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Abstract. The RDF-style Knowledge Bases usually contain a certain
level of noises known as Semantic Web data quality issues. This paper
has introduced a new Semantic Web data quality issue called Incorrect
Class Assignment problem that shows the incorrect assignment between
instances in the instance-level and corresponding classes in an ontology.
We have proposed an approach called CAD (Class Assignment Detec-
tor) to find the correctness and incorrectness of relationships between
instances and classes by analyzing features of classes in an ontology. Ini-
tial experiments conducted on a dataset demonstrate the effectiveness of
CAD.
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1 Introduction

Recently, researchers are tackling with SW data quality issues for refining and re-
engineering RDF-style Knowledge Bases (KBs). In this paper, we have identified
a new SW data quality issue called Incorrect Class Assignment (ICA) problem
that shows incorrect assignment between instances in the instance-level and cor-
responding classes in ontology. The DBpedia ontology defines a Royal class with
two subclasses of BritishRoyalty and PolishKing for all royalties. There exist
some instances that are incorrectly assigned to unrelated classes in ontology. For
example, John I Albert, king of Poland, has been assigned to BritishRoyalty
class instead of PolishKing class defined in the DBpedia ontology. This example
can be described as an incorrect assignment issue between instance-level data
and corresponding classes in ontology. The research problem used in this paper
has been modelled in Fig. 1. We name all instances which have been correctly
assigned to corresponding classes in ontology as CA. The data quality issue can
be defined as the Incorrect Class Assignment problem (ICA) where at least one
instance has been incorrectly assigned to class A instead of class B. Under this
motivation, we proposed an approach called Class Assignment Detector (CAD)
to deal with ICA problem. The main contribution of this paper is threefold in-
cluding (I) identifying and defining a new SW data quality issue called Incorrect
Class Assignment problem (ICA), (II) proposing CAD approach to detect the
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correctness and incorrectness of relationships between instances and classes in
ontology by analyzing features of classes, and (III) conducting initial experiments
over DBpedia dataset 3.8 to show the effectiveness of CAD.
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Fig. 1. Modeling the ICA problem.

This paper is structured as follows. Section 2 reviews related work on SW
data quality issues. Sections 3 describes the CAD approach. Section 4 reveals
the experimental results. Section 5 explains the conclusion and future work.

2 Related work

There exist various forms of SW data quality issues such as missing type pre-
diction, incorrect or incomplete statements, invalid links to external resources,
missing link prediction, etc. Studies based on first issue aim to predict missing
rdf:type relation in the KBs [1][2]. Second issue refers to the incorrect or incom-
plete statements of SW data [3][4]. Consider an RDF triple (Rodrigo_Salinas,
birthPlace, Puebla_F.C.) shared by DBpedia. The DBpedia provides an invalid
object value that is the name of a stadium for Rodrigo Salinas instead of sharing
a city or a country name. Third common issue refers to the faulty and invalid
links to external RDF-style KBs [5]. Predicting Missing links (i.e. predicates)
is another frequent issue in the KBs. Consider Barack Obama as a subject and
Honolulu as an object of an RDF triple. Here the question is that how to learn
birthPlace relation by mining existing RDF data. A Path ranking Algorithm
proposed by [6][7] focused on this issue. To the best of our knowledge, the ICA
problem has not been explicitly addressed by the most of existing work.

3 The architecture of Class Assignment Detector

The CAD architecture contains two main modules including (1) Class features
extraction, and (2) Instance-Class relationship analysis. In Module 1, the CAD
extracts features of classes in ontology. The output of Module 1 has been used
in Module 2 to assess the correctness and incorrectness of relationships between
instances and classes in ontology.
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3.1 Module 1: Class features extraction

Generally, a class is a category of things having some common features that make
those things distinct from others. To detect the features of classes in our scenario,
the initial step is to analyze instance-level data to extract common features
among RDF triples. In the following, we first explain the idea behind mining
common features from RDF triples. Then, we describe how mining common
features of instance-level data leads CAD to extract features of classes.

Identifying common features from RDF triples. The assertion of an RDF
triple (i.e., subject, predicate, object) shows a meaningful relationship between
a subject and an object provided by a predicate. Considers RDF triples (John I
Albert, deathPlace, Poland) and (Casimir I1I, deathplace, Poland). The subjects
of these RDF triples, i.e., John I Albert and Casimir III, have a common feature,
i.e., (deathPlace Poland). To extract this behavior from RDF triples, we have
defined the concepts of Group Feature and Common Feature as follows.

Definition 1 (Group Feature). Given RDF triples, a Group Feature ¢gf; is a
2-tuple, i.e., gfi=(g:, fi). gi is a Group of subjects or objects, i.e., {s1, $2, ..., $n }
or {01,092, ...,0n}. fi is a Feature shared by g;. Corresponding with the content
in g;, f; contains a combination of predicate-object or predicate-subject, i.e., (p,
o) or (p, 8).

Definition 2 (Common Feature). Given a Group Feature gf;=(g;, fi), Fea-
ture f; is a Common Feature cf; for Group g;, if the number of instances in the
gi is greater than or equal to the Minimum Instance Number (MinIN).

Detecting features of classes. RDF-style KBs suffer from ICA problem since
publishing SW data is manually maintained by contributors. To this end, CAD
takes advantage from information theory [8] to analyze the level of uncertainty
from this situation. As explained, a Common Feature shows a common behavior
of instances (subjects or objects) in a Group. The information gain allows us
to measure which common features are more certain to be used as features of
classes in ontology. The following first introduces a measure based on entropy
that calculates the uncertainty associated with the whole random space. In the
SW, we have defined the entropy of a random space as follows.

Definition 3 (Random Space Entropy). Given an ontology, a Random Space
S is a space built up from instances of different classes in ontology. The entropy
of S can be calculated by Equation 1:

N
Entropy(S) = = _ plc;) logs p(ci) (1)
i=1
where N is the total number of classes in the ontology and p(c;) = ||II7;5«§-|| i

the probability of Class ¢; in the Random Space S. |Ins,| is the total number
of instances of Class ¢;. |[INS] is the total number of instances in the Random
Space S.
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In the information theory, more information can be obtained by a random
space with lower entropy, and vice versa. In our scenario, a Common Feature can
be shared by instances of different classes in ontology. Therefore, the information
gained from a Common Feature depends on the types of instances in its Group.
Few types can cause lower entropy and consequently more information gained
from the Common Feature. By relying on the fact, we have defined the concepts
of Common Feature Information and Common Feature Space as follows.

Definition 4 (Common Feature Information). Given a Random Space S and
a Common Feature cf;, the information gained from cf; is a normalized value
measured by Equation 2:

Ins.y,
Entropy(S) — ‘;;él‘ | Entropy(Secy,)

NormGuain(S,cf;) = Entropy(S) (2)
where Entropy(S)# 0 and 0< NormGain(S, cf;) <1.

Definition 5 (Common Feature Space). Given a Common Feature cf;, RDF
triples and its corresponding ontology, a Common Feature Space S.y, is a space
built up from instances that share the Common Feature cf;. The Entropy of
Common Feature Space S.¢, can be computed by Equation 3:

n
Entropy(Scfi) == Zp(ci-ch‘,) 10g2 p(ci-ch‘,) (3)
i=1
where n is the total number of classes in the Common Feature Space S.y, and
P(Cicp;) = % is the probability of class ¢; in the Common Feature Space
Sefi- [Inse, cf; | is the total number of instances of class ¢; that share cf;. |[Inscy, |
is the total number of instances that share cf;.
According to Equation 2, the more information gained by a Common Feature
indicates fewer types in the random space generated by the Common Feature.

rdfiype D rdfitype A rdf:type A rdfitype B rdfaype C rdf:type A rdfuype E- rdfiype A rdfiype A rdf:ype B rdftype A

Virtual Common Feature (cf}, cf;)

e

Fig. 2. An example of a Virtual Common Feature.

On the one side, a Common Feature can be shared by instances of differ-
ent classes. On the other side, instances of a class might share more than one
Common Feature. In this paper, we have evaluated the information gained from
combinations of common features. Consider Fig. 2 to explain the idea. Common
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Feature cf; is shared by instance ins; with rdf:type D, and inss, ins;, ins, with
rdf:type A, and ins; with rdf:type B. Common Feature cfs is also shared by inss,
ins;, ins, with rdf:type A, and insy with rdf:type C, and ins,, with rdf:type E.
The combination of (cf1,cf2) gains more information to compare with each cf;
and cfo. Because the Random Space of (cf1,cf2) contains lower entropy and fewer
types (i.e., types A and B) to compare with ¢f; and cfs that contain instances
with {rdf:type A, rdf:type B, rdf:type D} and {rdf:type A, rdf:type C, rdf:type E},
respectively. Based on this motivation, the concept of Virtual Common Feature
is defined as follows.

Definition 6 (Virtual Common Feature). A Virtual Common Feature vcf
is a combination of n (n > 2) common features where the number of instances
that share vcf is greater than or equal to MinIN.

A Virtual Common Feature vcf shows there is a number of instances that
share more than one Common Feature. In this regard, the information gained
from a Virtual Common Feature can be computed by Equations 2 and 3. We
just need to replace [Ins.s,| and Entropy (Scr) with |[Ins,cf,| and Entropy
(VSyes;). The |Ins,.y,| is the total number of instances that share vef; and
Entropy (VSycy,) is the Entropy of Virtual Common Feature Space.

Given a Common Feature c¢f; and a Virtual Common Feature vef;, the more
information indicates lower entropy (i.e., lower uncertainty) in the random spaces
generated by cf; and wvcf;. This fact reveals that most of instances that have
shared cf; and vcf; have the same type. Based on this motivation, the concept
of Class Feature is defined as follows.

Definition 7 (Class Feature). A Common Feature c¢f; or a Virtual Common
Feature vcf; is a Class Feature for Class ¢;, if the information gained from cf;
or vcf; is greater than or equal to NormGain Thresholds (NGTh).

Note that cf; (or vef;) is a Class Feature for Class ¢; where most instances
that share cf; have been assigned to Class ¢;. It is important to mention that
a class can have multiple class features including common features and virtual
common features with information gained greater than or equal to NGTh.

3.2 Module 2: Instance-Class relationship analysis

If we take an instance with type and features, the goal of Module 2 is to analyse
the correctness (i.e., CA) and incorrectness (i.e., ICA) of relationships between
the instance and classes. To this end, Algorithm 1 has been implemented to assess
the above targets for a given instance in four different statuses including (I) the
CA status of an instance with one Feature, (II) the ICA status of an instance
with one Feature, (III) the CA status of an instance with multiple features,
and (IV) the ICA status of an instance with multiple features. Algorithm 1
receives Minimum Instance Number (MinIN), NormGain Thresholds (NGTh),
classes (C), features of classes (C.features), instances (Iset), and features of
instances (I.features) as inputs. Algorithm 1 returns CA and ICA statutes for
given instances as an output. Note that the status of ins; is Undecidable if ins;
is neither CA nor ICA.
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Algorithm 1: Instance-Class relationship

input : MinIN, NGTh, C,C.features, Iset, I.features
output : CAand ICA

ICA + 0, CA + 0, Undecidable <+ 0 ;

for each ins; € Iset do

if ins; shares one Feature then

IF the feature of ins; is a Common Feature, then OneCommonFeature
flag will be true ; ELSE ins; is neither CA nor ICA and it will record in
Undecidable set, then the algorithm iterates for another instance;

LN VI

else

6 1. The features of ins; will check and those which are common features will
record in CFinsi;

7 2. IF CFimsi has one Common Feature, then OneCommonFeature flag
will be true; ELSEIF C'F.Lnsi has no Common Feature, so ins; is neither
CA nor ICA and will record in Undecidable set, then the algorithm iterates
for another instance; ELSE all common features of CFinsi will store in
Featuv‘einsi set;

8 3. IF OneCommonkFeature is not true, then the algorithm checks if
Fea,tureimBi > MinIN, if yes, then Virtual Common Feature will create
with 'ucfinsi = Featu’reinsi and Multiplecommon features flag will
be true; ELSE ins; is neither CA nor ICA and will record in Undecidable
set, then the algorithm iterates for another instance;

9 if (OneCommonFeature) then

10 IF Information gained by Common Feature of ins; > NGTh, then do 4 and
5; ELSE ins; is neither CA nor ICA and it will record in Undecidable set,
then the algorithm iterates for another instance;

11 4. The common feature of 4ns; will check in the features of Class ¢; € C;

12 5. I'F the feature of ins; is in the class features of ¢; and if ins; has the same
type with class ¢j, then ins; will record in CA,; ELSE ins; has an ICA
status.;

13 if (Multiplecommonfeatures) then

14 IF Information gained by Virtual Common Feature vcfinsi > NGTh, then

do 6; ELSE ins; is neither CA nor ICA and it will record in Undecidable
set, then the algorithm iterates for another instance;

15 7. IF the type of ins; is equal to the classType of Virtual Common Feature
vcfins,;, then ins; will record in CA ; ELSE ins; has an IC A status.;

6 return CA and ICA

[

4 Experiments and analysis

The following experiments have been conducted over DBpedia dataset 3.8 that is
one of the most common errors encountered RDF-style KBs. By using DBpedia
dataset, we considered two classes called Food and Hotel. Each class contains
about 750 instances. The goal of following experiments is to check the accuracy of
CAD in analyzing the correctness and incorrectness of relationships between in-
stances and classes. Generally, the accuracy of a system is the degree of closeness
between a measured value and the true value. In our scenario, a measured value
refers to the number of correctly (i.e., CA) and incorrectly (i.e, ICA) assigned
instances detected by CAD approach. While a true value indicates the prede-
fined number of CA and ICA instances in a class. Thus, we correctly assigned
700 instances to the Hotel class that indicates a true value for CA instances.
We also incorrectly assigned 50 instances of Hotel class to the Food class that
shows a true value for ICA instances. To measure the accuracy of CAD approach,
two measurements called Accuracyca and Accuracyroa are defined as follows.
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Given a class, the accuracy of CAD in detecting correctly assigned instances can
be computed by Equation 4:

|i?”LSCAﬁINSCA| (4)
|INSCA|

Accuracyca =

where insc 4 is the number of correctly assigned instances detected by CAD and
INSc4 is a true value for the predefined number of CA instances in the class.

Given a class, the accuracy of CAD in detecting incorrectly assigned instances
can be measured by Equation 5:

|in$]cA ﬂINS[cA‘
[ INS;cal

Accuracyjca = (5)
where insyc 4 is the number of incorrectly assigned instances detected by CAD
and INS;c4 is a true value for the predefined number of ICA instances in the
class.
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Fig. 3. (a) Accuracy in detecting CA instances in different MinIN, (b) Accuracy in
detecting CA instances in different NGTh, (¢) Accuracy in detecting ICA instances in
different MinIN, (d) Accuracy in detecting ICA instances in different NG Th.

Fig. 3(a) shows that the accuracy of CAD approach in detecting CA instances
has been gradually decreased by increasing MinIN. One reason behind such
reduction is related to the strategy of selecting common features by using MinIN.
Consider the process of analyzing common features in Algorithm 1. Given an
instance, if the feature shared by ins; is not a Common Feature, then the status
of ins; is undecidable. For example, an RDF triple (White House, location,
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Herm) detected indicates that White House is an instance of Hotel class with
a particular feature i.e., (location, Herm). In the Hotel class, Herm is the only
instance that has shared (location, Herm) as a particular feature. Algorithm 1
ignores some instances in case the features shared by them have not identified
as common features. Fig. 3(b) shows that the accuracy of CAD approach in
detecting CA instances has been grown by increasing NG Th. Fig. 3(c) represents
that the accuracy of CAD in detecting ICA instances is reduced by increasing
Minl. Consider again the RDF triple (White House, location, Herm). If White
House has been incorrectly assigned to the Food class, Algorithm 1 ignores White
House since (location, Herm) has not identified as a Common Feature.

5 Conclusions and future work

This paper has introduced a new SW data quality issue called Incorrect Class As-
signment (ICA) problem that indicates incorrect assignment between instance-
level data and corresponding classes in an ontology. So, we proposed an entropy-
based approach called Correct Assignment Detector (CAD) to deal with ICA
problem. A direction for future work is to apply Natural Language Processing
(NLP) techniques on predicates of common features to find out more similar
behaviors taken by instances in the groups.
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