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Abstract A workflow trace describes provenance information of a par-
ticular workflow execution. Understanding workflow traces and their
similarity have many applications in both scientific research and business
world. Given workflow traces generated by heterogeneous systems with
difference granularities, it is a challenge for users to understand their
similarities. In this work, we investigate workflow traces’ granularity prob-
lem and their similarity method. Algorithms are developed to transform
a trace into its multi-granularity forms assisting by a workflow trace
ontology; A novel generic semantic similarity algorithm is proposed that
not only considers the structural similarity but also the semantics cover-
age embedded in traces during transformation. Furthermore, theoretical
analysis is presented to compute the maximum and minimum semantic
similarity; Our approach enables the two workflow traces can be compared
with any granularity. The experiment using real world workflow traces
demonstrates the effectiveness of the proposed methods.
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1 Introduction

Workflow provenance records the processes, process dependencies and data input
and output of processes during a workflow execution. The provenance of a
particular workflow execution is often referred as workflow trace [4]. Workflow
trace can be seen as the meta-data of a particular workflow. It provides information
on how a workflow is executed and how its results are derived from original data.
Workflow provenance helps scientists/business to validate the processes involved
in a workflow and examine its data quality.

Different users may have different needs on what to analyze and how detailed
the provenance should be [2]. This refers to the research question of provenance
granularity. Provenance granularity provides an abstraction of processes on
different levels of details involved in a workflow. For example, a data scientist
may want to view a detailed workflow provenance to analyze the performance of
the workflow and improve the existing workflow. People at the managerial level
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may want to view a workflow provenance from a coarse level to check if certain
components are included in the workflow. Furthermore, it is often required by users
to compare workflow traces to understand why one trace generates "better" results
than another for advanced scientific discovery. Workflow trace similarity also has
many other applications, such as clone detection, trustworthiness measurement
and storage size reduction etc. Since workflow traces may be generated by
heterogeneous systems and may have different abstraction level, the challenge lies
in knowing how to compute the similarity of two traces if they are with different
granularities.

There are some existing solutions to workflow trace multi-granularity rep-
resentation and comparison. In these works, the granularities are determined
by user-specific heuristics. In other words, different users could define different
granularities given the same process trace. This leads to the problem that a
specific multi-granularity workflow trace may not be understood by others and
cannot be generalized for use with other applications. Most of the existing trace
comparison methods model traces using graphs and their similarities are com-
puted only based on their graph structural similarity. [8] propose a granularity
transformation method using a workflow trace ontology and also developed simi-
larity algorithms with semantics in mind. However, the semantic coverage during
trace transformation is not considered.

In this paper, we investigate workflow traces’ granularity problem and their
similarity method. Our approach enables two workflow traces can be compared
with any granularities. Specifically, the contributions of the paper are: (1) given
a workflow trace, Disperse algorithm is developed to transform a trace with
more abstract concepts into its detailed forms assisting by a workflow trace
ontology; (2) a novel generic semantic similarity algorithm is proposed that not
only considers the structural similarity but also the semantics coverage similarity
embedded in traces; and (3) theoretical analysis is presented to compute the
maximum and minimum semantic similarity. The rest of the paper is organized as
follows. In Section 2, some existing works in the field of provenance modelling and
provenance similarity analysis are reviewed. Section 3 introduces the definition
of concept trace and its transformation methods. In Section 4, we propose the
concept of semantic similarity of two workflow traces. A computation method
and the analysis of semantic similarity are also presented. Section 5 evaluates
the proposed techniques using some real workflow traces. Finally, the paper is
concluded in Section 6.

2 Related Work

A provenance model is a representation of artefacts, processes and their relations
involved in the information life cycle of data [8]. In recent years, with the
maturity of Semantic Web technologies, several Semantic Web-based provenance
models have proposed. Examples include Provenance Data Model (PROV) [7]
and Open Provenance Model (OPM) [1]. Benefited from Semantic Web, these
models can support data linkage and multi-granularity provenance generated
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in heterogeneous environments. Provenance granularity has been studied in
[1,6,8–10,12]. Granularities are constructed from users’ perspectives, and limited
to specified application domains. Liu et al. modeled workflow trace granularities
using Workflow Trace Ontology (WTO) [8]. WTO extends the opmo:Process

class in OPMO [1] by defining sub-classes to describe different levels of semantics
of executed processes [1]. In addition, an annotation property, hasDepth, is
defined for all the classes in WTO to describe abstraction levels (depth) across
granularities. Similar to the four-tier model in [6], the classes with small value
of depth in WTO carry coarse semantic information. In this paper, we will use
WTO to describe the multi-granularity workflow trace.

Provenance similarity analysis is another important problem in provenance
research. Xie et al. presented a provenance compression algorithm to compress
provenance graphs. It builds the provenance data into a name-identified refer-
ence list and the similarity of processes in the provenance is measured by the
process’s successors’ similarity [11]. Chapman et al. developed a set of provenance
factorization algorithms to reduce the provenance storage. The factorization
algorithms are based on the pre-defined provenance node similarity functions,
and two nodes in the provenance data are considered to be similar if they are
specifically similar under the similarity function [5]. In [3], the authors used graph

edit distance method to define the similarity between provenance graphs. One
major limitation from edit distance is that it requires pre-defined cost functions
for each elementary operations to calculate similarity, which is not generic and
flexible. Liu et al. defined a similarity on the provenance data across different
granularities [8]. They used the Maximum Common Subgraph (MCS) to compare
two traces with the same depth. However, the semantic coverage among concept
traces with different granularities are not captured using the traditional MCS
algorithm.

3 Concept Trace Transformation

Workflow trace ontology is domain specific and normally defined by domain
experts. In this paper, we construct a WTO for Montage3 dataset as an example
to explain the idea. In Figure 1, all vertices in ellipses represent executed processes
(ontology instances) in a workflow; and rectangles represent high level abstractions
of executed processes (ontology classes). For example, mjpeg45 is an executed
process which generates JPEG images from FITS files. Each class in WTO
model has a property hasDepth, and the value of hasDepth denotes the actual
level of a class in WTO. We use both depth and conceptual abstraction level

interchangeably to describe a class level in WTO. The larger a depth is, the
closer a class approaching to an instance level. On the other hand, the coarser
a class’s conceptual abstraction level is, the closer a class to the Process. The
rest of this section presents the definition of concept trace and the algorithms for
transforming a workflow trace into a concept trace with a required granularity.

3 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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Figure 1: Montage Workflow Trace Ontology

3.1 Concept Trace Definition

As discussed in Section 2, a workflow trace can be modeled as a directed graph.
Each vertex in a graph represents an executed process and each edge in a graph
represents its data flow. Given a WTO, processes in a workflow trace can be
mapped into different classes to present different levels of conceptual abstractions.

Definition 1 (Strict Concept Trace at Depth n). Given a workflow trace

p, a strict concept trace at depth n is a directed labelled graph Cn
p = (V,E,L)

where V is a set of vertices, each vertex representing a conceptual process vi;

E ⊆ V × V is a set of directed edges, each edge (vi,vj) representing data flow

from vi to vj ; L is a labelling function, each vi has a label L(vi) ∈ {WTOn
class},

where WTOn
class are the classes in WTO whose property “hasDepth” is ≤ n.

In some cases, an executed process can only be mapped to a class with
depth n′ < n. By the above definition, a concept trace with depth n represents a
conceptual abstraction of a workflow trace using a defined granularity n. Then two
concept traces having the same level of conceptual abstraction are comparable.

It is possible that an execution process could be mapped to a class in WTO
with any depth. When mapping a workflow trace into a concept trace with depth
n, if the depth of a mapped class is larger than n, it means that the current
class is too detailed and a coarse abstraction is required. Therefore, we need to
transform the class into its super-class with depth n. We call this procedure as a
converge procedure. On the other hand, if the depth of a mapped class is smaller
than n, it means that the current class is too abstract. We need to transform the
class into its subclass in WTO with depth n. We call this procedure as a disperse
procedure. If the depth of a mapped class is equal to n, no further operation is
required. After all the labels have class labels with depth n, the last step is to
merge adjacent vertices with the same labels into one vertex. This is because
a concept trace represents a workflow trace on a conceptual abstraction view.
Adjacent vertices having the same labels mean that the vertices carry the same
conceptual function.



Semantic Similarity of Workflow Traces with Various Granularities 5

Algorithm 1: Converge (p,n,WTO)
Input : p is a workflow trace; n is the depth of concept trace which will be

generated; W T O is the workflow trace ontology
Output : p’s partial concept trace C′n

p

1 while traversing p do
2 if the label of a visiting vertex is an instance in WTO then
3 replace the vertex label by its corresponding super-class at depth n in WTO;
4 end
5 end
6 C′n

p ← p;

In summary, to transform a workflow trace into its concept trace with depth
n, there are three steps involved: Converge, Disperse and Merge. Since the merge
procedure is straight forward, next we present two algorithms that provide
converge and disperse functions.

Converge Given a workflow trace and a target depth n, for every vertex with
its label’s depth is larger than n, we need to change its label using its super-class
in WTO with depth n. The converge algorithm used in this paper is similar to
that in [8]. For self contained purpose, it is presented in Algorithm 1. An example
will be given at the end of this section.

Disperse Disperse procedure can be understood as the reverse of converge

procedure. During converge, vertices with detailed conceptual abstraction are
converted to the vertices with coarse conceptual abstraction. In other words, the
vertices’ labels are changed from sub-classes to their corresponding super-classes.
Since every class has one and only one super-class with depth n, every p can be
transformed to one and only one concept trace, C′n

p , after converging process. On
the contrast, disperse procedure is to disperse a class in WTO to its sub-classes.
As one class may have more than one sub-class in WTO, a dispersed trace is not
unique given a converged trace.

Algorithm 2 describes how to disperse a converged concept trace to its concept
trace at depth n. Given a converged trace C′n

p , a target depth n and a workflow
trace ontology WTO, the algorithm produces a random number of concept traces
of p at depth n. While traversing C′n

p , if the depth of a vertex label v is less than
the target depth n, it creates an empty set Ssource and puts all the in-neighbors
of v into it. It also creates an empty set Sdest to store all the out-neighbors of v
(Lines 3-6). Then v is removed from C′n

p (Line 7) because it needs to be dispersed.
To do that, the algorithm creates a temporal graph G′ to maintain the dispersed
vertex’s structure. It randomly creates x new vertices V ′ with labels assigned by
L′ where L′ can assign a subclasses with depth n of v’s label to a vertex (Line
8-15). The algorithm partitions V ′ into l disjoint sets and connects the vertices
in between each disjoint set (Lines 16-19). It ensures that G′ is fully connected
and acyclic. Next the elements in G′ is treated as the dispersed structure of v
and linked to the rest of V (Lines 20-26). As the last step of transformation, if
adjacent vertices have the same labels, they are merged as one vertex. Combined
with Algorithms 1 and 2, we can generate a strict concept trace with depth
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n given a workflow trace with any granularity. Figure 2 shows an example of
Converge and Disperse procedure.

Algorithm 2: Disperse (C′n
p ,n,WTO)

Input : a converged concept trace C′n
p ; n is the depth required; W T O is the

workflow trace ontology
Output : p’s concept trace Cn

p

1 while traversing C′n
p do

2 if the label of a visiting vertex v hasDepth < n in WTO then
3 Create empty sets Ssource and Sdest ;
4 foreach (u,v) ∈ E, (v,w) ∈ E do
5 Ssource← u; Sdest← w;
6 end
7 Remove v from V ;
8 x← a random positive integer;
9 y = 0;

10 while y ≤ x do
11 Create a new vertex v′;
12 Assign L′(v′) that L′(v′).hasDepth = n and v′ is a sub-class of v;
13 V ′← v′;
14 y← y + 1;
15 end
16 Randomly partition V ′ into l disjoint sets V ′

1,V ′
2...V ′

l;
17 for i = 1..l−1 do
18 Add edges (v1,v2) where v1 ∈ V ′

i and v2 ∈ V ′
i+1 to make a directed

connected graph;
19 end
20 for i = 1...Ssource.size() do
21 Add an edge (v1,v2) where v1 ∈ Ssource and v2 ∈ V ′;
22 end
23 for i = 1..Sdest.size() do
24 Add an edge (v1,v2) where v1 ∈ V ′ and v2 ∈ Sdest;
25 end
26 Update V and E;
27 end
28 end

Example 1. Given n = 2 and a workflow trace in Figure 2a with depth listed
on top of each vertex, mShrink and mConcatFit are converged and merged
as Extraction in C2

p by WTO in Figure 2b. Semantically the two processes
provdes the same conceptual function Extraction at depth 2. In WTO, class
Manipulation has two sub-classes Generation and QualityControl at depth 2.
Therefore, Manipulation can be dispersed into different graphs, such as Genation

→ QualitycControl in Figure 2b or Gneration in Figure 2c. Both C2
ps are valid.

4 Semantic Similarity of Workflow Traces

In this section, first, we define the similarity of two workflow traces. Then the
concept of semantic coverage that captures the semantic movement during trace
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Figure 2: An Example of Concept Traces’ Converge and Disperse Procedure

transformation as well as the concept of semantic similarity and its computation
are introduced. This is followed by the analysis on how to compute the maximum
/ minimum semantic similarity.

4.1 Structure Similarity

As we mentioned before, workflow traces generated by heterogeneous systems may
be represented using various granularities. By transforming two workflow traces
into their strict concept traces with depth n. They have the same conceptual
abstraction level. Therefore, their similarity at depth n can be computed by
applying traditional graph similarity methods. In this paper, we use the Maximum

Common Sub-graph (MCS) method to calculate the similarity (see Equations 1).

s(Cn
p1 ,Cn

p2) =
|MCS(Cn

p1 ,Cn
p2)|

|Cn
p1 |+ |Cn

p2 |− |MCS(Cn
p1 ,Cn

p2)| (1)

In Equations 1, |Cn
p1 | and |Cn

p2 | are the sizes of two strict concept traces
with depth n respectively and |MCS(Cn

p1 ,Cn
p2)| is the size of maximal common

subgraph between Cn
p1 and Cn

p2 .
The larger the s is, the more similar the two traces are. Since we are more

interested in the similarity of two workflow traces as a whole but not with a
particular depth that is proposed in [8], the similarity of two workflow traces can
be calculated by averaging the similarity of concept traces with all depths:

Similarity(p1,p2) =

depth(W T O)∑
n=1

s(Cn
p1 ,Cn

p2)

depth(WTO) (2)

where depth(WTO) is the maximum depth of WTO.
Strict concept traces at depth 0 does not contribute to the similarity because

all workflow traces can be converged to Process at depth 0 that does not express
any differences. The benefit of computing an overall similarity between two
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workflow traces is that it enables users to understand the overall relationship
between the two traces better. However, general graph similarity methods only
evaluate graphs’ structure similarity without considering the semantic abstraction
that graphs represent. For concept traces, each vertex represents a high level
conceptual abstraction of an executed processes. If we apply general graph
similarity methods directly, it would ignore the semantic information involved in
its concept trace. Next, we will explain what is the problem and how we approach
it.

4.2 Semantic Similarity

In this sub-section, first we introduce the concept of Semantic Coverage. Then the
Semantic Similarity (SS) is defined and its computation method are presented.

Semantic Coverage

As discussed, disperse procedure substitutes a vertex representing a class to
a graph which is composed by its sub-classes defined in WTO. Since a vertex
can be dispersed into many different graphs, we have shown that a strict concept
trace with depth n may not be unique if a workflow trace contains vertices with
depth smaller than n (1 ≤ n ≤ depth(WTO)).

A vertex with depth < n can be dispersed into a graph with a large number
(→ ∞) of vertices at depth n. While this is true as a graph, it is not practical in
real world data and the structure of a workflow trace will also be destructed. On
the other hand, disperse is a procedure of concretization. The semantic coverage
of a vertex with depth n is not as complete as that of its ancestors. Therefore, we
need to capture the movement of semantic coverage during converge and disperse
procedure while not concerning the number of new vertices generated by disperse
procedure. Formally, we define the semantic coverage as follows:

SC(g(vn)) =
{

1 if depth(v) ≥ n+1
|L(g(vn))|
|W T On

v | otherwise
(3)

, where g(vn) is a graph generated by dispersing/coverging v to depth n,
|L(g(vn))| is the number of concepts involved in graph g(vn) and |WTOn

v |
is v’s number of descendent concepts at depth n defined in WTO.

Since we do not care the actual graph structure, g(vn), dispersed by v, but
the semantic coverage as discussed before, we use a virtual v to represent g(vn).
At this point, a concept trace can be represented using a vertex-weighted graph
in which a vertex weight describes v′s semantic coverage at depth n compared
with that in its original workflow trace.

Example 2. Figure 3(a) is the concept trace with depth 2 by transforming Figure
2(a). The first Manipulation in its original workflow trace is dispersed into
a graph Generation which cannot fully represent the concept Manipulation.
Since in WTO, Manipulation has two children, the weight of virtual vertex
Manipulation in C2

p1 is 1/2. However, in Figure 3(b), Manipulation is dispersed
into a graph Generation → QualityControl and the number of concepts involved
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is 2. Therefore, the weight for Manipulation in C2
p2 , representing subgraph

Generation → QualityControl, is 2/2 = 1. Since Extraction is generated by con-
verging processes mShink → mContactF it with depth 3 which is ≥ 2, the weight
of Extraction after transformation is 1 as defined in Equation (3). Furthermore,
C2

p1 and C2
p2 can be described as a vertex-weighted graphs that contain virtual

vertex Manipulation respectively but not including the actual structure graph
such as Generation → QualityControl in C2

p2 .

Figure 3: An Example of Weighed Concept Trace and Semantic Similarity

Semantic Similarity Definition

Based on Equation 3, the Semantic Similarity (SS) of two strict concept traces
at depth n can be computed by computing the similarity of their corresponding
vertex-weighted graphs. Formally, Equation 4 re-defines |MCS| in Equation 1 by
incorporating the concept of semantic coverage into it:

|MCSs(Cn
p1 ,Cn

p2)| =
∑

v∈MCS(Cn
p1 ,Cn

p2 )

min(SC(g(vn
p1)),SC(g(vn

p2))) (4)

, where min(SC(g(vn
p1)),SC(g(vn

p2))) returns v′s possible maximum common
semantic coverage of two concept traces with depth n. Then the SS of two
workflow traces can be defined as follows:

ss(Cn
p1 ,Cn

p2) =
|MCSs(Cn

p1 ,Cn
p2)|

|Cn
p1 |+ |Cn

p2 |− |MCSs(Cn
p1 ,Cn

p2)| (5)

From the above definition, it can be seen that the traditional MCS similarity,
Equation (1), is a special case of SS in which the weight of every vertex always
equals to 1. This is because that the semantic coverage is always assumed as 1
which may not be true for workflow traces with various granularities involved.
The SS definition is able to capture the semantic similarity between two concept
traces to be compared.
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Example 3. Figure 3 shows two concept traces with depth 2. Their MCS (circled)
is 1/2∗Manipulation → 1∗Extraction by Equation (4). The semantic meaning
behind this is that Manipulation is half semantically covered in MCS but
Extraction is fully presented. Therefore, its |MCSs(C2

p1 ,C2
p2)| = 1/2+1 = 1.5.

There are two properties held by Equation 5:

Property 1. If ss(Cn
p1 ,Cn

p2) ̸= 0, where 1 ≤ n ≤ depth(WTO), then ss(Cn′
p1 ,Cn′

p2) ̸=
0 where 1 ≤ n′ < n.

Property 2. If ss(Cn
p1 ,Cn

p2) = 0, where 1 ≤ n ≤ depth(WTO), then ss(Cn′′
p1 ,Cn′′

p2 ) =
0 where n < n′′ ≤ depth(WTO).

By converge procedure, we can see that if two vertices vn′′
1 and vn′′

2 are
isomorphically mapped to each other in MCSs(Cn′′

p1 ,Cn′′
p2 ), their corresponding

semantic-parent vertices vn
1 and vn

2 (n < n′′) must also be isomorphically mapped
to each other in MCSs(Cn

p1 ,Cn
p2) because their converged vertices’ labels are the

same. Therefore, the following proposition is held (the proof for the proposition
is omitted due to space limitation).

Proposition 1. If MCSs(Cn′′
p1 ,Cn′′

p2 ) ̸= ∅, for any vertex vn′′
1 ∈ Cn′′

p1 , vn′′
2 ∈ Cn′

p2

and vn′
1 /vn′

2 ∈ MCSs(Cn′′
p1 ,Cn′′

p2 ), if f(vn′′
1 ) → vn′

2 , there must have f(vn
1 ) → vn

2

where vn
1 / vn

2 ∈ Cn
p1 / Cn

p2 respectively, vn
1 / vn

2 is the super-class of vn′′
1 /

vn′′
2 respectively, 1 ≤ n < n′′. that is isomorphically mapped to vn

2 ∈ Cn
p2 , the

converged vertex at depth n′ of vn
1 where n′ < n must also isomorphically map to

the converged vertex of vn
2 in MCS(Cn′

p1 ,Cn′
p2).

Here f(x) → y represents the corresponding mapping between x and y.
Semantic Similarity Computation

To compute the semantic similarity of two workflow traces p1 and p2, first,
p1 and p2 are transformed to C1

p1 and C1
p2 , respectively. The reason we do

depth 1 transformation is for concept trace with depth 1, every vertex has the
minimum depth. It implies that there is no disperse procedure required during
transformation. Therefore, p1 and p2 can be transformed to one and only one C1

p1
and C1

P2
respectively. Then MCSs(C1

p1 ,C1
p2) is computed. If MCSs(C1

p1 ,C1
p2) =

∅, ss(Cn
p1 ,Cn

p2) = 0. By Property 2, we can conclude that Similaritys(p1,p2) = 0.
If MCSs(C1

p1 ,C1
p2) ̸= ∅, mappings f(v1

p1) → v1
p2 (v1

p1 ∈ C1
p1 , v1

p2 ∈ C1
p2 , v1

p1 /
v1

p2 ∈ MCSs(C1
p1 ,C1

p2)) can be obtained.
The above step is important because it provides mapping f() between vertices

of p1 and p2 that contribute to MCS with no ambiguity. The mapping will guide
the MCS computation at depth 2. By Propostion 1, only vertices in p1 and p2 that
contribute to MCSs(C1

p1 ,C1
p2) may contribute to MCSs(C2

p1 ,C2
p2). Therefore,

we only need to check those vertices’ transformation to compute MCSs(C2
p1 ,C2

p2).
We will show an example later on to explain the idea. Similarly, the semantic
similarity at depth n can be computed by using the MCS mapping at n−1 (see
Equation 6).
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Similaritys(p1,p2) =

depth(W T O)∑
n=1

ss(Cn
p1 ,Cn

p2)

depth(WTO) (6)

By identifying vertices’ semantic coverages of two strict concept traces with
the same depth, we are able to compare two workflow traces semantically with
any granularities. Since there is a lot of possible strict concept traces with depth
n that can be generated given a workflow trace, if we just compare two random
generated concept traces with depth n, their similarity, ss(Cn

p1 ,Cn
p2), is arbitrary

and therefore, the overall similarity, Similaritys(p1,p2), is also arbitrary that
may not make sense for users. In the next sub-section, we will analyse SS and
discuss how to compute the maximum and minimum SS of two workflow traces
with any granularities that may provide users a better understanding of the
relationship between two workflow traces.

4.3 Semantic Similarity Analysis

The maximum/minimum Similaritys(p1,p2) can be achieved if ss(Cn
p1 ,Cn

p2) is
maximized/minimized for ∀n ∈ [1..depth(WTO)]. It is clear that to find the max-
imum/minimum ss(Cn

p1 ,Cn
p2), we need to maximize/minimize |MCSs(Cn

p1 ,Cn
p2)|

and minimize/maximize |Cn
p1 | and |Cn

p2 | respectively.
Given two workflow traces p1, p2 and a depth n, our goal is to generate

their corresponding concept traces Cn
p1 and Cn

p2 that s(Cn
p1 ,Cn

p2) is maximized.
By Propsition 1, in converge procedure, a vertex vn′′ (n′′ ≥ n) can only be
transformed to one and only one vertex vn. However, a vertex vn′ (n′ ≤ n)
may have many representations after disperse procedure. Therefore, the key
is to control the disperse procedure to achieve the maximum similarity. Next
we analyze all the possible cases of how vertices v (v ∈ pk, k ∈ [1,2]) can be
transformed and demonstrate how to control the transformation procedure to
reach the maximum similarity.

In the SS computation algorithm, if MCSs(C1
p1 ,C1

p2) ̸=∅, mappings f(v1
p1) →

v1
p2 (v1

p1 ∈ C1
p1 , v1

p2 ∈ C1
p2 , v1

p1 / v1
p2 ∈ MCSs(C1

p1 ,C1
p2)) can be obtained. For

each v1
pk

(k ∈ [1,2]), we use ref(v1
pk

) to represent the corresponding vertices
in original workflow trace pk that contribute to v1

pk
. At this point, we can

generalize the problem as: Given p1, p2, Cn−1
p1 , Cn−1

p2 , ref(vn−1
pk

) and the mapping
f(vn−1

p1 ) → vn−1
p2 (n ≥ 2), how to generate Cn

p1 and Cn
p2 so that ss(Cn

p1 ,Cn
p2) is

maximized. To transform pk to Cn
pk

, each vk ∈ pk must sit in one of the following
cases and for each case, a rule is defined with principles of maximizing the
MCSs(Cn

p1 ,Cn
p2) and minimizing their concept trace sizes.

– Case 1: for any vertex vk ∈ pk not contributing to MCSs(Cn−1
p1 ,Cn−1

p2 ).
• Case 1.1: If depth(vk) = n, vk is not changed;
• Case 1.2: If depth(vk) > n, by Proposition (1), we can use vk’s super-class with

depth n to replace vk;
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• Case 1.3: If depth(vk) < n, by Equation 5, we need to disperse vk by any one
of its sub-classes with depth n in WTO to minimize the size of Cn

pk
that leads

to maximize ss(Cn
p1 ,Cn

p2 );
– Case 2: vertices in pk that contribute to MCS(Cn−1

p1 ,Cn−1
p2 ). This case is the

most complex case since sometimes we need to consider both p1 and p2 during
transformation to generate their concept traces with depth n for the maximum
similarity. Specifically, given f(vn−1

p1 )→ vn−1
p2 (vn−1

p1 ∈Cn−1
p1 , vn−1

p2 ∈Cn−1
p2 , vn−1

p1 /
vn−1

p2 ∈MCS(Cn−1
p1 ,Cn−1

p2 )), we need to study the relationship between ref(vn−1
p1 )

and ref(vn−1
p2 ). There are 4 sub-cases involved.

• Case 2.1: If ∀vi ∈ ref(vn−1
p1 ), ∀vj ∈ ref(vn−1

p2 ) and depth(vi/vj) = n, nothing
needs to be changed since all vertices are proper for Cn

pk
;

• Case 2.2: If ∀vi ∈ ref(vn−1
p1 ), ∀vj ∈ ref(vn−1

p2 ) and depth(vi/vj) > n, converge
procedure applied and use vk’s super-class with depth n to replace vk;

• Case 2.3: If ∀vi ∈ ref(vn−1
p1 ), ∀vj ∈ ref(vn−1

p2 ), depth(vi) < n and depth(vj) > n,
it means vi needs to be dispersed. To reach the maximum similarity, the way
g(vi) dispersed by vi must be the same as g(vj) converged by vj . By this means,
they can contribute to MCSs(Cn

p1 ,Cn
p2 ) as they did for MCSs(Cn−1

p1 ,Cn−1
p2 );

• Case 2.4: If ∀vi ∈ ref(vn−1
p1 ), ∀vj ∈ ref(vn−1

p2 ) and depth(vi/vj) < n, then
both vi and vj have to be dispersed. In Equation 4, if both the semantic
coverage SC(g(vn

i ) and SC(g(vn
j ) are maximized as 1, their contribution to

|MCSs(Cn
p1 ,Cn

p2 )| is maximized.

By the above transformation rules, the maximum SS can be achieved. Similarly,
the minimum SS can be computed and will not be discussed due to space limitation.
Figure 4 shows an example.

Figure 4: An example of Maximum Similarity

Example 4. Figure 4a and 4b show two workflow traces in which vertices pre-
sented have various granularities. Figure 4c and 4d are their corresponding concept
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traces at depth 1. Since there is no disperse procedure involved, its maximum
similarity is computed by applying Equation (1) directly. The MCSs(C1

p1 ,C1
p2) is

circled. To transform two traces into depth 2, the transformation case 1 is applied
to all vertices in p1 and p2 that are not contributing to in the circle of Figure 4c
and 4d. For ImageProcessing in the circle, since the ref(ImageProcessing1

p1) is
mShrink → mContactF it and ref(ImageProcessing1

p2) is Extraction, Case 2.2
and Case 2.1 are applied respectively. This generates the Extraction vertex in Fig-
ure 4e and 4f that maximizes their contribution to MCSs(C2

p1 ,C2
p2) (circled). But

for the Manipulation vertex in the Figure 4c and 4d circle, ref(Manipulation1
p1)

is Manipulation which is the same as ref(Manipulation1
p2). Therefore, we have

to reach the maximum semantic coverage by applying case 2.4. That is why
the weights of both virtual vertices in Figure 4e and 4f are 1. Through this
transformation, the maximum Ss(C2

p1 ,C2
p2) can be achieved.

5 Experiments

Some experiments have been conducted to evaluated the proposed method. In
the experiments, we compare the proposed method with the traditional structure
similarity method using Equation (2) and demonstrate the effectiveness of our
approach.

5.1 Datasets

The Montage dataset created by NASA/IPAC stitches together multiple input
images to create custom mosaics of the sky. We take the workflow in the Montage
dataset as our base workflow traces and design the corresponding WTO. To
imitate heterogenous situation, the base workflow traces are transformed into the
traces that have various granularities using the following steps: 1. Transform base
workflow traces to strict concept traces with depth depth(WTO), C

depth(W T O)
p ;

2. Generate x induced sub-graphs of C
depth(W T O)
p , and for each induced sub-

graph G including (a) Randomly select x vertices in G where |x| < |G|; (b) For
each selected vertex v, randomly generate a number d where d < depth(WTO);
and (c) Replace v’s label to v’s super-class at depth d, then merge v’s neighbors
if necessary.

5.2 Maximum Semantic Similarity of Workflow Traces

In the experiments, we apply the proposed workflow similarity method to analyse
the maximum semantic similarity of randomly selected workflow traces. Figure
5a and 5b show two workflow traces random selected. Note that in Figure 5, we
use dotted rectangle to present virtual vertices and for vertices contributing to
MCS are underlined.
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Figure 5: Concept Traces Evaluation

To calculate the similarity of workflow traces in Figure 5(a-b), the first step
is to transform p1 and p2 to their strict concept traces at depth 1. C1

p1 and C1
p2

(Figure 5(c-d)) are isomorphic, so the semantic similarity of C1
p1 and C1

p2 is 1.
At depth 2, in order to maximize the similarity, ImageProcessing in p2 is

dispersed to Extraction to match the Extraction in p1, mBgModel and mBack-

ground in p1 are converged to DataCorrection, the other vertices are converged
to their depth 2 concepts respectively. Note that ImageProcessing in p1 does not
contribute to MCS at depth 2, so it is kept as a virtual vertex. The maximum
semantic similarity of C2

p1 and C2
p2 is 6

10+9−6 = 6
13 ≈ 0.465. Similarly, the concept

trace of C3
p1 and C3

p2 which can produce the maximum semantic similarity are
shown in Figure 5 (g-h). The similarity of C3

p1 and C3
p2 is 8

12+11−8 = 8
15 ≈ 0.533.

Therefore, the similarity of workflow trace p1 and p2 is 1+0.465+0.533
3 ≈ 0.667.

As comparison, if it uses the original graph similarity method (Equation 2)
to measure the similarity of p1 and p2, the similarity is 1

12+9−1 = 0.05 because
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the MCS of p1 and p2 has only one vertex. The experiment shows that the
proposed semantic similarity concept and its computation methods are able to
identify the semantic similarity embeded in traces to be compared even they may
have very different structures. This approach enable users to have a much better
understanding on the conceptual level among various workflow traces.

6 Conclusion

In this paper, we propose the Disperse algorithmto that is able to transform a
workflow trace with any granularity into a concept trace with required depth.
To capture the similarity of conceptual abstraction between two workflow traces,
the semantic similarity concept that not only considers the structure similarity
but also the semantic coverage during transformation is proposed. The maximum
/ minimum semantic similarity is analysed and its computation method is also
presented. Our similarity method is able to capture the semantic information
embedded in the workflow traces and it provides a better solution on how to
evaluate workflow traces with various granularities.
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