missing entries can be indicated by 
empty values. We consider the equivalent of a deactivated 
sensor, a sensor that breaks halfway the experiment, and a 
sensor that starts to work halfway the experiment. The 
incomplete tensor is visualized in Fig 5. 

 
 

Figure 5 Visualization of the data tensor in the case of 
broken sensors. 

 
 

V. CONCLUSION 
 
This is the first study to retrieve the temporal EEG signals 
independently. In this study, we collected EEG signals during 
a resting-state task and investigated EEG signals impinging 
on tensor-based approach, named nonlinear CPD. The source 
signals are separated using a basic CPD and the relative errors 
on the estimates of the factor matrices of tensors. Comparing 
the similarities between the source signals and their recovered 
versions, the results showed significantly high correlation 
over 95%. Our findings reveal the possibility of recoverable 
temporal signals in EEG applications. 
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