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Abstract—Wind energy penetration has increased 

significantly and is playing a crucial role in the conversion of 

power systems to renewable energy. Remote and isolated power 

systems are increasing wind generation due to high cost of diesel 

fuel and transportation. To address the concerns of system 

frequency and scheduling from high penetration of stochastic 

wind generation, accurate short-term wind power forecasting is 

required. The research Investigates temporal resolution of wind 

energy data to improve neural network based forecast models. 

High resolution wind power data is used to simulate different 

temporal resolution, for both 10 minute and 1 hour forecast 

horizons. Three decomposition methods are compared wavelet, 

empirical mode, and variable mode decomposition. They each 

decomposed the sampled data into different modes, firstly a 

long-term component of lower frequencies, then more modes 

with detailed higher frequency components. To evaluate the 

temporal resolution and decomposition methods Back 

propagation neural network (BP), long short-term memory 

neural network (LSTM) and a convolutional neural network 

(CNN) are evaluated using wind power data from the King 

Island power system.  

Keywords—VMD, EMD, WD, LSTM, CNN, BP, temporal 

resolution, renewable energy. 

I. INTRODUCTION 

Isolated power systems (IPS) provide energy for remote or 
island communities. Traditional power grids benefit from 
interconnection and economies of scale that make electricity 
affordable, isolated communities do not have access to 
affordable electricity, due to their geographic isolation and 
size. Conventionally IPS depend on diesel generation, due to 
low install cost, simplicity and reliability. Though diesel 
generators have significant operational costs from diesel 
transportation to remote locations [1] In order to reduce the 
cost of energy and greenhouse emissions, the use of renewable 
energy sources (RES) is being integrated. With abundant RE 
such as wind and solar, the generation is stochastic and 
intermittent leading to system security and reliability 
concerns.   

One solution is energy storage systems (ESS), which are 
used for energy shifting, load peak shaving, power quality and 
spinning reserve. Energy shifting and load peak shaving can 
have a slower response but requires more storage, suitable 
ESS are pumped Hydroelectric, hydrogen or compressed air 
storage. Power quality can be improved by fast responding 
batteries, super-capacitors or superconducting magnetic 
energy storage, while spinning reserve can be increased with 
the installation of flywheels [2]. In Australia IPS have 
achieved high renewable penetration with the aid of energy 
storage, King Island was the first to achieve greater than 60% 
p.a. with multiple ESS's, a lead-acid battery and two 
flywheels. 60% renewable energy (RE) penetration was also 

achieved on Flinders island, with reduced battery capacity and 
four generators of increasing capacity. With low load diesel 
and demand side management technologies Rottnest island is 
achieving greater than 50% RE penetration without a battery. 

Wind generation is the fastest growing renewable energy 
source, with the abundance of wind and low operating costs 
[3]. Wind turbines provide most of the renewable generation 
in IPS, though the generation is significantly stochastic and 
intermittent. To effectively manage generation imbalance and 
control applications of energy storage, accurate short term 
wind power forecasting is required [4] [5]. Wind power 
forecasting can be divided into two categories; Uncertain and 
certain forecasts. Uncertain forecasts are based on 
probabilistic distributions and interval forecasts, though short 
term fluctuations make the intervals large for short term 
forecasting. Certain forecasting can be done by a physical 
model that uses meteorological data to create generalised 
mathematical equations, making them complex to implement 
and site specific. Statistical models can avoid the complexity 
of grasping the physical mechanism [6], which include 
support vector machines and artificial neural networks. Due to 
the characteristics of wind power being complex,  Statistical 
methods are able to learn historic wind power characteristics 
and then identify them during the forecast process. 

There are three artificial neural network models that show 
promise in the field of wind power forecasting. Back 
propagation (BP) multi-layer perceptron networks [7] have a 
long history of use in wind forecasting. The convolutional 
neural networks (CNN) [8] have been brought from image 
recognition applications, to provide accurate wind power 
forecasting. The Long-short term memory (LSTM) is a deep 
learning network that specialises in time series learning, from 
speech recognition to wind power forecasting. Additionally in 
order to improve forecasting accuracy, researchers have 
decomposed and analysed the wind power signal, mainly by 
wavelet decomposition (WD), empirical mode decomposition 
(EMD) and variational mode decomposition (VMD) [9]. A 
comparison of these techniques will be made in this paper. 

II. DECOMPOSITION METHODS 

Decomposition methods convert the wind power series 
into a set of constitutive series. These series aim to each 
present a more predictable behaviour than the original signal. 
They are broken down into approximate and detailed levels of 
a given signal, where approximation is the general trend of the 
signal and detail includes the high-frequency components of 
the signal. The obtained approximations  (An) and details (Dn) 
have better outliers and lower uncertainty, producing signals 
that are easier to predict for the wind forecasting model. 

The decomposition methods are configured to decompose 
the wind power signal into three decomposition layers/IMF's. 
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Three layers were shown to have a lower forecast error than 
five layers for short term wind power forecasting in [6]. 

 

Fig. 1. Decomposition process 

A. Wavelet Decomposition 

Wavelet decomposition uses the wavelet transform (WT) 
to decompose a signal. WT’s can be divided into two 
categories: continuous wavelet transform (CWT) and discrete 
wavelet transform (DWT) [10]. 

The wavelet transforms scale and translate the mother 
wavelet to represent the original signal. 𝑊(𝑚, 𝑛)  is the 
wavelet representation of the signal with respect to the mother 
wavelet. This requires continuous scaling and translation of 
the mother signal, creating substantial redundant information. 
To improve this process the mother wavelet can be scaled and 
translated using powers of two. This scheme is known as the 
DWT and is more efficient and just as accurate [11]. Shown 
in equation 1.  

𝑊(𝑚, 𝑛) = 2
𝑚
2 ∑ 𝑓(𝑡)𝜙 (

𝑡 − 𝑛. 2𝑚

2𝑚 )

𝑇−1

𝑡=0

 (1) 

The scheme used for wavelet decomposition is a fast DWT 
algorithm based on filters (deconstruction and reconstruction 
high and low pass filters) known as the Mallat’s algorithm. 
Multi-resolution via this algorithm is a procedure to obtain 
“approximations” and “details” from a given signal. Multi-
level decomposition can be achieved by successive 
decomposition of the approximate signals until the desired 
level is reached. In this paper the 1st Coiflets function is 
chosen to be the mother wavelet, due to its superior 
performance over Daubechies functions in the testing 
conducted. 

B. Empirical Mode Decomposition 

Empirical mode decomposition (EMD) was proposed by 
Norden E. Huang when he was also pioneering Intrinsic mode 
functions (IMF). It produces a unique signal decomposition 
with good local characteristics in time and frequency domain. 
EMD can be expressed as equation 2, where the different 
IMF's 𝐶𝑖(𝑡)  when added together with the residual 
𝑅𝑛(𝑡)equal the original wind power signal 𝑌(𝑡) [12]. 

𝑌(𝑡) =  ∑ 𝐶𝑖(𝑡) + 𝑅𝑛(𝑡)

𝑛

𝑖=1

 (2) 

The IMF's are derived through a sifting process; All local 
maxima are connected by a cubic spline known as the upper 
envelope, all local minima are also connected by a cubic spline 
known as the lower envelope. Then the mean envelope 𝑀(𝑡) 
is calculated. The mean envelope is extracted from the original 
signal by equation 3. Leaving the details 𝑍(𝑡). The process is 
repeated until 𝑍(𝑡)meets the 

 

Fig. 2. Wavelet decomposition 

 

Fig. 3. Empirical mode decomposition 

 

Fig. 4. Variational mode decomposition 
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properties of a IMF or the maximum decomposition level 
is reached. 

𝑍(𝑡) = 𝑌(𝑡) − 𝑀(𝑡) (3) 

C. Variational Mode Decomposition 

A new non-stationary and adaptive decomposition method 
known as variational mode decomposition (VMD) was 
proposed by the authors of [13]. VMD is able to decompose a 
real value input signal into a discrete number of sub-signals 
(modes) that have specific sparsity properties while being able 
to reproduce the input. The steps of VMD are: 

1) For each mode, the Hilbert transform is used to obtain 

a unilateral frequency spectrum.  

2) The mode’s frequency spectrum is shifted to 

“baseband”, by mixing with an exponential that is tuned to 

the respective estimated centre frequency. 

3) The bandwidth is estimated through the H1 Gaussian 

smoothness of the demodulated signal. 

A comparison between the decomposition methods is 
shown in Fig. 3, Fig. 4 and Fig. 5. The approximate signal in 
the WD contains more detail, while the EMD and VMD 
provide a more approximate signal. This same characteristic 
follows into the first detailed IMF, where the WD is aiming to 
produce signals similar to wavelets, where as EMD and VMD 
are trying to isolate certain characteristics. 

III. FORECASTING MODELS 

Artificial neural networks (ANN) are a popular supervised 
machine learning approach to wind power forecasting. They 
are inspired by biological neural networks. Consisting of 
different layers with neurons that have weighted connections, 
allowing it to learn non-linear relationships. 

A. Multi-layer Perceptron with Back Propagation 

Multi-layer perceptron (MLP) using Back-propagation 
(BP) is one of the most commonly used ANN and have been 
widely studied in the prediction of wind power and wind speed 
[7]. It is able to realize any non-linear signal with a simple 3-
layer structure (input, hidden and output layer). 

The BP-MLP model is implemented as a hybrid model by 
first decomposing the wind power signal into three modes. 
The three decomposed signals are then used to train three 
separate BP neural networks. Each network containing 30 
neurons in the hidden layer as this was found to perform 
optimally for the wind power data. After each separate mode 
is forecast it is recombined to form the forecast signal. 

B. Long Short Term Memory 

The long short-term memory (LSTM) network was chosen 
as a wind power forecasting model, because of its promising 
results in recent literature [6]. The LSTM is a recurrent neural 
network (RNN), it is similar to the MLP neural network, 
though as it learns information from the last forecast is passed 
through to the next. Traditional RNN have the problem of 
vanishing gradients, which hampers the learning of long data 
sequences. The LSTM was created to counteract this problem, 
by introducing a forget gate. Allowing the network to be 
recurrent but also handle long data sequences. 

The LSTM was configured with 100 hidden neurons, 
though it can produce good results with less than 50 neurons 
in the hidden layer. The 100 neurons produced the best results, 
with the improvements in higher frequency components of the 

signal. There is also two ways to implement RNN, either 
sequence or recurrent. The sequence method has an output 
every time the network has inputs, whereas the recurrent 
implementation only outputs at the end of the data sequence. 
The recurrent implementation was found to be more 
computationally efficient and also produced better results, as 
each decomposed signal was able to be input into a single 
network one after the other, then have a reconstructed output. 
This removed the reconstruction step as the network was able 
to learn to reconstruct the original signal during training.  

 

Fig. 5. Flowchart of decomposition and forecasting neural network 

C. Convolutional Neural Network 

The convolutional neural network (CNN) was first 
proposed by LeChun et al in 1998 and has been widely applied 
in classification of images. The CNN model has also been 
shown to achieve good forecast performance of wind speed. 
The structure of a CNN is essentially a MLP network, where 
the input is a 2D image that is filtered reducing over-fitting 
problems, allowing parallelism and fast training. A typical 
CNN consists of an input layer, convolution layer, pooling 
layer, fully-connected layer and regression layer. 

The inputs to the model were arranged in a 2D matrix with 
the three decomposition signals along the columns and the 
inputs down the rows. This created a single NN that could 
reconstruct the original signal similar to the LSTM model. In 
the convolution layer 100 filters was used. 

IV. FORECAST HORIZONS 

The majority of the literature focuses on wind forecasting 
for large grid connected wind generation. In deregulated 
energy markets generation units are allocated in one day-
ahead schedules for operational security, and incremental 
generation changes are made hourly [14]. For wind generation 
to commit to these requirements they require accurate one 
hour and 24 hour forecasts. The models proposed for this will 
either use multiple models to forecast one hour and 24 hours 
[15] or use multi-step forecasting for every hour over the 24 
hours [16]. 

Isolated power systems are not operated as a market, but 
as a single hybrid power system. The high penetration of 
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renewable energy and small size of the system creates grid 
stability problems. Requiring shorter forecast horizons for 
load and generation, which is primarily wind power. The 
hierarchy control system of an isolated power system has four 
stages: Inertial, Primary, secondary and tertiary frequency 
response. The inertial response is almost instantaneous and the 
primary response regulates voltage and frequency within 
seconds of it changing. The offset left by primary control can 
be removed by adjusting dispatchable assets with secondary 
control, which operates from 30s to 15min. Finally tertiary 
control maintains the optimal operating conditions, by re-
scheduling generation using economic or priority dispatch. 
Scheduling for duration's of  5min to 1hr [2] [17]. 

Forecasting horizons that will be considered in this paper 
are: 

• 10-minute forecast: Secondary control: Reserve and 
frequency control 

• 1-hour forecast: Tertiary control: Unit Commitment 
and economic dispatch 

V. CASE STUDIES 

A. Error Indicators 

The error indicators currently used to evaluate wind power 
forecasting are mean absolute percentage error (MAPE), root 
mean squared error (RMSE) and normalised RMSE 
(NRMSE). 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

𝑃𝑡
𝑤 − 𝑃𝑡

𝑓

𝑃𝑤
 

𝑁

𝑡=1

× 100 (4) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑃𝑡

𝑤 − 𝑃𝑡
𝑓

)
2

𝑁

𝑡=1

 (5) 

Where 𝑃𝑡
𝑤 and 𝑃𝑡

𝑓
 are measured and forecast wind power 

at sample t, respectively. N is the number of data samples 
tested. Pw is the mean of the sample data and Pc is the capacity 
of the wind farm. 

Both MAPE and NRMSE are relative error calculations 
and can be used to compare accuracy of various forecasting 
methods. Though NRMSE is not a reliable error calculation 
when used to compare forecast error of different wind farms. 
The power output can vary between zero and the wind farm 
capacity, where some wind farms may average 50% of 
capacity and others 70%. Therefore, NRMSE is not used to 
evaluate model performance. 

The standard error calculation of RMSE, cannot be used 
to evaluate model performance on different wind farms. 
Though is an important measure for power system operation, 
as it indicates the expected power difference between the 
forecast and the actual wind power. 

B. Data Source 

To train and evaluate the wind power forecasting models 
proposed in this paper, wind power data was gathered from 
Hydro Tasmania's isolated power system on King island (KI).  
Operating five turbines the installed wind capacity is 
2.45MW, capable of providing up to 100% of the islands 
energy demands with enabling technology. The temporal 
resolution of the data is 3 seconds, providing considerable 
detail that allows for different temporal resolutions to be 

evaluated. The training samples used are from 1st January 
2019 to 31st August 2019. The data from 1st September to 
31st December is used to test the forecast models. 

C. Analysis of Temporal Resolution 

The wind power data from KI represents the instantaneous 
power output of the wind farm every three seconds. To 
simulated different temporal resolutions and reduce external 
errors, the same wind data is used but sampled at different 
rates. The sampled data is then decomposed by one of the 
three methods and each mode is normalised. The eight months 
of training data will have a different data length depending on 
the temporal resolution. To include the range of unique power 
characteristics over that time, fifty thousand samples are taken 
from the decomposed data, that are spread evenly across it. 
The thousands of samples are then used to train the neural 
network forecasting models. The testing of the models is done 
in the same way, to test across the whole four months but also 
test 25 000 data points. 

The two cases that were consider for analysing temporal 
resolution are the forecast horizons ten minutes and one hour. 
The forecast errors of the ten minute and one hour forecast are 
shown in Table I and Table II respectively. 

Table I:RMSE (kW) of 10-minute forecast, comparison of models with 

different data resolutions 

Forecast Models Temporal Resolution (min) 

10 5 2.5 1 0.5 

LSTM-WD 26.28 20.22 71.02 190.30 212.37 

LSTM-VMD 149.10 86.43 131.41 193.12 209.55 

LSTM-EMD 136.81 148.93 171.03 199.77 211.22 

LSTM 183.70 181.80 182.25 180.31 181.17 

BP-WD 136.04 158.96 181.10 195.74 208.08 

BP-VMD 138.63 184.99 243.81 383.88 273.49 

BP-EMD 144.51 150.98 166.34 200.91 215.15 

BP 220.47 212.18 188.45 290.08 295.52 

CNN-WD 345.11 210.79 297.76 241.76 224.10 

CNN-VMD 291.17 180.90 454.97 200.11 356.25 

CNN-EMD 223.00 221.20 384.95 256.75 290.52 

CNN 283.45 423.14 279.14 435.32 1470.79 

 

The temporal resolution for a ten minute forecast is 
compared in Table I , where the lowest error for each NN is 
highlighted in bold. It shows that when forecasting ten 
minutes a five minute data resolution has the lowest RMSE 
for the LSTM and CNN, while a ten minute data resolution 
has the lowest error for the BP model. For the LSTM and the 
BP the WD consistently had the lowest error for all temporal 
resolutions, whereas the CNN error isn't related to the 
decomposition method. Another interesting thing to note is 
that the LSTM model with no decomposition had the same 
error for all data resolution, which was not the case for the 
other two networks. 

Forecasting 1 hour is shown in Table II, where the results 
are similar. The lowest errors were found for the BP and CNN 
with a resolution of 30 minutes, the LSTM produced the 
lowest RMSE with a data resolution of 60 minutes. The WD 
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consistently produced the lowest forecast error for each 
model. 

Table II: RMSE (kW) of 1-hour forecast, comparison of models with 

different data resolutions 

Forecast Models Temporal Resolution (min) 

60 30 20 10 5 

LSTM-WD 112.97 165.04 166.14 221.33 276.57 

LSTM-VMD 308.90 506.88 291.58 244.69 278.66 

LSTM-EMD 242.39 260.71 255.96 262.42 288.59 

LSTM 288.35 265.47 267.97 261.53 265.84 

BP-WD 205.92 175.91 190.50 256.67 264.77 

BP-VMD 265.61 604.57 231.08 265.95 273.75 

BP-EMD 234.73 198.05 202.33 219.09 264.25 

BP 318.98 298.39 299.98 295.59 312.13 

CNN-WD 212.63 157.38 231.51 301.86 295.00 

CNN-VMD 294.35 380.87 254.81 268.32 287.00 

CNN-EMD 293.55 243.73 242.34 282.36 328.51 

CNN 422.30 340.94 354.86 311.96 295.59 

 
It is shown that for both forecast horizons the LSTM-WD 

forecasting model consistently produced the most accurate 
wind power forecast. The other finding is that the optimal 
temporal resolution is relative to the forecasting horizon, it is 
either the same or half of the horizon. The detailed parts of the 
wind data oscillate rapidly and by sampling the data twice for 
every forecast horizon it creates a signal that has a period 
equal to the forecast horizon. 

D. Analysis of Input Length 
Table III: RMSE (kW) of 10-minute forecast, comparison of models with 

different input length 

Forecast Models Input (hrs) 

0.5 1 2 4 6 

LSTM-WD 17.46 20.30 25.24 35.39 39.75 

LSTM-VMD 87.82 86.86 86.02 89.46 98.33 

LSTM-EMD 149.66 149.59 153.12 156.40 161.90 

LSTM 211.23 210.96 211.23 211.61 214.65 

BP-WD 155.25 155.86 156.93 160.94 165.62 

BP-VMD 181.11 191.25 202.55 204.68 222.22 

BP-EMD 138.77 139.55 149.04 167.88 175.22 

BP 208.56 209.51 228.48 228.49 262.88 

CNN-WD 145.10 346.93 249.72 239.14 353.49 

CNN-VMD 216.94 224.53 244.41 299.56 253.19 

CNN-EMD 193.59 347.25 394.58 283.31 288.93 

CNN 284.84 275.98 385.07 243.63 477.43 

 
The optimal temporal resolution was found to be half the 

forecast horizon. Using the optimal resolution, the models are 
compared with different input lengths. For both forecast 
horizons the input length is represented in hours, although 
temporal resolution of 5 minutes will have 12 data points for 
every hour and 30 minute data resolution will have 2. It is 
represented in hours to show how much of the long term trend 
is required for different forecasting horizons. Table III shows 

the 10 minute forecast and Table IV shows the results of 1 
hour forecast. 

The results show that a 10 minute forecast requires only 
30 minutes of inputs, equating to six data points. Longer 
inputs are shown to increase the error of the forecast. This 
shows that the short horizon requires only the short term 
details of the signal and the long term trend is less important 
causing the model to lose focus on the short term detail. For 
the 1 hour forecast the results show that the lowest error is 
found with an input length of six hours, equating to 12 data 
points. This shows that longer horizons require more long-
term information of the signal, although when the input is too 
long it can cause the model to miss detail. 

 
Table IV: RMSE (kW) of 1-hour forecast, comparison of models with 

different input length 

Forecast 

Models 

Input (hrs) 

2 6 12 24 48 

LSTM-WD 154.40 66.52 76.80 107.08 171.09 

LSTM-VMD 443.50 418.01 404.76 393.43 362.02 

LSTM-EMD 259.26 251.19 253.98 273.31 296.00 

LSTM 320.33 318.56 322.41 325.52 347.94 

BP-WD 162.66 153.91 146.93 156.95 194.44 

BP-VMD 1014.7 861.58 733.34 782.42 762.89 

BP-EMD 191.04 205.00 209.31 226.53 254.70 

BP 295.69 301.62 318.50 325.95 358.16 

CNN-WD 215.21 198.93 212.75 280.07 335.14 

CNN-VMD 467.15 395.42 874.73 669.90 663.66 

CNN-EMD 348.53 293.75 357.31 334.19 546.48 

CNN 388.71 398.15 385.98 410.60 395.13 

 

E. Evaluation of models 

 To evaluate the models the best configuration of each 
neural network model is selected for each forecast horizon. 
They are compared against the most widely used short-term 
method of forecasting, the Persistence method. A short four 
hours portion of the forecast is shown in Fig. 6 and 24 hours 
in Fig. 7 to compare the forecast of the 10-minute and 1-hour 
horizon, respectively. Details of the forecast error are shown 
in Table V and VI. 

Table V: Forecast error and calculation time of 10-minute forecast models 

Forecast Model RMSE (kW) MAPE (%) Time (s) 

LSTM-WD 17.46 0.99 5.02 

BP-WD 109.95 7.99 15.87 

CNN-WD 145.11 11.40 4.13 

Persistence 235.30 14.62 0.01 
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Fig. 6. 10-minute forecast model comparison over four hours 

 

 
Fig. 7. 1-hour forecast model comparison over 24 hours 

Table VI: Forecast error and calculation time of 1-hour forecast models 

Forecast Model RMSE (kW) MAPE (%) Time (s) 

LSTM-WD 66.52 4.41 4.08 

BP-WD 146.95 11.17 3.61 

CNN-EMD 293.73 23.88 4.20 

Persistence 312.40 24.08 0.01 
 

VI. CONCLUSIONS 

This paper compared the wind power forecasting of hybrid 
neural network models using signal decomposition 
techniques. Three-layer decomposition represented a long-
term component, the fluctuation and random characteristics of 
wind. The WD with the 1st Coiflet as the mother wavelet, 
produced a signal that was forecast more accurately by the 
three forecast neural network. The LSTM-WD produced 
considerably less forecast error than the BP and the CNN, over 
both 10 minute and 1 hour forecast horizons. Analysis on the 
temporal resolution of forecasting data found that, data 
resolutions of half the forecast horizon were optimal. 
Providing the amount of detail to forecast accurately, while 
also reducing the excess random fluctuations in the training 

data. The length of time-steps required to forecast 10 minute 
is only 30 minutes of data points, and as the forecast horizon 
increases the model requires longer input with less resolution. 
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