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Abstract: This paper presents an autonomous underwater vehicle (AUV) path planning scenario as an 

optimization problem constrained by the combination of hard constraints and soft constraints. The path 

planner aims to generate the optimum path that safely guides an AUV through an ocean environment with 

priori known obstacles and non-uniform currents in both 2D and 3D. The path planner uses 2 variants of 

particle swarm optimization (PSO) algorithms, which are the selectively Differential Evolution (DE)-

hybridized Quantum PSO (SDEQPSO) and Adaptive PSO (SDEAPSO). The performances of the path 

planners using different constraints are analyzed in a series of extensive Monte Carlo simulations and 
ANOVA (analysis of variance) procedures based on their respective solution qualities, stabilities and 

computational efficiencies. Based on the simulation results, the SDEQPSO path planner with the setting of 

hard constraint for boundary condition and soft constraint for obstacle avoidance was found to be able to 

generate smooth and feasible AUV path with higher efficiency than other algorithms, as indicated by its 

relatively low computational requirement and excellent solution quality. 
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1. INTRODUCTION 

To date, numerous efforts have been made in the attempt to 

enable the operation of AUVs in more dynamic and 

constrained environments. The exploration of AUVs in highly 

dynamic regions is challenging and possesses several technical 
issues, particularly for the path planning of the AUVs. An 

optimum AUV path planner should be able to determine a path 

that safely guides the AUV from a starting position to a 

destination in an ocean environment, based on either a 

minimum time or energy cost criterion. 

Planning the path for the AUVs is essentially a multimodal and 

multi-objective optimization problem; numerous techniques 

have been proposed to solve this problem effectively and 

efficiently. Nonetheless, developing the algorithms for AUV 

path planning still faces several intrinsic difficulties, 

particularly in balancing the computational requirement and 
the performance of the path planner. Recently, Zeng et al. 

(2016), and Youakim and Ridao (2018) compared and 

classified various path planning techniques including Artificial 

Potential Field APF, search-based methods, sampling-based 

methods and optimization methods. APF method (Kruger et 

al., 2007) is fast and efficient, but very susceptible to local 

minima. Search heuristic-based planners such as Field D* 

(Ferguson and Stentz, 2006) and Fast Marching* FM* (Petres 

et al., 2007) are capable of generating optimal and robust path, 

but their computational efficiencies are limited to less complex 

and lower dimensional problems. Sampling-based methods 

like Rapidly-exploring Random Trees RRT (Rao and 

Williams, 2009) and its variants (Hernández et al., 2019) are 

effective for high-dimensional and highly time-constraint 

scenario, at the cost of the path optimality. Optimization 

methods such as the evolutionary algorithms (Alvarez et al., 
2004, Witt and Dunbabin, 2008) show excellent performance 

in terms of solution optimality. They are effective for high-

dimensional complex problems, but their practicality for 

implementation depends highly on the complexity of their 

mathematical functions. Among the existing evolutionary 

algorithms, Zeng et al. (2016) further pointed out that the 

particle swarm optimization (PSO)-based algorithms are 

remarkably robust and efficient for solving high-dimensional 

path planning problem. Lim et al. (2018) compared various 

PSO-based algorithms for AUV path optimization to identify 

their strengths and weaknesses. Inspired by these studies, Lim 
et al. (2019) proposed the selectively Differential Evolution 

(DE)-hybridized Quantum PSO (SDEQPSO) and Adaptive 

PSO (SDEAPSO), which were developed by hybridizing the 

PSO algorithm with DE operation based on a selective scheme.  

They were found to be capable of generating high quality path 

while maintaining a low computational requirement. 

Since the implementation of PSO-based algorithms for path 

optimization is highly dependent on the mathematical model, 

it is critical to develop the path planner by formulating the 

appropriate cost functions and types of constraint. To ensure a 

smooth, feasible and collision-free path for the AUV, there are 

many conflicting criteria that need to be considered to achieve 



 

 

     

 

an optimal control decision. These criteria involve trade-offs 

between the following objectives: 1) Determine the path with 

minimum travel time or energy cost; 2) Avoid collision and 

keep a safe distance with obstacles; 3) Ensure sufficient path 

control points are placed to generate the path; 4) Ensure the 

path satisfies the minimum turning radius and the pitch control 

limitation of the AUV. These criteria render the path planning 

scenario into a multi-objective optimization problem which 

can contain two classes of constraints: the hard constraints 

which must be satisfied by all solutions, and the soft 
constraints which may or may not be satisfied with different 

relative weightages (Jiang et al., 1995). The benefits of using 

a soft constraint over a hard one is that the soft constraint does 

not need to be satisfied in every iteration, instead, they can be 

optimized over the iterations; this reduces the solution 

generation time in every iteration during the optimization 

(Dariani et al., 2014). If a solution exceeds the soft constraints 

of the problem, penalty functions with predefined relative 

weightages can be applied to penalise the fitness of the 

solution. Choosing a right class of constraint for the path 

planning problem requires a balance between the 

computational efforts and the feasibilities of the solutions. 

This paper presents a comprehensive comparison between 

different classes of constraints used for defining the AUV path 

planning problem, which is solved by using the SDEAPSO and 

SDEQPSO algorithms. The effect of the types of constraints 

on the performance of these stochastic PSO-based algorithms 

will be thoroughly analysed. For each test case, the path 

planning scenario with multiple obstacles and non-uniform 

current field was simulated in both 2-dimensional (2D) domain 

and 3-dimensional (3D) domain. Extensive Monte Carlo 

simulations were conducted for all test cases and the 

simulation results were analysed based on their respective 

solution qualities and stabilities. 

The rest of this paper is arranged as follows. In Section 2, the 

overview of the algorithms used are provided. The formulation 

of the path planning problem is described in Section 3. Lastly, 

Section 4 presents the simulation setup, results and discussion. 

2. OVERVIEW OF ALGORITHMS 

2.1 APSO and QPSO Algorithms 

Particle swarm optimization (PSO) is a heuristic population-

based optimization algorithm introduced by Eberhart and 

Kennedy (1995). This algorithm consists of particles that 

move within a multidimensional search space to search for 

potential solutions, which are represented by the particles’ 

positions. The particles’ velocities are iteratively updated by 

the particle’s own experience (cognitive behaviour) and the 

entire swarm’s experience (social behaviour) to vary the 
particles’ positions. In a standard PSO that consists of N 

particles with D number of dimensions for solving a cost 

evaluation function f, the position vector of the ith particle at tth 

iteration is denoted as: 
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Based on its previous best position, pbest and global best 

position in the swarm, gbest, the velocity V and the position X 

of the ith particle at (t+1)th iteration are updated as follows: 
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In (2), r1 and r2 are random positive numbers that are less than 

1.0. C1 and C2 are the acceleration coefficients for cognitive 

and social components respectively, while w is the inertia 

weight for balancing the particle global exploration and local 

exploitation to improve the performance. Zhan et al. (2009) 

proposed Adaptive PSO (APSO), which uses an evolutionary 
factor f as an indicator representing the particles’ evolutionary 

state to control these equation coefficients. To determine the 

evolutionary factor f, the mean distance di of the ith particle to 

other particles is calculated using (6).  f  is then given by (7). 
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where dg is the mean distance of the global best particle, dmin 

and dmax are the minimum and maximum of mean distances 

respectively. f varies from 1 - 0 as the particles move from 

global exploration to local exploitation phase. w is calculated 

from f using (8), while C1 and C2 can be adapted using (9). 
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Inspired by quantum mechanics and PSO, Sun et al. (2004) 

proposed the QPSO algorithm, which assumes the particles to 

have quantum behaviour. QPSO algorithm is well known to be 

an improved version of PSO. In QPSO, the position of the ith 

particle is given as: 
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where u and  are random positive numbers that are smaller 

than 1.  is the contraction-expansion (CE) coefficient, and 

mbest is the mean best position which is defined as the average 

of personal best positions of all particles as shown in (11). 

When applying the QPSO algorithm,  is the most critical 

parameter for controlling the algorithm performance. A 

linearly decreasing  from max of 1.0 to min of 0.5 according 

to (12) is suggested for most applications (Sun et al., 2012). 

 ( )( )max max max mint t   = − −   (12) 



 

 

     

 

2.2 SDEAPSO and SDEQPSO Algorithms 

A selective hybridization of differential evolution (DE) 

operator with APSO and QPSO was proposed by Lim et al. 

(2019) to present the SDEAPSO and SDEQPSO algorithms, 

which were successfully applied to solve an unconstrained 

AUV path planning problem. Using the selective scheme, 
these proposed algorithms apply the DE operation to a selected 

number of particles only, instead of the entire swarm. The 

number of particles selected for DE operation, NS, is controlled 

by a selective factor S as shown in (13). S is recommended to 

be 0.3 for AUV path planning problem by Lim et al. (2019) as 

this setting helps to promote swarm diversity while retaining 

an adequate group of potentially optimum particles. 

  ,     0,1SN N S S=     (13) 

In SDEAPSO and SDEQPSO, the DE operation initiates by 
sorting all the particles in the entire swarm according to their 

personal best positions. Next, a number of selected particles 

with the best fitness undergo the mutation using (14) to 

generate the same number of mutated vectors U. 

       
1 2 3 4
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where i1, i2, i3 and i4 are randomly selected particle indices and 

i1  i2  i3  i4  gbest. The mutated vectors will then crossover 

with the personal best positions to generate the same number 

of trial vectors according to (15). 
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where rj is a random number ranging from 0 to 1.0, and r is a 

random integer ranging from 1 to D. The trial vectors are then 

subjected to a natural selection operator, in which the same 

number of particles with the worst fitness are replaced by the 

trial vectors. Since only the worst particles are replaced in this 

process, all potentially best solutions will never deteriorate. 

Furthermore, the computational requirement of the algorithms 
will not be significantly affected because the natural selection 

operator does not involve fitness comparison between the 

particles, which requires additional particle fitness evaluation 

in every iteration. The DE operation with natural selection 

increases the diversity and the evolutionary rate of the entire 

swarm by eliminating the least desirable solutions, hence 

leading to a faster and better global convergence. 

The implementation of SDEAPSO and SDEQPSO algorithms 

in AUV path planning can be conducted as described in the 

following pseudo code after selecting the appropriate 

parameters for the algorithm, i.e. the population size N, the 

number of particle dimensions D and the maximum number of 

iterations tmax. 

Step 1. Input the algorithm parameters and environmental 

information of the ocean field. 

Step 2. Initialize particles with random positions in (1) to 
represent an initial group of candidate paths. Set pbest 

to be the current particle positions. 

Step 3. While the stop criteria is not met,  

For t = 1, 2, …, tmax, 

SDEAPSO SDEQPSO 

Evaluate the cost 

function f (Xi 
t). 

Update pbest and 

gbest according to (4) 

and (5) respectively. 

Update w, C1 and C2 

according to (8) and 

(9) respectively. 

Compute mbest 

according to (11). 

Evaluate the cost 

function f (Xi 
t). 

Update pbest and 

gbest according to (4) 

and (5) respectively. 

Update  according to 

(12). 

For each particle i = 1, 2, …, N, 

SDEAPSO SDEQPSO 

Update particle 

velocity and position 
according to (2) and 

(3) respectively. 

Update particle 

position according to 

(10). 

End 

Sort all particles according to the fitness of their 

personal best positions. 

For k = 1, 2,…, NS
th best performing particle, 

Mutation: Generate mutated vector Uk
t using (14) 

Crossover: Generate trial vector Tk
t using (15). 

Natural selection: Replace kth worst performing 

particle with trial vector Tk
t. 

End 

End 

Step 4. Output gbest that holds the optimal path when the stop 

criteria is met or when tmax is reached. 

3. PROBLEM FORMULATION 

3.1 Path Formulation 

An AUV path planner is required to determine the optimal path 

among a group of potential paths for the AUV to travel toward 

a target location. Each potential path comprises a series of 

nodes from the start point to the endpoint. Optimizing the 

coordinates of path nodes will yield the optimal path. The start 

and end points are not involved in the optimization because all 

the potential paths share the same start and end locations. Each 

potential path solution for the problem is modelled as an 
individual particle in the swarm. The swarm population is 

denoted by a matrix X = [X1, X2,…, XN]T, where X is the 

particle’s position vector and N is the total number of particles. 

In this paper, the entries of the position vector represent the 

polar/spherical coordinates of the path nodes. Assuming a path 

consists of n+2 nodes including the start and end points, the 

number of nodes involved in the optimization is n. To record 

the polar coordinates of n nodes in 2D, the position vector of a 

particle has 2n dimensions, including n dimensions for radial 

coordinate r and n dimensions for azimuthal angular 

coordinate φ. For the spherical coordinates of n nodes in 3D, a 

particle has 3n dimensions, including an additional n 



 

 

     

 

dimensions for polar angular coordinate θ. The position vector 

of the ith particle at tth iteration for 3D can be given as follows: 

           
,1 ,2 , 1 , 2 ,3 1 ,3
, ,..., , ,..., ,t t t t t t t

i i i i n i n i n i n
X r r    

+ + −
 =
 

 (16) 

The polar coordinates of a path node in 2D can be converted 

to Cartesian coordinates using (17), while spherical 

coordinates in 3D can be converted using (18).  
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Based on the path nodes including the start and end points, B-
spline geometry is used to construct the AUV path. The path 

nodes act as the control points for the B-spline curve according 

to the curve function in (19), which gives output vector P(u) 

representing a B-spline curve with k+1 order in the form of 

discretised waypoints. Given the total number of control points 

is n+2, the total number of piecewise polynomials in B-spline 

is one less than the number of control points, which is n+1. 
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where xi are the control points, u is the non-decreasing knot 

sequence contained in a knot vector U = [u0, …, ui, …, un+k+2], 
and Bi,k (u) are the piecewise polynomial basis functions of k 

degree defined by Cox de Boor recursion (De Boor et al., 

1978) as follows. 
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3.2 Path Fitness Evaluation 

Suitable fitness evaluation function is required for PSO-based 

algorithms to measure the fitness of the particles accurately. 
Due to the high computational efficiency of PSO-based 

algorithms, fitness evaluation usually contribute to the 

majority of computational time (Sun et al., 2012). For path 

planning, which is a minimization problem, a lower 

cost/fitness indicates a better solution. In this paper, the main 

evaluation function is to measure the path fitness based on its 

time to travel on the path. A given path Xi can be represented 

in the form of discretised waypoints P = [pi,1, pi,2, … , pi,m ], 

where P is the output from B-spline function and m is the 

number of discretised waypoints. The travel time cost F1 of a 

path can be determined using (22). 
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where Vg is the resultant ground reference velocity of the 

AUV. The contribution of current on the AUV can be obtained 

by projecting the current velocity Vc in the direction of the 

water reference velocity Va. Thus, Vg is given as (23). 
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3.3 Boundaries and Constraints 

Two classes of constraints, namely hard constraint and soft 

constraint, are used in the AUV path planning problem in order 
to produce a smooth, feasible and collision-free path that 

satisfies the boundaries and the objectives, which include:  

• Obstacle avoidance: Avoid collision and keep a safe 

distance from obstacles. 

• Radial boundary: Ensure sufficient path nodes are placed.  

• Azimuthal boundary: Ensure the path satisfies the 

minimum turning radius. 

• Polar boundary: Ensure the path satisfies the pitch control 

limitation. 

Different combinations of hard and soft constraints are applied 

to achieve these objectives in this paper. The test cases 

investigated are summarised in Table 1. 

Table 1: Simulation test cases 

Objectives 
Test cases 

HBHO HBSO SBHO SBSO 

Radial, azimuthal & 

polar boundaries 
Hard Hard Soft Soft 

Obstacle avoidance Hard Soft Hard Soft 

The hard constraints must be satisfied by all feasible solutions; 

while the soft constraints of different relative weightage may 
or may not be satisfied by the solution. If the hard constraints 

are violated by a solution, the particular solution will be 

regenerated. Meanwhile, if the soft constraints are violated, a 

penalty function with predefined relative weightage will be 

applied to penalise the fitness of the particle. 

To achieve the obstacle avoidance, the path’s exposure to 

threats/obstacles is required to be measured regardless of the 

class of constraint used. All obstacles in the problem space are 

modelled as eclipses in 2D, and as ellipsoids in 3D. The threat 

exposure is evaluated based on the intersection between the 

path and the obstacles. Assuming an obstacle h in 3D problem 
space with centre Oc,h = (Ocx, Ocy, Ocz) and semi principal axes 

Or,h = (Orx, Ory, Orz), its parametric equation can be expressed 

in (24). The equation of a path segment that connects two 

consecutive waypoints pi, j = (x1, y1, z1) and pi, j+1 = (x2, y2, z2) 

can be written as (25). 
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Substituting (25) into (24) yields the following quadratic 

equations, which is expressed in term of s. 
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The intersection of the path with the obstacle can be evaluated 

by obtaining the discriminant D of (26) according to (30). 

 2 4D B AC= −   (30) 

A safe distance is added to the principal axes of all obstacle 

regions so that the AUV will keep a safe distance from the 

obstacles and collision will not occur when D = 0. If D > 0, the 

collision can be checked by determining (31).  

 ( )1 2,  2s s AB D= −    (31) 

If s1<0 and s2 >1, the path will not intersect with the obstacles, 

i.e. no collision, and hence the hard constraint is satisfied; 

otherwise, the path solution will be regenerated. For soft 

constraint, if the path intersect with the obstacles, the 

intersection points can be found by solving (26) with (31). The 

penalty for violating the soft constraint will be proportional to 

the length of segment containing within the obstacle region as 

shown in (32). When the soft constraint setting is used for 

obstacle avoidance, the global best solution of each iteration 

will still be hard-constrained (meaning the iteration will 
always continue until the global best solution is not penalised), 

in order to ensure the final solution is collision-free. 
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To ensure sufficient path nodes are placed to generate the path, 

each node is constrained to lie within a concentric annulus. The 

annuli are the regions bounded by every pair of adjacent 

concentric circles with predefined radii. To achieve this, the 

radial coordinates of the path nodes are constrained to a lower 

boundary Rmin and an upper boundary Rmax. 
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d d d target

R r r r

R r r r r

=   
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where rd is the distance between two concentric circles and 

rtarget is the radial coordinate of the target location. The number 

of path nodes, n is decided by rd as defined by (34). 

 target dr rn ceil=      (34) 

where ceil is the rounding function toward positive infinity. 

The hard constraint will be satisfied if the path solution falls 

between the boundaries Rmin and Rmax. If soft constraint is used, 

the following penalty function F3 will be applied. 
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In order to ensure the minimum turning radius and the pitch 

limitation are satisfied, the search domain of azimuthal angular 

coordinate and polar angular coordinate are also constrained 

within the boundaries φmax and θmax. The path solution will 

satisfy the hard constraints if |φi,j| < φmax and |θi,j| < θmax. For 

soft constraints, the penalty costs follow (36) and (37). 
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Using these optimization functions, the test cases in Table 1 

are combined with the QPSO, SDEAPSO and SDEQPSO 
algorithms to solve the path planning problem. The path 

solutions generated by the path planner will then be validated 

by setting as the reference trajectory for a dynamic model of 

REMUS 100, which is an under-actuated AUV with path 

following controller. Based on Fossen’s vectorial 

representation (Fossen, 1999) and SNAME (Society of Naval 

Architects and Marine Engineers) standard formulation, the 6 

DOF equations of motion for a typical AUV can be modelled 

as shown in (38) and (39). 
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where R (η2) and T (η2) are the rotation matrices between 

inertial and body-fixed reference frames for the translational 

velocities and angular velocities respectively. η in (38) 

represents the position η1 and the orientation η2 of the vehicle 

with respect to the inertial reference frame, while ν includes 
the translational velocities ν1 and the rotational velocities ν2 of 

the vehicle with respect to the body-fixed reference frame as 

described in the vectors in (40). 
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In (39), M and C(ν) describe the inertial and Coriolis matrices 

(including rigid body and added mass) respectively, while D(ν) 

is the hydrodynamics damping matrix, g(η) is the hydrostatics 

restoring forces, and τ describes the control forces from the 

actuators. This study uses the REMUS 100 model derived 

from equations (38) – (40) by Prestero (2001). The AUV is 

controlled with a line-of-sight (LOS) guidance controller to 

follow the trajectory generated by the path planner. The 
controller uses the lookahead-based steering law described by 

Breivik and Fossen (2009), which is deemed suitable because 

of its lower computational requirement and validity for all 

cross-track errors. The desired yaw angle (heading) ψd is given 

by the control law in (41). A similar control law is also used 

for pitch control of the vehicle. 
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where αk is the path-tangential angle, e is the cross-track error, 

and Kp and Ki are the proportional gain and the integral gain 

respectively. The integral action in (41) allows an under-

actuated vehicle, such as the REMUS 100, to follow a path 

regardless of ocean current and non-zero sideslip angles. 

4. SIMULATIONS 

4.1 Simulation Setup 

The AUV path planning was conducted in a 1000-run Monte 

Carlo simulation under 2D and 3D scenarios. The problem 

space was a current field that consists of 50×50 square grids 

for 2D, and 50×50×50 cube grids for 3D, with each side of the 

grid equivalent to 1 metre. Non-uniform ocean current and 

static obstacles of different sizes are present and priori known 

in the problem space. The AUV is required to travel with a pre-
set water reference velocity of 1.5m/s. The safe distance for 

obstacle avoidance is set to 1 metre. rd is set to 20 metres, while 

the angles ψmax and θmax are set to 60 and 15 respectively. 

The population size was 150 particles. The algorithm 

parameters were set to be the values suggested in Section 2.  

In addition to all the test cases described in Table 1, test cases 

with unconstrained path planning problem (uncon.) are also 

included for comparison purposes. It was discovered that the 

computational requirement of SDEAPSO path planner with 

hard-constrained obstacle avoidance is too high due to the 

nature of SDEAPSO’s position and velocity update equations. 

Unlike QPSO and SDEQPSO which use the mean best 

position in their update equations, SDEAPSO has a stronger 
cognitive component in its equation, making it impossible to 

satisfy the hard constraint in a single iteration within a 

reasonable time frame, if the constraint is violated initially. 

Thus, the HBHO and SBHO cases for SDEAPSO were 

excluded. 

4.2 Results and Discussion 

The performances of the path planners in different test cases 

are compared based on their solution qualities, stabilities and 

computational requirements; these properties can be evaluated 

by studying the fitness values of the solutions obtained and the 

computational time required to obtain the solutions. The 
fitness values are simply the time required for the AUV to 

reach the target by travelling on the path. Thus, a lower fitness 

value indicates a higher solution quality. To comprehensively 

compare the test cases and the significance of the differences 

between their performances, a multiple comparison procedure, 

ANOVA (analysis of variance), was used in this study with a 

level of significance of 0.05. This procedure uses a ‘stepdown’ 

approach, which considers that all but one of the comparisons 

are less different than the range; such an approach is best 

suitable for all pairwise comparisons when the confidence 

intervals are not needed and sample sizes are equal (Sun et al., 

2012). The ANOVA results of 2D and 3D scenarios are 
graphed in Fig. 1, Fig. 2, Fig. 3 and Fig. 4. The best performing 

results are in blue in the graphs, and those with statistically 

similar performance to the best performing one are coloured 

black. 

In 2D scenario, it can be seen that SDEQPSO’s HBHO case 

achieved the best (lowest) fitness value, and this is followed 

closely by QPSO’s HBHO case. Although the HBHO case for 

SDEAPSO is inadequate for comparison, the HBHO setting is 

observed to have the best performance in terms of fitness value 

compared to other settings. However, by comparing the 

computational time, it was found that the HBHO setting has 
the highest computational requirement, roughly 10 times of 

computational time compared to others in 2D. The second-best 

fitness value was achieved by SDEQPSO’s HBSO and SBHO 

cases. Despite similar performance, the SBHO case has much 

 
Fig. 1. ANOVA means of fitness values in 2D scenario 

 
Fig. 2. ANOVA means of computational time in 2D scenario 

 
Fig. 3. ANOVA means of fitness values in 3D scenario 

 
Fig. 4. ANOVA means of computational time in 3D scenario 



 

 

     

 

higher computational requirement in 2D. Based on this 

observation, it can be deduced that the hard constraint setting 

for obstacle avoidance is the main reason for the undesirable 

increase in computational requirement. When algorithm-wise 

comparison is made, it was found that the SDEQPSO has the 

best overall performance, although SDEAPSO has better 

performance in the unconstrained case and SBSO case. 
SDEAPSO was found to have lower performance whenever 

hard constraint is involved; this can be explained by its update 

equation which heavily relies on the cognitive component. 

Similar performance trends are observed in 3D scenario. The 

HBHO cases achieved the best fitness value but at the cost of 

much higher computational requirement. SDEQPSO’s HBSO 

case displays the second-best fitness value, while maintaining 

a relatively low computational requirement. SDEAPSO was 

again only able to outperform other algorithms when hard 

constraint is not involved. Hence, it can be concluded that the 

most suitable setting for AUV path planning is the HBSO 

setting (hard-constrained boundary conditions and soft-
constrained obstacle avoidance), which is able to achieve an 

excellent performance in terms of fitness value without high 

computational requirement. 

The 2D and 3D solutions generated by SDEQPSO with HBSO 

setting were validated by comparing against the simulated 

paths in Fig. 5 and Fig. 8. The AUV is required to travel from 

the starting point (green square) to the target (pink star) while 

keeping a safe distance from obstacles and trying to take 

advantage of the favourable current to assist the AUV motion. 

In 2D (Fig. 5), the blue-coloured zones indicate the favourable 
current while the red-coloured zones denote the less 

favourable current. Their respective relative errors in each of 

the x, y and z domains with respect to the total path length are 

graphed in Fig. 6 and Fig. 9. It can be observed that the 

simulated paths closely resemble the planned paths, with 

relative errors of well below 1% for both 2D and 3D scenarios. 

The feasibility of the path solutions is further checked by 

comparing against the minimum turning radius of REMUS 

100, which has a minimum turning radius of 8.1 metres in the 

worst case scenario (Eng et al., 2015). The curvature radius 

must be higher than the minimum turning radius to satisfy the 

AUV motion limitation, which can be shown in Fig. 7 and Fig. 
10 for the paths in 2D and 3D respectively. Therefore, the 

simulation results show that the path solutions generated by 

the proposed algorithm are smooth and feasible for the path 

planning application. 

 
Fig. 5. Validation of path planning solution in 2D scenario 

 
Fig. 6. Relative error of planned and simulated 2D path w.r.t. total path length 

 

Fig. 7. Curvature radius of 2D simulated path 

 
Fig. 8. Validation of path planning solution in 3D scenario 

 
Fig. 9. Relative error of planned and simulated 3D path w.r.t. total path length 

 

Fig. 10. Curvature radius of 3D simulated path 



 

 

     

 

CONCLUSIONS 

This paper evaluates the performance of an AUV path planner 

under different types of constraint settings. The SDEQPSO 

path planner with the setting of hard constraint for boundary 

condition and soft constraint for obstacle avoidance produced 

the best performance as shown by its high solution quality and 

computational efficiency. The path planners with hard 

constrained obstacle avoidance were found to have 

significantly higher computational requirement. Therefore, the 

soft constraint setting is recommended for obstacle avoidance 
of the path planner, with the safety and validity of the path 

guaranteed by having a hard constrained obstacle avoidance 

on the final solution of each iteration. The proposed path 

planner successfully generated a feasible and safe path for a 

REMUS 100 AUV, which was validated through the 

simulation of the AUV dynamic model. 

Although the simulation assumed a priori known environment 

to represent the minimum capability of path planner, this path 

planner can be adapted to the realistic operational condition in 

future work due to the demonstrably high computational 

efficiency of this stochastic algorithm, which is suitable for 
solving compute-intensive problems such as path re-planning 

in highly dynamic environment. The future extension of this 

work will be explored by developing a path re-planning 

algorithm for a priori unknown environment with dynamic 

obstacles and spatiotemporal ocean current. 
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