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Abstract. Self-organisation provides a suitable paradigm for
developing autonomic web-based applications, e.g., e-commerce.
Towards this end, in this paper, a composite self-organisation
mechanism in an agent network is proposed. Based on self-
organisation principles, this mechanism enables agents to dy-
namically adapt relations with other agents, i.e., change the
underlying network structure, to achieve efficient task alloca-
tion. The proposed mechanism integrates a trust model to assist
agents in reasoning with whom to adapt relations and employs
a multi-agent Q-learning algorithm for agents to learn how to
adapt relations. Moreover, in this mechanism, it is considered
that the agents are connected by weighted relations, instead of
crisp relations.

1 Introduction

Nowadays, more and more web-based applications emerge, e.g., e-commerce.
These applications have high desirability to be autonomic which are capable of
self-management, because self-management applications can save labour time of
human managers, are able to adapt to environmental changes and ensure their
own survivability. Within this context, De Wolf and Holvoet [1] recommended
that agent-based modeling is best suited to build such autonomic applications.
Thus, based on De Wolf and Holvoet’s recommendation, we consider that self-
organising multi-agent systems are good choices for developing such autonomic
web-based applications, as the self-organising applications can continuously ar-
range and rearrange their organisational structures autonomously to adapt to
environmental changes without external control. In addition, the adaptation pro-
cess should be performed in a decentralised manner, so that the autonomic ap-
plications could be robust against failures of any nodes in the environments.
Self-organisation, which is defined as “the mechanism or the process enabling
the system to change its organisation without explicit external command during
its execution time (Serugendo et al. [8])”, can be employed in agent networks to
improve the cooperative behaviours of agents. Mathieu et al. [7] provided three
principles for self-organisation agent networks design, which include (1) creation
of new specific relations between agents in order to remove the middle-agents,
(2) exchange of skills between agents to increase autonomy, and (3) creation of



new agents to reduce overloading. In this paper, our contribution focuses on the
first principle, i.e., adaptation of existing relations between agents to achieve a
better allocation of tasks in distributed environments.

Currently, research on self-organisation mechanisms in multi-agent and agent-
based complex systems has produced results of significance. Some works are cen-
tralised in nature and have the potential of the single point of failure, e.g., [4].
Self-organisation mechanisms focusing on network structural adaptation (i.e.,
adapting relations among agents) have also been investigated by several re-
searchers, such as [3]. However, these network structural adaptation methods
assumed that only one type of relation exists in the network and the number of
neighbours possessed by an agent has no effect on its local load. These assump-
tions are impractical in some cases where multiple relations exist among agents
in a network and agents have to expend resources to manage their relations with
other agents. To overcome this disadvantage, Kota et al. [6] devised a network
structural adaptation mechanism, which took multiple relations and relation
management load into account. The relation adaptation algorithm adopted in
their mechanism lets agents take actions which can maximise the utility at each
step. Nevertheless, as stated by Kaelbling et al. [5], this kind of algorithm, which
always takes the highest utility action, overlooked the tradeoff between exploita-
tion and exploration and may finally converge to a sub-optimal state with a
self-organisation process continuing.

Besides the disadvantages mentioned above, the common limitation of cur-
rent related research is that candidate selection for self-organisation, i.e., re-
lation adaptation, is simplified. For candidate selection, current related works
have agents use only their own experience. In addition, current self-organisation
mechanisms consider only crisp relations between agents which might be an-
other limitation. Here, crisp relation means that between two agents there is
either a relation or no relation. To overcome this limitation, weighted relation
is introduced in this paper, which means that between two agents, there is a
relation strength, ranged in [0, 1], to indicate how strong the relation is between
the two agents. The introduction of weighted relation into self-organisation is
reasonable, because, in the real world, the relation change between two persons
usually occurs gradually rather than suddenly. Thus, weighted relations should
be more flexible and more suitable in agent networks than crisp relations.

Against this background, in this paper, we propose a composite self-organisation
mechanism. This self-organisation mechanism consists of three elements, which
are claimed as a three-fold contribution of this paper. (1) For candidate selection,
we integrate a trust model which lets agents use not only their own experience
but also other agents’ opinions to select candidates. (2) For adapting multiple re-
lations, we develop a multi-agent Q-learning algorithm which enables two agents
to independently evaluate their rewards about changing relations and balances
exploitation and exploration. Consequently, our mechanism could overcome the
aforementioned flaws of Kota et al.’s mechanism. (3) We also introduce weighted
relations into our self-organisation mechanism. The introduction of weighted re-



lations can improve the performance of our self-organisation mechanism and
make the mechanism more suitable in dynamic environments.

2 The Agent Network Model

In this section, an agent network model is presented in which we will develop
our self-organisation mechanism. The aim of the agent network is to allocate
tasks to agents such that the communication cost among agents is minimised
and the benefit obtained by completing tasks is maximised. Each task, @, is
composed of a set of subtasks, i.e., ® = {p1,..., o, }. Each subtask, p; € &,
requires a particular resource and a specific amount of computation capacity to
fulfill. In addition, each subtask has a relevant benefit paid to the agent which
successfully completes the subtask. Each subtask has a preset deadline as well,
which should be satisfied. Otherwise, the benefit will be decreased gradually
with time elapse till 0. A subtask ¢; is modeled as a token A;, which can be
passed in the network to find a suitable agent to complete. Each token consists
of not only the information about resource and computation requirement of the
corresponding subtask, but also the token traveling path which is composed of
those agents that the token has passed.

In our model, an agent network comprises a set of collaborative agents, i.e.,
A = {as,...,a,}, situated in a distributed task allocation environment. In the
agent network, instead of crisp relations, two weighted relations are defined which
are peer-to-peer relation and subordinate-superior relation. A peer-to-peer rela-
tion, denoted as “A” (%g Ax A),is a Compatible Relation, which is reflexive and
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symmetric, such that Va; € A : a; ' a; and Vaj,aj € A:a; '~ a; = a; '~ a,

where p;; = pji. A subordinate-superior relation, written as “i” (ig A x A),
is a Strict Partial Ordering Relation, which is irreflexive, asymmetric and tran-
sitive, such that Va; € A : —(a; -~ a;), Va;,a; € A:a; HQ a; = —(a; Z a;) and
Va;,aj,ar € A : a; lij a; N a; Mj ar = a; < ag. The notation, p;;, is relation
strength, which indicates how strong the relation is between agents a; and a;.
wij is ranged from [0,1], where higher value means a stronger relation and 0
demonstrates no relation between two agents. Relation strength affects the task
allocation process, as agents usually prefer to allocate tasks to those agents which
have high relation strength with them. Initially, the relation strength between
any two neighbouring agents is set to 0.5 by default, but it might be adapted
during the succeeding task allocation process.

In the agent network, each agent is of the form a; = (Res;, Comp;), where
Res; is the set of resources possessed by a; and Comp; is the computation
capacity of a; for completing tasks. Moreover, the knowledge of each agent is
modeled as a tuple (Neig;(t), Act;(t), Tokens;(t)). The first element, Neig;(t),
is the neighbour set of agent a; at time t. Neig;(t) can be further divided into
three subsets, Neig;(t), Neig;*(t) and Neig: (t). Neig;(t) contains the peers
of a;, Neig;(t) consists of the direct superiors of a;, and Neig; (t) comprises of
the direct subordinates of a;. The second element in the agent knowledge tuple,
Act;(t), is the action set of agent a; at time ¢. An action set, Act;(t), is defined



as a set of available actions for agent a; at time ¢, while an action is defined as a
decision made by an agent to adapt the relation with another agent. There are
seven different atomic actions defined in our model, which are enh_ ~; enh_ <,
enh_ =, wkn_ ~, wkn_ <, wkn_ > and no_action. It should be noted that the
meanings of actions enh_ and wkn_ imply not only enhance and weaken but
also form and dissolve, respectively. The atomic actions can also be combined
together. The meanings of combination actions can be easily deduced from the
meanings of atomic actions.

It should be noticed that an agent at different time steps might possess dif-
ferent available actions. The possible choices of actions available to agents in
different situations are illustrated as follows. (1) There is no relation between
agents a; and a;. The possible choices of actions include enh_ ~, enh_ <, enh_ -
and no-action. (2) a; is a peer of aj, i.e., a; ~ a;. The possible actions involve
wkn_ ~, wkn_ ~ +enh_ <, wkn_ ~ +enh_ > and no_action. (3) a; is a subordi-
nate of aj, i.e., a; < a;. The possible actions include wkn_ <, wkn_ < +enh_ ~,
wkn_ < +enh_ > and no_action. These actions are based on a;’s perspective,
while, in a;’s view, a; needs to reverse these actions. (4) a; is a superior of a;,
i.e., a; = a;. This situation is the reverse condition of a; < a;.

The last element in the agent knowledge tuple, Tokens;(t), stores not only
the tokens agent a; currently holds at time ¢ but also the previous tokens incom-
ing and outgoing through a;. With time elapse, old tokens will be automatically
deleted from the set Tokens;(t). Furthermore, an agent possesses information
about the resources it provides, the resources its peers could provide, and the
resources all of its subordinates and its direct superior could provide, although
the agent might have no idea exactly which subordinate owns which resource.
During the allocation of a subtask ¢, an agent a; always tries to execute the
subtask by itself if it has adequate resources and computation capacity. Oth-
erwise, a; will generate a token for the subtask and pass the token to one of
its subordinates which contains the expected resource. Since a; does not know
which subordinate has which resource, the token might be passed several steps in
the agent network forming a delegation chain. If a; finds no suitable subordinate
(i.e., that no subordinate contains the expected resource), it will try to pass the
token to its peers. In the case that no peer is capable of the subtask, a; will
pass the token back to one of its superiors which will attempt to find some other
subordinates or peers for delegation. When more than one agent is able to accept
the token, a; passes the token to the agent which has higher relation strength
with a;.

Apparently, the structure of the agent network will influence the task alloca-
tion process. In the next section, we will describe the composite self-organisation
mechanism used to adapt the structure of the agent network, involving an eval-
uation method to measure the profit of the network.

3 The composite Self-organisation Mechanism

Before devising the self-organisation mechanism, it is necessary to introduce
an evaluation method to estimate the profit of the agent network. Towards this



goal, we illustrate the concept of evaluation criteria, which includes cost, benefit,
profit and reward of an agent and the agent network.

3.1 Network Performance Evaluation

The cost, benefit and profit of the network are calculated after a predefined
number of time steps. The cost of the agent network, Costypgr, consists of
four attributes, i.e., communication cost, computation cost consumed by agents
to complete assigned subtasks, management cost for maintaining subtasks and
management cost for keeping neighbourhood relations with other agents. Due to
the page limitation, the detailed calculation of each attribute of Cost ¢ cannot
be presented.

The benefit of the network, Benefitygr, is the sum of benefits obtained by
all the agents in the network. The benefit of each agent depends on how many
subtasks are completed by that agent. As depicted in Section 2, each task &
contains several subtasks, 1, s, ..., represented as tokens Aj, As.... When a
subtask (; is successfully completed by an agent, that agent would obtain the
corresponding benefit.

Finally, the profit of the entire network, Profitygr, is:

Profitygr = Benefitngr — Costypr (1)

3.2 Self-organisation Mechanism Design

As described in Section 1, when an agent, a;, wants to adapt relations with
other agents, there are two problems which have to be faced by a;. The first
problem is determining with whom a; should adapt relations, and the second one
is determining how to adapt relations with those selected agents. For the first
problem, the selection process of each agent is based not only on its own former
task allocation process but also on the integrated trust model. Through the trust
model, an agent can get opinions from other agents about candidate selection.
For the second problem, i.e., how to adapt relations, a multi-agent Q-learning
approach is employed. The reason for choosing the Q-learning approach is that
it provides a simple and suitable methodology for representing our mechanism in
terms of actions and rewards. The self-organisation mechanism is now illustrated
in the following subsections.

Candidate Selection To assist each agent to select the most valuable candi-
dates to adapt relations, we present a trust model based on Dezert-Smarandache
theory (DSmT) [9]. Other trust models may also be available for our problem,
but, through our investigation, Dezert-Smarandache theory is more suitable for
our requirements, because the theory has good expressiveness and low compu-
tational complexity for trust representation, and is easy to implement.

We now introduce the key concepts of Dezert-Smarandache theory. Let T
mean that the given agent considers a given correspondent to be trustworthy
and © = {T,-T} be the general framework of discernment. The hyper-power set
of © is represented as H® = {0,{T},{-T},{T n -T},6}. There is a general basic
belief assignment which is a function m : H® — [0,1] where



m(0) =0, @)
ZBgH@ m(B) = 1.

Thus,m({T}) + m({-T}) + m({6}) + m({T N =T}) = 1, as m(P) = 0.

The trust model is defined as a tuple, T} = (mi({T}), mi({~T}), m:({0}), m:({T N
-T})), where ¢ and j represent two different agents a; and a;, separately. Each
element in T7 is described as follows. (1) mi({T}) means the degree of a; trusting
aj; (2) mi({-7}) indicates the degree of a; distrusting a;; (3) mi({©}) demonstrates
the degree of uncertainty about the trustworthiness a; to a;. This case happens
when a; lacks evidence regarding a;. If a; has no evidence at all, mi({o}) = 1;
otherwise, m:({6}) < 1; (4) m:({T n-T}) depicts the degree of contradiction with
regard to the trustworthiness a; to a;. This case is caused by the situation,
for example, that a; trusts a; but other agents, who provide a; their opinions,
distrust a;. Thereby, a; gets into contradiction.

Thus, initially, trust between any two agents is T} = (mi({T}) = 0,m}({-T}) =
0,mi({0}) = 1,mi{T n-T}) = 0). Trust is, then, acquired through task allocation
between agents. For example, if a; completed many tasks for a; on time, then the
value of mi({T}) may increase. In addition, a; might ask one of its neighbouring
agents, say ay, for trust evaluation to a;, and then combines a;’s opinion with
a;’s own view to a;. This is trust evaluation combination which can be computed

as i 1
Tj = Tj @ Tf’ (3)

where m}(B1) = mj(B2) @ m§(Bs) = X5, 5, 5ycHO)A(Banps=py) M (B2)m} (Bs).

Furthermore, there might be another case. a; asks a’s opinion to aj, but ay
may have no idea about a;. a5 then inquires one of its neighbours, a;’s, opinion
to a;. This is trust transitivity which can be calculated as

TE-TteT, (1)

where m»({T}) = (m{ ({T})) + Bm{ ({T N =T}) - m}({T})
mk({=T}) = (m({-T}) + Bm; ({T N =T}) - m}({~T})

mi({T N =T}) = (m({T N =T})) + mi ({T N =T}) - m;({T N =T})
mf({0}) = 1 - mf({T}) — mf({-T}) — mf({T n-T}),
and § is a constant which is in the range (0,1).

The candidate selection process can be simply summarised as follows. After a
period, each agent, say a;, first evaluates the trust of those agents (TempCands;)
which completed many or few tasks for it during the last period. Then, a; asks the
opinions of other agents against those agents in TempCands; and, afterwards,
adjusts the trust values based on those opinions. Finally, a; filters the agents in
TempCands; and makes a new group of agents called Candidates with which
a; will adapt relations.

Relation Adaptation Before describing our relation adaptation algorithm, we
consider a simple scenario with two agents, a; and a;, and three available actions
for each agent. The reward matrix of the two agents is displayed in Table 1.
Each cell (r;¥,77"¥) in Table 1 represents the reward received by the row
agent (a;) and the column agent (a;), respectively, if the row agent a; plays
action x and the column agent a; plays action y. The reward of each agent, r;, is



Table 1. Reward Matrix of a; and a;
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based on how much load could be reduced on agent a; and on the intermediate
agents, and how much potential benefit might be obtained by agent a; in the
future. Here, an intermediate agent is an agent which resides on a token path,
written as A.path. For example, agent a; has no relation with agent a;, but
a; completed many subtasks for a; during former task allocation processes. a;,
then, might want to establish a relation with a;. If a; would like to form the
superior-subordinate relation with a;, i.e. performing the action enh_ > (for aj,
performing the reverse action enh- <), the management cost on both a; and a;
will rise because both a; and a; have to maintain a new neighbour. Nevertheless,
those agents, which are in the A.path, could save communication cost (which
are considered as a;’s reward), since they do not need to pass tokens between a;
and a; any more. Here, A refers to the tokens that are held by a; and sent by a;.
In addition, a; could save management cost for maintaining subtasks, as a; can
directly pass tokens to a; without waiting for intermediate agents to pass tokens
and, hence, a;’s subtasks could be allocated in less time steps. The potential
benefit which would be obtained by a; is evaluated on the basis of the benefit a;
gained for completing the subtasks assigned by a;, while the potential benefit of
a; is calculated in an analytical way. We suppose that the action enh_ <, with a;
as the superior and a; as the subordinate, can make a; potentially receive more
subtasks from a; and then get more benefits. Algorithm 1 demonstrates our
relation adaptation approach in pseudocode form.

After selecting candidates, a; and a;, firstly, estimate which actions are avail-
able at the current state (Lines 2 and 3) as described in Section 2. Then, a; and
a; learn the Q-value of each available action, separately (Lines 4-11). In Line
5, the Q-value of each action is initialised arbitrarily, while, in Line 7, 7;, indi-
cates the probability regarding agent a; taking the action x. To calculate m;,,
we employ the e-greedy exploration method devised by Gomes and Kowalczyk
[2] shown in Equation 5, where 0 < ¢ < 1 is a small positive number and n is
the number of available actions of a;.

(1 —€) 4 (e/n),if Q; is the highest

e/n ,otherwise

In Line 8, Q;, is the Q-value of action x taken by agent a;. In Lines 8 and
9, 0 < a < 1 is the learning rate. When finishing learning Q-values, a; and a;
(Line 12) cooperate to find the optimal actions. In Line 12, match(z,y) is a
function which is used to test whether the actions x and y that are taken by
a; and aj, respectively, are matched. An action is only matched by its reverse
action described in Section 2. Therefore, a; and a; have to cooperate to find the
actions, which can be matched together and maximise the sum of their Q-values.
Finally, a; and a; adjust their relation strength (Lines 14-17). The adjustment



Algorithm 1: Relation adaptation according to a;
1 for each a; € Candidates do
2 Act; + available_actions(ai, aj);
Act; < available_actions(a;,a;);
for each z € Act;, y € Act; do
Initialise Qi and @Qj, arbitrarily;
for k = 0 to a predefined integer do;
calculate ;s (k) and iy (k);
iz (k) ( 7Tay( ) — Qix(k));
Qjy(k+1) = ij( )+
miy(k)a(X2, 77 mia (k) — Qia(k));
10 end for
11| end for
12| (@opti, Yopts) < argMazmaten(e,y) (Qiz + Qjy);
13| ai, a; take actions zopts and yopei, respectively;
14| pij < pig + (Nj/p—1);
15 if Wij > 1 then Wi < 1;
16 if i <0 then Wi < 03
17| pji = pig;
18 end for

0O Otk W

©

depends on how many subtasks that a; completed for a; in the last time steps,
where the more subtasks are completed by a;, the higher relation strength value
is achieved. In Line 14, N J’ means the number of a;’s subtasks completed by a;
and p is a threshold which is an integer.

Due to the page limitation, the experimental results cannot be presented

here.
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