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Abstract. Influence maximization is an important research topic which
has been extensively studied in various fields. In this paper, a stigmergy-
based approach has been proposed to tackle the influence maximization
problem. We modelled the influence propagation process as ant’s crawl-
ing behaviours, and their communications rely on a kind of biological
chemicals, i.e., pheromone. The amount of the pheromone allocation is
concerning the factors of influence propagation in the social network.
The model is capable of analysing influential relationships in a social
network in decentralized manners and identifying the influential users
more efficiently than traditional seed selection algorithms.

Keywords: Influence maximization, ant algorithm, stigmergy

1 Introduction

With the development of social networks, on-line marketing has developed in an
unprecedented scale. One of the typical on-line sales strategies is viral marketing,
which propagates influence through ‘word-of-mouth’ effect [2]. It is capable of
increasing brand awareness and achieving marketing objectives effectively. One
of the critical tasks is to understand how to select a set of influential users from
the network to propagate influence as much as possible with limited resources,
namely, influence maximization, and the solution is NP-hard [3][7]. Thus, ap-
proximation approaches are considered as a replacement. In general, if a set of
influential users, i.e., seed set, can be selected properly and completely, we regard
that the influence spread has been achieved. Most researchers seek solutions for
influence maximization problem based on the centralized influence diffusion mod-
els, such as, the classic Independent Cascade (IC) model and Linear Threshold
(LT) model [7]. However, these centralized approaches are normally not efficient,
especially when the network is large-scale and dynamic. Specifically, these ap-
proaches require a central component to complete all tasks alone. Furthermore,
the seed selection algorithms under the traditional influence diffusion models
are time-consuming. By contrast, decentralized approaches tend to share the
workload by distributing the computational tasks to individuals.
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There are two kinds of decentralized approaches in terms of communications.
One relies on the direct communications among the individuals, such as cellu-
lar automata [9], where each cell in the grid adapts its state by looking at the
adjacent neighbours based on a set of rules. While, the other focuses on the
indirect communications by reading or analysing the messages left by the peers.
One of the typical approaches is ant and stigmergy algorithm [4]. The French
Entomologist, Pierre-Paul Grasse defines stigmergy as “stimulation of workers
by the performance they have achieved”, which is associated with two major
features of ants [1]. First, the communication among the ants is indirect. To be
more specific, stigmergy is a particular indirect communication mechanism that
ants exploited to harmonize their daily tasks with each other. Their indirect
communication is conducted through leaving ‘pheromone’ on the trails, which is
a kind of chemical substance and evaporates over time. Second, ants’ activities
are self-organized. They can complete a complicated task independently without
any control. With the development of stigmergy, it has been applied for com-
munication network routing, exploratory data analysis, and diagram drawing
etc.

In this paper, we exploit a novel decentralized approach, the Stigmergy-based
Influence Maximization approach (SIM), to tackle the influence maximization
problem. In SIM, influence propagation process is modelled as ants crawling
across the network topology. Furthermore, the ant’s key behaviours, including
path selection and pheromone allocation, have been modelled for selecting suit-
able nodes to achieve influence maximization. The former aims to identify the
next node to walk when an ant faces multiple options. While, the objective of
the latter is to allocate pheromone on the specific nodes based on the heuristics
when an ant explores a possible influence-diffusion path. Experiments have been
conducted to evaluate the performance of SIM by comparing with the tradi-
tional seed selection algorithms, such as greedy selection, degree-based selection
and random selection. The results demonstrate that the proposed model is more
advanced by considering both efficiency and effectiveness, and can dramatically
reduce computational overhead compared with centralized approaches.

The rest of this paper is organized as follows. Section 2 reviews the litera-
tures related to this research work. Section 3 systematically elaborates the SIM
approach, including problem description, formal definitions, path selection and
pheromone operations. In Section 4, experiments are conducted to evaluate the
performance of SIM. Finally, the paper is concluded in Section 5.

2 Related Work

In on-line marking, it is critical to investigate how to propagate influence in a
social network with limited budgets. Motivated by this background, influence
maximization aims to select a set of influential users from the network to diffuse
influence as much as possible with finite resources [7]. Many studies on influence
maximization problem are conducted on the basis of two fundamental influence
propagation models, i.e., IC and LT [7]. Both models have two key properties,
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i.e., propagation and attenuation. The influence initiates from the seed set, i.e.,
activated nodes. They transfer their influence through the correlation graph,
whereas the power of this effect decreases when hopping further and further
away from the activated nodes.

There are a couple of popular seed selection approaches, such as greedy se-
lection, degree-based selection and random selection. Many research works have
been conducted to improve the efficiency and effectiveness of seed selection al-
gorithms on influence maximization. Chen et al. study the efficient influence
maximization by improving the original greedy selection and proposing a novel
seed selection approach, namely, degree discount heuristics for the uniform IC
model, where all edge probabilities are the same [2]. Goyal et al. design and
propose a novel CELF algorithm, i.e., CELF++, to reduce running time [6].
Zhang et al. research the least Cost Influence Problem (CIP) in multiplex net-
work, and the CIP is alleviated by mapping a set of networks into a single one
via lossless and lossy coupling schemes [12]. However, all these approaches only
can be applied in a static network and the network topology must be discovered.
Specifically, they cannot handle the dynamics of social networks. Meanwhile, the
traditional approaches are not applicable when the global view is unavailable.

Ant and stigmergy-based algorithms do not rely on the network typology,
and the computation is decentralized. Stigmergy consists in the main body of
ant colony knowledge, as it is a particular mechanism exploited for indirect
communication among ants to control and coordinate their tasks. In natural en-
vironments, stigmergy-based systems have been demonstrated that they can be
utilized for generating complicated and robust behaviours in the systems even if
each ant has limited or no intelligence. Nest building is the representative exam-
ple of stigmergy. Some researchers has applied stigmergy for computer science
fields. Dorigo et al. introduce how to solve the Travel Salesman Problem (TSP)
[11] by leveraging ant and stigmergy-based algorithms, where the pheromone al-
location is concerning the distances among the cities [4]. Ahmed et al. propose a
stigmergy-based approach for modelling dynamic interactions among web service
agents in decentralized environments [8]. Takahashi et al. proposed anticipatory
stigmergy model with allocation strategy for sharing near future traffic infor-
mation related to traffic congestion management in a decentralized environment
[10].

3 Stigmergy-based Influence Maximization Modelling

SIM tends to select appropriate influential candidates by considering both influ-
ence strengths among users and the assembled influential effect. In this model,
numerous ants walk simultaneously and update the shared environment by dis-
tributing pheromone, and the influence propagation process is simulated as
crawling behaviours of ants. The influential users can be identified when the
pheromone distribution in the network starts to converge, and the seed selection
is based on the pheromone amount of each node. The SIM will be elaborated in
the following subsections.
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3.1 Problem Description

Suppose an organization plans to promote a particular product in a large-scale
on-line social network. Due to limited budgets and insufficient time, the organi-
zation needs to select k initial candidates as influential users to experience the
product as soon as possible, hoping that these users can recommend it in their
social circle. Ideally, the k influential users can produce maximum influence in
the social network.

3.2 Formal Definitions

Definition 1: A Social network is defined as a weighted graph G = (V,E)
with a clear topological structure, where V = {v1, v2, ..., vn} stands for the nodes
(users) in the network, E = {eij |vi ∈ V ∧ vj ∈ V, vi 6= vj} denotes the edges
(relationships) among nodes. A particular edge can be represented as a three-
tuple, i.e., eij = (vi, vj , wij), where wij is the weight of eij which represents the
influence strength. Each node vi has a set of neighbours {vj |vj ∈ Γ (vi), eij ∈ E}.
While, vi.q indicates the pheromone amount (see Definition 4) accumulated on
corresponding node vi, which can be regarded as an attribute of vi. Similarly,
since wij represents the weight of edge eij , it is denoted by using the notation
eij .w in this paper.

Definition 2: An Ant am is defined as an autonomous agent in the network
G, which crawls across G based on the network topology. An ant can be rep-
resented as a three-tuple, i.e., am = (m, qnm, T

n
m), which means ant am carries

qnm pheromone in tour Tnm (see Definition 3). There exist a number of ants,
A = {a1, a2, ..., an}, in the social network, and they keep crawling in the net-
work. Moreover, they are capable of discovering and evaluating the amount of
pheromone on the current node and the ones nearby. However, the ants cannot
communicate directly with each other.

Definition 3: A tour Tnm =< v1, v2, ..., vn > is defined as the path that ant am
walks through in the n round. Specifically, ant am randomly selects a starting
point. Next, it crawls from one node to the adjacent neighbours and eventually
ceases when reaches the end point ve, where Γ (ve) ⊂ Tnm ∪ |Γ (ve)| = 1.

Definition 4: Pheromone represents the information and heuristics passed
by an ant to the peers based on its experience. qnm denotes the total amount of
artificial pheromone carried by ant am in the n round, which will be distributed
to each node of Tnm after am completes the tour.

3.3 Path Selection

In this context, path selection is one of the ant’s basic behaviours, which de-
scribes how a particular ant am selects the next node to walk when standing at
vi and facing multiple choices Vc = {vj |vj ∈ Γ (vi) ∧ eij ∈ E}.
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Basically, the path selection decision is based on two aspects, which are the
pheromone amount of vj , i.e., vj .q, and the weight of corresponding edge, i.e.,
eij .w. The path selection behaviour has been modelled as a probabilistic event
by using Equation 1, where pij denotes the probability that an ant walks from
node vi to vj .

pij =

{
eij .w·vj .q∑

vx∈Γ (vi)
eix.w·vx.q , eij ∈ E

0, eij /∈ E
(1)

Here, we demonstrate the path selection by giving two concrete examples. In
Figure 1, ant ai starts from node vi and confronts three options, i.e., vk, vj and
vn. The decision is made by considering both targeting nodes’ pheromone amount
and the influence strength / weight of the corresponding edges. In this diagram,
the probability of choosing node vj is calculated as: pij = eij .w·vj .q/(eij .w·vj .q+
eik.w · vk.q+ ein.w · vn.q) = 0.8× 0.5/(0.4× 0.6 + 0.8× 0.5 + 1.0× 0.7) = 29.85%

Figure 2 demonstrates another example, where two ants, i.e., ai and aj , walk
in the same network. Based on the path selection principles, they cannot choose
the nodes which have been walked through within the same tour, but they can
choose the ones that other ants have passed before in the either current or
previous iterations.

Fig. 1. Path selection of an ant Fig. 2. Path selection of multiple ants

Each ant keeps performing an iterative process: walking and selecting path,
whereas, the action stops when the ant reaches the end point. In other words,
the iterative process triggered by ant m in round n produces a path vector, i.e.,
tour Tnm. The tour formation is described in Algorithm 1.

Algorithm 1 presents the process of how a particular ant completes a tour.
The input of this algorithm includes ant am and the round index n, while the
output is tour Tnm. Line 3 shows the criteria of walking to the next node. Lines
5-10 demonstrate the targeting candidates selection, where σ is a predefined
threshold to filter out those candidates with low probability. Lines 11-17 indicate
the path selection process. The iterative walking process ends when all of the
current node vs’s neighbours reside in the tour list Tnm.
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Algorithm 1 Tour Formation Algorithm
Input: am, n
Output: Tn

m, T
n
m ⊆ V

1: Initialize am and random select a starting point vs, vs ∈ V
2: Initialize a tour list Tn

m := ∅
3: while ∃Γ (vs) ∧ Γ (vs) 6⊂ Tn

m do
4: Initialize candidate list Vc := ∅
5: for ∀vi ∈ Γ (vs) ∧ vi /∈ Tn

m do
6: Compute the probability psi using Equation 1.
7: if psi > σ then
8: Vc := Vc ∪ {vi}
9: end if

10: end for
11: if Vc 6= ∅ then
12: Determine the next node vn ∈ Vc using Equation 1.
13: Tn

m := Tn
m ∪ {vn}

14: vs := vn
15: else
16: vs := null
17: end if
18: end while

3.4 Pheromone Operations

Sub-network Generation Sub-network generation is the preliminary step of
pheromone operations. After ant am completes a tour Tnm, a corresponding sub-
network Gnm = (V nm, E

n
m) will be generated based on the path that am walked

through. V nm incorporates all nodes in tour Tnm and their valid first-layer neigh-
bours Γ (Tnm), thus, V nm = Tnm ∪ Γ (Tnm). While, the edge set Enm includes all the
links among V nm.

The total amount of pheromone qnm carried by ant am for tour Tnm depends on
the total number of nodes in the sub-network, i.e., |V nm|. Each node in the sub-
network contributes one unit of pheromone. Figure 3 presents an example of a
generated sub-network. An ant walked from node va to node ve sequentially. By
walking pass each of them, the ant searches for the valid first-layer neighbours.
In this way, a sub-network is generated.

Pheromone Allocation Pheromone allocation in general refers to how ants
leave the biological information on the nodes that they have walked through.
The distribution of pheromone plays an important role in the stigmergy algo-
rithms, since it updates the context by considering the relevant impact factors.
Therefore, the solution is continuously being optimized.

In the current setting, the pheromone distribution is based on size of the
sub-network. The shorter length path and larger sub-network size, the more
pheromone will be allocated on each node of the tour. Equation 2 aims to com-
pute the number of connected neighbours of node vi in the sub-network Gnm.
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Equation 3 describes the pheromone accumulation of node vm in tour Tnm, which
is calculated by adding up all the pheromone contributions given by the direct
neighbours Γ (vm).

vi.N = |{vi|vi ∈ V nm ∧ Γ (vi) ∈ Tni }| (2)

vm.∆q =

{∑
vi∈Γ (vm)

1
vi.N

, vm ∈ Tnm, vi.N 6= 0

0, vm ∈ Tnm, vi.N = 0
(3)

Figure 3 shows an example of a specific sub-network Gnm = (V nm, E
n
m), where

the tour travelled by ant am is represented as Tnm =< va, vb, vc, vd, ve >, V nm =
{va, vb, vc, vd, ve, vf , vk, vh, vi} and Enm includes all the edges among the nodes
in V nm, |Enm| = 12 in this diagram. Node vf is the direct neighbour of two nodes
in tour Tnm, hence both va and vb obtain half of a unit pheromone from vf .
Meanwhile, node vb contributes 0.5 unit pheromone to va and vc, but vf and vk
are not considered in this scope. Therefore, we can derive that the pheromone
gain for node va and vb are 1.5 and 2.0 respectively.

Fig. 3. Pheromone allocation in a tour with five nodes

Algorithm 2 shows the pheromone allocation process initiated by ant am in
tour Tnm. The distribution is based on the explored sub-network Gnm’s topology.
The input is a specific tour Tnm. Whereas, the output is pheromone amount
update. Specifically, this algorithm aims to change the context by updating the
pheromone amount located in each node of the tour path. Lines 1-9 initialize
and construct the sub-network Gnm. The objective of Lines 10-12 is to obtain
the denominator for each node which supposes to contribute pheromone to the
nodes in tour path. Lines 13-14 show the variations of pheromone.

Pheromone Evaporation Pheromone evaporation is a common phenomenon,
where the amount of allocated pheromone decreases over time. In ant and stig-
mergy algorithms, it helps to avoid the convergence to a locally optimal solution.
Pheromone evaporates from each node within the scope of the whole network at
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Algorithm 2 Pheromone Allocation Algorithm

Input: Tn
m

Output: pheromone changes for all the nodes in Tn
m

1: Initialize sub-network graph Gn
m := (V n

m, E
n
m), V n

m := ∅, En
m := ∅

2: for ∀vi ∈ Tn
m do

3: for ∀vj ∈ (Γ (vi) ∪ vi) do
4: V n

m := V n
m ∪ {vj}

5: if pij > 0 ∧ i 6= j then
6: En

m := En
m ∪ {eij}

7: end if
8: end for
9: end for

10: for ∀vn ∈ V n
m do

11: Compute vn.N using Equation 2
12: end for
13: for ∀vm ∈ Tn

m do
14: vm.q := vm.q + vm.∆q, using Equation 3
15: end for

the same time. At a justified time, all of the nodes in the network will evaporate
a predefined unit of pheromone. The pheromone evaporation is quantified by
using Equation 4, where the amount of pheromone evaporated from each node
is associated with the time difference ∆t and the evaporation speed λ.

EQ = e
∆t
λ , λ 6= 0 (4)

3.5 Seed Selection

Seed selection aims to select a set of influential users from a specific network,
so that they can propagate influence to others. There are quite a few classic
seed selection approaches. More specifically, degree-based seed selection tends to
select the nodes with high node degree. Intuitively, the users with large friend
circle can influence more users in the social network. However, this does not
hold in general, e.g., two connected users with very high degree may have a lot
of common friends, in other words, the impact generated by both may be pretty
much close to choosing either of them. Another well-known approach is greedy
selection, which aims to obtain the maximum influence marginal gain in selecting
each seed. However, this approach is not applicable in large-scale networks due
to the computational overhead. Random selection is also applied in some cases,
but its performance is normally the worst since it is not based on any heuristics.

The seed selection in stigmergy-based algorithm relies on the amount of
pheromone allocated on each node. The selection is similar to degree-based ap-
proach, but it identifies the influential users by ranking the pheromone degree
of each node.

In Algorithm 3, the input includes the number of ants n, seed set size k,
evaporation speed λ, time difference ∆t and the network G = (V,E). Lines
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Algorithm 3 Seed Selection Algorithm

Input: n, k, λ,∆t,G = (V,E)
Output: Vs

1: Initialize ant set A := {a1, a2, ..., an} which contains n ants.
2: Initialize seed set Vs := ∅
3: All the n ants start to crawl in network G in the distributed servers.
4: while !convergence do
5: Compute EQ using Equation 4.
6: for vi ∈ V do
7: vi.q := vi.q − EQ
8: end for
9: Sleep for ∆t

10: end while
11: Sort V order by q descend
12: for ∀vi ∈ V do
13: if |Vs| < k then
14: Vs := Vs ∪ {vi}
15: end if
16: end for

1-2 initialize the ants and seed set. Line 3 indicates the ants’ autonomous be-
haviours in the network by using Algorithms 1 and 2. Lines 4-10 show the global
pheromone evaporation process. Lines 11-16 indicate the seed selection from the
updated environment.

4 Experiments and Analysis

4.1 Experiment Setup

MovieLens3 dataset has been used for the experiments. It is a stable benchmark
dataset, which contains around one million ratings for 3,900 movies given by
6,040 users. To filter noise data, users whose number of ratings are less than
50 have been removed from the dataset. There are no explicit links among the
users, but the implicit links can be generated according to the ratings to items.
Moreover, in order to control the computing time, we select three sub-graphs of
the network with different scales, i.e., size of 500, 750 and 1000 respectively, for
the experiments.

The node degree distributions of three sub-graphs are represented as Figure 4,
5 and 6. All of them follows the power-law distribution pattern which is satisfied
by most real networks [5].

4.2 Global Pheromone Distribution

As explained in Section 3.4, all the artificial ants crawl in the social network and
allocate pheromone after completing tours, whereas the allocated pheromone

3 http://grouplens.org/datasets/movielens/
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keeps evaporating over time. The total amount outstanding pheromone in the
social network is regarded as the global pheromone.

The global pheromone distributions of three sub-graphs are demonstrated
in Figures 7, 8, and 9. As we could observe from these three diagrams that
the pheromone amount increases steadily and starts to oscillate when reaching
a certain level. Thus, the pheromone allocation and evaluation almost achieve
a balance. At this phase, it implies the network starts to converge, since the
sequential pheromone ranking list does not vary a lot.

Fig. 4. Degree distribution (size = 500) Fig. 5. Degree distribution (size = 750)

Fig. 6. Degree distribution (size = 1000) Fig. 7. Global pheromone distribution
(size=500)

4.3 Experimental Results

We conducted two experiments by using the same social network of three differ-
ent sizes, which are 500, 750 and 1000 respectively. The first experiment aims to
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evaluate the influence effectiveness of stigmergy-based algorithm, i.e., the total
number of users activated by the seed set. While, the second tends to compare
the efficiencies, i.e., the running time of selecting seed set. The counter parts of
stigmergy-based algorithm include greedy selection, degree-based selection and
random selection.

In the first experiment, seeds are selected from the proposed model, and input
into the IC model to evaluate the influence effectiveness by comparing with
the other classic algorithms. Figures 10, 11 and 12 demonstrate the influence
effectiveness comparison among the four algorithms in three sub-graphs. The
stigmergy-based algorithm performs better than both degree-based selection and
random selection, and its performance is even closer to the greedy selection
when the network size is 500. With the expansion of the graph, stigmergy-based
selection’s influence effectiveness drops a little bit but still outperforms the rest.

The second experiment analyses the efficiency of four seed selection algo-
rithms by comparing the running time. Running time required by stigmergy-
based algorithm includes ants initiation and pheromone operations. While, the
other three algorithms are evaluated in the IC model. Figures 13, 14 and 15 show
the efficiency comparison among the four algorithms in different sub-graphs. It
is clear that the greedy selection is the most computational expensive of all,
the running time increases dramatically when the seed set size enlarges. Both
random and degree-based selection are very similar to each other in terms of
efficiency. The stigmergy-based appear a little bit higher than degree-based se-
lection, but it is much more efficient than the greedy selection and computational
cost does not increase a lot with the expansion of the network.

In summary, observing from the experimental results, we can conclude that
the stigmergy-based algorithm performs better than the traditional algorithms
by considering both efficiency and effectiveness.

Fig. 8. Global pheromone distribution
(size=750)

Fig. 9. Global pheromone distribution
(size=1000)
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Fig. 10. Influence effectiveness comparison
(size=500)

Fig. 11. Influence effectiveness comparison
(size=750)

Fig. 12. Influence effectiveness comparison
(size=1000)

Fig. 13. Efficiency comparison (size=500)

Fig. 14. Efficiency comparison (size=750) Fig. 15. Efficiency comparison (size=1000)
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5 Conclusion and Future Work

In this research, we introduced a novel approach, i.e., stigmergy-based algorithm,
to tackle the influence maximization problem in a decentralized environment. In
the meanwhile, SIM model has been proposed and systematically elaborated.
Experiments have been conducted to evaluate the performance of SIM. Exper-
imental results reveal that SIM outperforms the traditional seed selection ap-
proaches, including greedy selection, degree-based selection and random selec-
tion, by considering both effectiveness and efficiency. Moreover, SIM is applicable
for large-scale networks and even functions without a global view.

In the future, learning algorithms will be employed to improve the perfor-
mance of the stigmergy-based algorithm in influence maximization problem.
Meanwhile, we will consider a hybrid approach for developing a more practi-
cal model.
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