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Time series clustering to examine presence of decrement in Parkinson’s
finger-tapping bradykinesia

Zhibin Zhao', Hui Fang?, Stefan Williams®, Samuel D. Relton?, Jane Alty?, Alex J. Casson®, David C. Wong®

Abstract— Parkinson’s disease is diagnosed based on expert
clinical observation of movements. One important clinical fea-
ture is decrement, whereby the range of finger motion decreases
over the course of the observation. This decrement has been
assumed to be linear but has not been examined closely.

We previously developed a method to extract a time series
representation of a finger-tapping clinical test from 137 smart-
phone video recordings. Here, we show how the signal can be
processed to visualize archetypal progression of decrement. We
use k-means with features derived from dynamic time warping
to compare similarity of time series. To generate the archetypal
time series corresponding to each cluster, we apply both a
simple arithmetic mean, and dynamic time warping barycenter
averaging to the time series belonging to each cluster.

Visual inspection of the cluster-average time series showed
two main trends. These corresponded well with participants
with no bradykinesia and participants with severe bradykinesia.
The visualizations support the concept that decrement tends to
present as a linear decrease in range of motion over time.

Clinical relevance— Our work visually presents the archety-
pal types of bradykinesia amplitude decrement, as seen in the
Parkinson’s finger-tapping test. We found two main patterns,
one corresponding to no bradykinesia, and the other showing
linear decrement over time.

[. INTRODUCTION

Bradykinesia is the core clinical feature of Parkinson’s
disease. It is defined as a pathological slowness of movement
and decrement in amplitude or speed of movement (or pro-
gressive hesitations/halts) as movements are continued [1].
It is assessed by a specialist clinician observing the patient
repetitively tapping index finger and thumb together as ‘wide
and fast as possible’ over ten taps or ten seconds. The concept
of decrement is key to the clinical distinction between
Parkinson’s bradykinesia and slow but stable movement seen
in normal ageing or other conditions such as arthritis.

Decrement is currently described within two clinically
validated scales. In the Unified Parkinson’s Disease Rating
Scale (UPDRS), it is categorized by how soon in the test the
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reduction in amplitude begins, but no minimum reduction
is defined [2]. In the Modified Bradykinesia Rating Scale
(MBRS), amplitude (which includes decrement) is defined
on a scale of 0 (normal) to 4 (severe). For example, a
score of 1 occurs when ‘Mild reduction in amplitude in later
performance, most movements close to normal’[3].

Previous attempts to precisely quantify decrement in the
clinical literature have assumed linear decrease in amplitude
over time. For instance, both Bank et al. and Martinez-
Manzanera et al. quantify decrement by computing a linear
regression of the frequency, amplitude and velocity over the
course of a finger-tapping task [4], [5]. However, such mea-
sures sometimes show poor correlation with clinical bradyki-
nesia rating or Parkinson’s diagnosis [6], [7]. Our clinical
experience is that finger-tapping amplitude in Parkinson’s is
sometimes observed to increase after an initial decrease in a
manner that would not be captured by linear models.

We hypothesize that there may be archetypal trends in
decrement that are both non-linear, and inadequately de-
scribed by the current clinical scales. In this work, we use
a time-series clustering approach to identify whether such
archetypal trends exist and to visualize the results.

II. METHODS
A. Data Collection

We recorded videos of 137 finger-tapping examination
from 69 participants at Leeds Teaching Hospitals Trust using
an iPhone SE at 60 fps. 39 participants had previously
diagnosed idiopathic Parkinson’s disease; the remaining 30
were healthy controls. All participants had recording of both
left and right hands, but one video was rejected for quality
reasons. The primary unit of analysis was the number of
finger-tapping examinations, as we were not concerned here
with per-participant outcomes.

During the examination, participants rested their elbow on
a chair arm, and the iPhone was adjusted so that hand and
forearm were in frame (see Fig. 1). The lateral surface of
the hand faced the camera. Participants were told to tap
their thumb and index finger together as wide and as fast
as possible. Each video sample was restricted to 11 seconds.

The study cohort described here is an expanded sample
of those recorded previously by Wong et al. [8], who report
additional details of the data collection method.

Videos were processed to output pixel coordinates of the
participant’s thumb and index fingertips at each frame using
the Deeplabcut software package [9], [10]. A neurologist
(SW) manually labelled 20 frames from each 660 frame
video. Salient points were automatically extracted for the



remaining frames by the algorithm. Visual inspection of the
salient points aligned to the original video were used to
confirm the accuracy of the algorithm output.

22 neurologists were each assigned 30 videos at random,
and asked to rate each video using the MBRS scale to
provide a score between 0 and 4. Where videos were rated
by multiple neurologists, the modal score was used.

B. Preprocessing

Using the pixel coordinates of the thumb and index
fingertips, we generated a time series of the finger to thumb
tip distance of each participant. One example is shown in Fig.
2, where outliers (large, sudden transients) in the original
signal occurred due to mistakes in identifying the exact
positions of fingertips by deeplabcut. To remedy this, we
applied a Savitsky-Golay (SG) filter with polynomial order
3 and frame length 11 to all the time series. Fig. 2 also shows
the output of the filtered time series.

C. Envelope Extraction

We then extracted the upper envelopes of the filtered
signals, which represents the maximum distance between
thumb and index finger tip over time. Envelope extraction
consisted of finding and then interpolating the peak values.

We detected peaks using MATLAB’s findpeaks function
[11]. We restricted acceptable peak-to-peak intervals to be
greater than 0.3 seconds. The threshold was determined
by visual inspection, using the average interval of adjacent
finger taps as a guide. To ease the undulation and maintain
the wave shape, we performed shape-preserving piecewise
cubic interpolation of values at neighboring peak points.

Fig. 3 shows one example of the envelope analysis in
which the extracted envelope accurately reflects the variance
of peak values. Finally, we normalized all the extracted
envelopes through Z-score normalization using the mean and
standard deviation of each envelope.

D. Clustering and Visualization of Decrement

Clustering is an unsupervised learning approach for find-
ing intrinsic patterns in data. Typically, similarity of dataset
features are compared using a distance measure, and similar
features are assigned to the same cluster. Multiple approaches
have been considered for time series clustering, including
Gaussian process clustering [12] and Hidden Markov models
[13]. Here, we implement two related methods for time series
clustering based on K-means clustering.

Fig. 1. Example frames from the smartphone video capture showing the
hand and forearm in frame in an open (left) and closed (right) finger-tapping
test position
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Fig. 3. One example of the envelope extraction output

The first approach was to apply K-means directly to the
time series. K-means iteratively assigns a time series to the
cluster centre with the lowest Euclidean distance and updates
the cluster centre according to the centroid of its members.
The Euclidean distance, d, between two time series, A and
B, of equal length, n, is computed as:

d(A, B) =

We selected K = 5 to match the number of distinct
classifications within the MBRS clinical rating score. From
these clusters, we sought to find the archetypal time series
by extracting the arithmetic mean of the within-cluster time
series. The arithmetic mean is the standard approach used to
calculate an average sequence when all sequences are consis-
tent. However, this approach risks losing shape information
in instances where similar sequences are shifted in time. Fig.
4 shows one example, in which the shape of the signals in
Fig. 4(a) are not preserved by the arithmetic mean in 4(b).

The second approach used an alternative distance measure,
dynamic time warping (DTW). DTW is a standard measure
for a large range of time series analysis applications, such as
speech recognition [14], gene expression [15] and biomedical
signals [16]. DTW aims to align different time sequences to
find the optimal alignments. It allows for both time shifts
and non-linear distortions, and does not require that the
length of two sequences should be equal. The DTW measure
approaches zero as two sequences become more similar.

Multiple studies have attempted to approximate an average
time series [17], [18]. Among them, dynamic time warping



(@) '
4+
Q
E
£ 2p
=3
g .
< 0f
2k = s
0 0.2 04 0.6 0.8
Time step
a)) T |> - T
sl DBA — — Arithmetic mean ]
Q
E
£ 2p
=3
g
< 0 N
2k s ‘ . . i
0 0.2 04 0.6 0.8
Time step

Fig. 4. One example of time series averaging. (a) the set of time series data
(the first class in the Trace dataset) and (b) the average signals extracted by
arithmetic mean and DBA.

barycenter averaging (DBA) proposed by Petitjean et al. is
one relatively robust approach [19].

The DBA algorithm is an iterative procedure which con-
sists of two steps: (1) Calculate the DTW measure between
the temporary average sequence and each sequence in the
predefined set and find the relationships (similarities) be-
tween elements of each sequence in the predefined set and
elements of the temporary average sequence; (2) Update
each element of the average sequence using the barycenter
of elements which are related to it corresponding to the
DTW measure in the above step. The convergence property,
and demonstration of how DBA can be applied alongside
existing clustering methods like K-means, has been proven
empirically and theoretically [20].

Fig. 4(b) shows that, compared with a simple arithmetic
mean, DBA preserves the local structure of a time series. We
denote the clustering method used in this paper as K-DBA,
signifying the use of K-means with DTW as the distance
measure alongside DBA as the averaging approach.

III. RESULTS

For K-DBA, the number of centroid seeds is 10 and the
number of iterations for the DBA computation is 20. The
results of traditional K-means and K-DBA, in which we
show the average time series (in bold red) alongside the
individual time series belonging to the cluster (grey), are
shown in Fig. 5 and Fig. 6, respectively. The membership
of each archetypal cluster, grouped by clinically assessed
MBRS decrement score, is presented in Tables I and II for
K-DBA and K-means respectively.

The figures show two main time series trajectories.
Fig. 5(c) and 6(a) mainly represent the participants with
no bradykinesia decrement; the amplitude throughout the
archetypal time series is relatively stable. As expected, the K-
DBA derived signal contains greater local structure, but the
two approaches provide a similar overall shape. The tables

show that these clusters correspond well with those with an
MBRS decrement score of 0. For 5(c) and 6(a), 37/58 and
27/38 time series were rated with an MBRS = 0, respectively.

Figs. 5(d) and 6(c) represent clusters in which decrement
is clearly visible. For these clusters, the amplitude envelope
decreases linearly over time. Both clusters were associated
with participants assessed with more severe bradykinesia.
The remaining representative clusters show large and rapid
changes in amplitude at the start and end of the time series.
These changes are visible in the original envelope signals but
were not usually present in the raw periodic finger-tapping
signal. Therefore, the pattern is most likely due to artefact
introduced at the piecewise interpolation step.

TABLE I
K-MEANS CLUSTER MEMBERSHIP GROUPED BY MBRS AMPLITUDE
(DECREMENT) SCORE

K-DBA CLUSTER MEMBERSHIP GROUPED BY MBRS AMPLITUDE

(DECREMENT) SCORE

Cluster MBRS Amplitude (Decrement) Score
0 (normal) | 1 2 | 3 | 4 (severe)
(a) 8 3 3011
(b) 5 2 11410
(c) 37 1081310
(d) 9 9 51712
(e) 4 2 4 1411
TABLE 11

Cluster MBRS Amplitude (Decrement) Score
0 (mormal) | 1 | 2 | 3 | 4 (severe)

(a) 27 614|110

(b) 6 512571

(c) 8 715191

(d) 19 7191113

(e) 3 1 11012

IV. DISCUSSION

We developed a method to visualize bradykinesia decre-
ment directly from smartphone videos of a finger-tapping
clinical assessment. We have also used a shape-preserving
time series clustering approach to extract common archetypal
decrement trends in a cohort of 133 videos.

Although we selected five cluster centres a priori based
on the gradation of the MBRS decrement scale, we observed
only two distinct time series patterns - the remaining three
clusters appear to have similar characteristics. The two
distinct archetypes corresponded well with participants with
no bradykinesia and with high bradykinesia.

Mild grades of bradykinesia (MBRS=1-2) were not clearly
associated with any cluster. It is unclear why this is the case.
Mild grades of decrement might be indistinguishable from
low levels (or no) decrement. However, it is more likely
that the decrement patterns do not constitute an independent
cluster because the data set contains relatively few examples
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The visualization results of Traditional K-means (red lines are average sequences of five class centers).
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Fig. 6. The visualization results of K-DBA (red lines are average sequences of five class centers).

of mild decrement. Future work should therefore include
repetition on a larger, balanced data set.

We found no evidence to lend support to the initial hy-
pothesis, that there exists non-linear decrement trajectories.
This means that current quantitative metrics using linear
regression are likely to be sufficient, and that previous studies
can be interpreted as evidence that some bradykinesia does
not involve decrement [7], rather than reflecting measurement
limitations. The method shown here is flexible and extensible
to other clinical time series data. It allows grouping of similar
time series trajectories to identify common trend patterns.
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