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Abstract 
Virtual reality is now being used throughout various sectors.  It is a tool which is being increasingly relied 
upon to support cost-effective and safe opportunities to build skills development.  There has, however, 
been little research into whether a virtual environment provides the same effectiveness as a real-world 
environment.  

For virtual reality to be an effective tool, we must better understand the impact of using it.  To determine 
this, we investigate whether there is an additional cognitive load when operating in a virtual 
environment and we measure whether such a load impacts upon an individual’s performance.   

Through the use of a ‘quadrant’ study in both real and virtual environments and with both the presence 
and absence of a secondary task, we identified that there is no significant cognitive load added when 
working within the virtual environment, and so the use of virtual reality can indeed be effective in terms 
of comparative performance with the real-world. 

This research was conducted with approval of the Human Research Ethics Committee (Tasmania) 
Network; the reference number for the study is: H0018156. 

Keywords: virtual reality, cognitive load, DRT, training 
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1 Introduction 
Virtual reality (VR) has experienced a broadening in application over the last few years and with this, 
has expanded beyond gaming and into mainstream society (Madary and Metzinger 2019).   An indicator 
of this is the range of available devices including Sony PlayStation VR, Oculus Rift, Oculus Go, HTC Vive, 
Google Cardboard, Samsung Gear, Microsoft HoloLens, Lenovo Mirage Solo, Asus VR, and many others 
(Ippolito 2019; Sawh 2018; Sarmad 2019). 

Virtual reality allows for the mirroring of real-life situations within physically safer or cheaper contexts 
and, as such, is well suited to the application of training and simulation.  It has been applied in contexts 
ranging from school education to professional development and skills training (Weyhe et al. 2018; 
Sourin et al. 2000; Dyer et al. 2018; Grochowska et al. 2019).   

The benefits of virtual reality to enhance education and skills training have been noted by many, 
including for example (Chaos Theory Games 2020): 40% fewer mistakes being made by surgeons who 
are trained in virtual reality rather than in conventional methods at the University School of Medicine 
in Atlanta (Wilson 2016), 80% savings in the training time of Walmart staff, and the ability to safely 
expose learners to virtual chemical and construction environments, thus reducing health and safety 
concerns.  Stanford University and the Technical University Denmark (Wilson 2016) found that learners 
recall more when using virtual teaching methods than with traditional methods, resulting in a 76% 
increase in learning effectiveness, and so, perhaps unsurprisingly, we see increased interest in virtual 
reality as a training tool.  According to ABI Research (Chaos Theory Games 2020), the enterprise virtual 
reality training market generated US$216 million in 2018 and is currently (2020) valued at US$15.1 
billion.  This investment is underpinned by an inherent assumption that virtual reality will enhance the 
learning experience, and provide improved learning outcomes for learners, and that learning is not 
inhibited in this virtual context.  

It is claimed (Kaplan-Rakowski and Wojdynski 2018; Chaos Theory Games 2020) that virtual reality 
improves retention and engagement, minimises risks to people, and that it can contextualise and 
immerse learners in their training (Young 2020), and yet very few studies have investigated the effects 
that virtual reality has upon the individual’s ability to perform when in the virtual environment, and 
whether they are capable of thinking and acting in the way they would outside of that virtual 
environment in the real-world.  Would a surgeon using virtual reality to complete an operating 
procedure be helped or hindered by the immersive environment?  In other words, is there a cognitive 
load to working in virtual reality which would make the environment less effective or perhaps dangerous 
to work in?  Or is the cognitive load of the real-world reduced within virtual reality?  These questions 
have not been explored.  

We therefore need to test the assumption that virtual reality does not inhibit practice. If we do not 
understand the impacts on performance that virtual reality brings, we may be developing solutions that 
are not enhancing the practice or learning experience, and may in fact be detrimental to those involved 
if the persons immersed in virtual reality are becoming distracted by, or confused in, the virtual 
environment. 

This paper reports on research into whether virtual reality offers an effective learning environment in 
order to either add confidence to its use in training and beyond, or conversely, to provide evidence that 
there should be limits placed upon its use.  The research question posed by this study is: Does the use of 
virtual reality technology increase the cognitive load of an individual as they undertake a task?  To 
this end, we measure the cognitive load of individuals while they are engaged in a primary task within 
virtual reality and in the real-world.  We add a contemporaneous secondary task as a proxy for cognitive 
load and report our findings. 

2 Background 

 Virtual Reality 

Virtual reality sits firmly within the domain of Computer Science as a technology which allows people to 
interact multimodally (Foloppe et al. 2018). From its origins in Morton Heilig’s Sensorama system in 
the late 1950s (Andreoli 2018; Adams and Merklinghaus 2014), the use of virtual reality has expanded 
beyond gaming — Sega introduced the Sega virtual reality headset for the Sega Mega Drive console (Book 
News Inc. 2011) — and virtual reality technologies are now being used and researched as viable tools 
within a variety of institutions, industries, and for beneficial applications (Madary and Metzinger 2019).  
Virtual reality is widely used in physical, cognitive, and psychological interventions: for rehabilitation, 
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for education/training in expensive and/or dangerous domains such as aerospace, military, medicine, 
and for therapy (Bortone et al. 2018; Massetti et al. 2018).   

 Applications of VR to Simulation and Training 

Simulation based training and assessment is an important role in training and virtual reality simulators 
are used to improve comfort and proficiency in many training fields including science, medicine, and 
the military (Wilson 2016).  

Virtual reality based learning tools are used in the training of medical professionals  (Aksoyet al. 2019)  
with robotic systems and robot arms in virtual surgical applications (Almusawi et al. 2019).  

Peterson et al. (2018) studied the effect of balance beam walking  (including real-world and virtual 
reality) tasks.  Their findings indicated that virtual reality provided realistic experiences that induced 
psychological stress, as well as impairing the physical and cognitive loading performances during the 
process of maintaining balance. 

Using immersive virtual reality and a self-avatar, Steed et al. (2016) conducted experiments on the 
impact a self-avatar would have on cognitive load by creating a series of demanding tasks for participants 
to complete.  The trials consisted of virtual reality immersion with and without a self-avatar.  The 
researchers concluded that those participants with a self-avatar were better at recall and concluded that 
“a self-avatar is important, not just for direct manipulation but also to reduce the cognitive overhead of 
performing a broader class of tasks that involve cognitive processing.” (Steed et al. 2016, p.7). 

As we can see from these studies, virtual reality offers a great opportunity to support training and skills 
development, as long as it offers an appropriate proxy for the real-world, and does not inhibit the 
cognitive load of learner. 

 Cognitive Load 

Cognitive skills include problem-solving and decision-making and complex decision-making can be 
developed in simulated environments — for example by eye tracking technology (Tichon 2016; Meriem 
et al. 2018).  Cognitive load is the concentration level or mental workload used to retain information in 
the working or short-term memory. Hart and Staveland (1988) define mental workload as the 
“…relationship between the amount of mental processing capability or resources and the amount 
required by the task”. 

There are three types of cognitive load: intrinsic, extraneous, and germane.  Extraneous cognitive load 
refers to the unnecessary, ineffective cognitive load that is determined by the way the information is 
presented (Hasler et al. 2007). Germane cognitive load is the work put in to create a permanent store of 
knowledge or schema (Sweller 2010). This research will focus on intrinsic cognitive load — the effort put 
in for a specific task or topic and how dual tasking may impact that effort.   

There is a wealth of research which has been conducted on measuring cognitive load in experiments.  
The experiments include web-based environments, instructional animations versus static-picture, 
immediate and delayed ratings of problems, divided attention during multimedia learning, Mobile 
Remote Presence operation, and driving a car with distractions from peers and instructors.  The reader 
is referred to Björnfot et al. (2018), de la Torre et al. (2016), Gray et al. (2015), and Park and Brünken 
(2014).   

Measuring intrinsic cognitive load is achieved through the use of a Detection Response Task (DRT) — a 
tool originally created to measure driver distraction (ISO:17488, 2016) by the International 
Organisation for Standardisation (ISO) that assesses cognitive loading associated with primary and 
secondary tasks (ISO:17488, 2016) which can be implemented outside of driving. 

Bird et al. (2019) used an ISO:17488 recommended standardised device to research how having to lie in 
a narrative affects the cognitive load of participants.  The results showed that they “…found strong 
support for an increase in cognitive load when producing a narrative lie, as measured by both slowed 
DRT responses and increased response omissions….” (Bird et al. 2019, p.936) 

Castro et al. (2019) investigated cognitive load using experiments in which participants undertook four 
pursuit tracking activities using a driving simulator steering wheel to track a ball that moved 
continuously on the screen.  The DRT device was a dash-mounted light of two intensities of red which 
was presented as a stimulus occurring randomly.  The response devices were two micro-switches 
attached to both thumbs. The response times (RT) and response omissions were both automatically 
captured by the software. They found that “it is a fundamental characteristic of human cognition that 
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dividing attention between two or more tasks results in performance decrements (i.e. slower and more 
error prone behaviour) compared to when each task is performed separately.” (Castro et al. 2019, p.33). 

3 Methodology  

 Experimental Objective 

Our goal was to discern whether there was a cognitive load to the use of virtual reality.  To do so we 
needed to measure the cognitive load of a real world task and the cognitive load of the same task when 
completed within virtual reality and compare them. 

There are a number of variables that we need to control: 

• it is possible that prior experience of the task will yield better performance for some individuals 
than for others; 

• could there be demographic differences — for example youth or experience of gaming consoles 
or virtual reality — which may give rise to better performance; 

• is it possible that an individual’s performance may increase the more time they spend 
completing the task which might mask cognitive load; and 

• is it possible that an individual’s performance may increase the more time they spend immersed 
in virtual reality again masking the inherent cognitive load. 

Each of these was addressed in the experimental design. 

 Experimental Design 

The primary task was to play TetrisEffect® (The Deep) to the best of the participants’ ability for a ten 
minute period (which was the recommended time to spend within virtual reality (Dyer et al.2018)).  High 
scores were recorded so that improvement over time could be measured, and a per-individual base-line 
obtained.  Figure 1 illustrates the user’s view of the game. 

 

 
Figure 1: Sample image of TetrisEffect® (The Deep) during virtual reality task. 

Tetris® was developed in 1984 by Alexey Leonidovich Pajitnov (Gerasimov 1994–2003).  The game 
consists of seven differently shaped tile pieces with each tile piece consisting of four segments each. The 
tiles drop from the top of the screen at random and when they can drop no further, they create a pile 
and when the pile reaches the top of the screen the game ends.  Researchers have used Tetris® to study 
developmental disorders, visuospatial working memory, trauma, cravings, and medical conditions.  
Young (2020) expounds its use in other studies (Bikic et al. 2017; Lau-Zhue et al. 2017; Pilegard and 
Mayer 2018; Holmes et al. 2010; Skorka-Brown et al. 2014) and its utility as an appropriate tool is 
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supported by Lindstedt and Gray (2015, p.947): “…as a cognitive task, Tetris® hits the sweet spot of 
being simple to comprehend and tractable to analyse, but complex enough to remain cognitively 
interesting and rewarding to master.” 

To measure cognitive load, a stimulus — a detection response task — was introduced as a secondary task.  
When the DRT device activated, the participants were required to respond to it while continuing to play 
the game.  The average time taken to respond was used as a proxy for cognitive load: the quicker the 
responses the lower the cognitive load, the slower the responses the higher the cognitive load felt by the 
individual.  The participants undertook the task of playing Tetris® four times: 

• once on a PC (non-VR) without the interruption of a DRT; 

• once when immersed in VR without the interruption of a DRT; 

• once on a PC (non-VR) with the interruption of a DRT; and 

• once when immersed in VR with the interruption of a DRT. 

The results of these four rounds were measured and compared to identify any changes in DRT response 
time due to the introduction of the virtual reality context.  To address the possibilities of improvement 
due to time spent on the task or adjustment to the environment, a variation in the order of completion 
of the task in the real-world and when immersed in virtual reality was required.  Similarly, to address 
the possibility of adjustment to the secondary task, variation in the order of completion in the real-world 
and in virtual reality was required. 

There are 4! = 24 possible combinations in the ‘quadrant’ outlined above and we allocated these 
randomly to participants in order to eliminate the effect of the primary task, secondary task, and 
environment upon the results.  Differences in response were calculated to ensure comparisons were 
made per individual rather than across the population, and demographic information was collected in 
order to discern trends amongst participants sharing characteristics. 

 
Figure 2: The DRT equipment (with stimulus at top left with white tape and foot pedal at top right). 

Experimental Procedure 

Each participant was asked to complete a demographic survey and was then offered a one-hour time slot 
to complete the four tasks.  The virtual reality environment was a Sony PlayStation 4. 

Shown in Figure 2, the DRT device used conformed to ISO standards (ISO  2016), and generated a tactile 
stimulus which was attached to each participant’s clavicle; it vibrated at random intervals ranging from 
3–5 seconds for approximately 100ms duration.  Participants were required to respond to the secondary 
stimulus as quickly as possible using a foot pedal (see Figures 2 and 3 (right)). Each response (pedal 
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push) or omission (no response within one second) was captured.  Timing was recorded at millisecond 
accuracy.  

Figure 3 shows a volunteer — not a participant in the study — wearing the equipment for the virtual 
reality DRT (Young, 2020) with a close-up of the foot pedal on the right. 

 
Figure 3: Volunteer demonstrating the use of the equipment. 

Once gathered, the results were analysed.  First, quantile–quantile probability plots (Q-Q plots) were 
used to determine whether the results were from Normal distributions.  Once this had been established, 
Student’s t-tests were conducted to determine whether there was any statistically significant difference 
between the response times to the secondary stimulus within virtual reality. 

 

4 Results 

 Demographics 

28 participants were recruited and 25 completed the survey and all four activities.  Of these respondents: 

• 72% were male, 24% were female and 4% preferred not to say; 

• 52% were aged 18–25, 44% were aged 26–35, and 4% were aged 46 or older; 

• 40% had played video games in the past, 4% still played sometimes, 40% still played often, and 
16% still played very often; 

• Most respondents had played games on multiple devices. The most responses were for 
computers (24 participants) and mobile devices (23) with a PlayStation used by 15; 

• The controllers with which the participants were most familiar were keyboards (23 
participants), touch screens (22), and mice (22); 

• 28% had never played Tetris®, 60% had played in the past, 4% continued to play sometimes, 
and 8% played often; and 

• 9 participants had never used virtual reality, 12 had used virtual reality in the past, 3 still did 
sometimes, and 1 still did often.  When asked how often, one said that they used virtual reality 
once or twice a week, one used virtual reality once or twice a fortnight, and one used virtual 
reality once or twice a month. 
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 High Scores and Performance 

Table 1 illustrates the High Scores achieved by the participants in the four environments. 

 

Participant 
Number 

Virtual Reality 
DRT Score 

Virtual Reality 
Score 

PC (Non-VR) 
DRT Score 

PC (Non-VR) 
Score 

121 13088 6334 8116 10110 

131 12594 13024 9006 15036 

141 12305 18341 13796 14790 

151 8679 10566 10866 15132 

161 3820 1751 1246 3018 

171 2656 2175 2446 960 

191 8526 8990 6317 7882 

212 13706 13445 11710 8307 

222 2807 3725 1707 3028 

232 11448 7844 12160 14131 

242 15311 17160 10601 14005 

252 19201 20996 16610 18139 

262 16010 16848 13577 16809 

272 11727 19725 15731 16325 

292 12360 9270 1588 11519 

303 3269 1049 3873 1755 

313 8341 11837 6460 11402 

323 5885 10190 9086 10156 

333 8953 10988 8183 6162 

363 29136 27582 19784 12446 

373 4661 9647 12416 11108 

383 11522 7646 13969 8954 

414 10216 5857 13029 8785 

454 9987 7033 4796 9690 

464 33780 17256 23572 27864 

Table 1: Total Scores for each task per participant. 

The mean high scores together with standard deviation, minima, and maxima are shown in Table 2.  
Quantile-quantile probability plots confirmed the values were normally distributed.  All participants’ 
scores generally improved in Tetris® the more they played (Young, 2020).  Although not significant, 
this trend supports the decision to systematise the presentation of the four activities. 

Detailed analysis can be found in (Young, 2020) but for brevity: 

• Those aged 26–35 performed better in Tetris® than the other age-groups; 

• Those participants who had never played Tetris® scored more consistently throughout the four 
tasks; and 
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• Those participants who had played Tetris® in the past achieved the highest scores throughout 
the four tasks. 

The existence of these differences supports the decision to compare the performances of individuals. 

 

 Virtual Reality DRT 
Scores 

Real-World DRT 
Scores 

Virtual Reality 
Scores 

Real-World 
Scores 

Mean 11599.52 10025.80 11171.16 11100.52 

St Dev 7231.60 6438.86 5641.77 5770.72 

Min 2656 1049 1246 960 

Max 33780 27582 23572 27864 

Table 2: Descriptive statistics for total scores per task. 

 Cognitive Load 

After determining — again with quantile-quantile probability plots — that the results were normally 
distributed, two-tailed T-Tests were conducted for each like-for-like pair (with DRT, without DRT, real-
world, Virtual Reality) to measure whether there is a statistically significant difference to achievement 
under virtual reality.  These are shown in Table 3. 

 
Sample 1 Sample 2 t df p 

Real-World DRT Scores Virtual Reality DRT Scores 0.840 24 0.404 

Real-World Scores Virtual Reality Scores 0.040 24 0.968 

Real-World DRT Scores Real-World Scores -0.652 24 0.517 

Virtual Reality DRT Scores Virtual Reality Scores 0.216 24 0.829 

Table 3: Simple Paired Sample T-Tests — results for scores. 

For statistical significance, the two-tailed T-Test p-values would need to be < 0.05.  Hence there is no 
significant difference in scores across the different activities. 

Next, we consider the secondary stimulus (DRT) in detail.  A summary of the population’s results is 
shown in Table 4.  An omission is registered when a response to the secondary stimulus was not provided 
within one second. 

 

 Real-World 
Responses (ms) 

Virtual Reality 
Responses (ms) 

Real-World 
Omissions (Count) 

Virtual Reality 
Omissions (Count) 

Mean 644.22 635.76 76.96 75.44 

St Dev 109.07 101.02 43.68 42.74 

Min 445.71 426.39 7 3 

Max 870.95 815.05 147 160 

Table 4: Descriptive statistics of real-world and virtual reality responses and omissions 

Once again, two-tailed T-Tests were conducted on the response times and the omission times.  Results, 
shown in Table 5 also illustrate that there is no statistical difference between the responses to the 
secondary task in the two environments. 
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Sample 1 Sample 2 t-value df p-value 

Real-World Responses Virtual Reality Responses 0.700 24 0.490 

Real-World Omissions Virtual Reality Omissions 0.372 24 0.713 

Table 5: Simple Paired Sample T-Tests results for both responses and omissions. 

5 Conclusions 
The use of virtual reality has expanded beyond gaming into training and use in a variety of work and 
therapy-based sectors.  This has occurred without an investigation into the cognitive load of doing so.  
We have sought to determine whether a virtual reality environment used for training and professional 
activities allows an individual to perform as they would in the real-world or whether there is an 
additional cognitive load when immersed in virtual reality. 

To discover this, 25 participants completed the same task within the real-world and within virtual 
reality.  We have found that their performances are not significantly different (see Table 5). 

Additionally, we have investigated the cognitive load in the two environments through the use of a 
secondary task.  Again, we have found that their performances are not significantly different (see Table 
3). 

We have observed that an external stimulus, imposed as a secondary task to serve as a proxy for cognitive 
load, does not impact in a statistically significant way upon the concentration level of a primary task and 
that that primary task is performed as well within virtual reality as it is outside of virtual reality.   

We can therefore conclude that there is no additional cognitive load when completing a task while 
immersed in virtual reality.  And that as such, virtual reality is not different from the real-world in its 
cognitive demand and that virtual reality is an effective proxy for more costly or potentially dangerous 
training environments. 

This new finding provides confidence to those utilising virtual reality beyond gaming that its application 
is not impacting upon the safety of those involved, nor is it detrimental to the abilities of those immersed 
in the virtual environment.  This research may in fact, illustrate that further adoption of virtual reality 
should occur and that transition to a digital future in virtual environments may be accelerated. 

 Further Work 

Although the primary and secondary tasks used in this study were found (through relevant literature) to 
be appropriate and fit-for-purpose, we recognise that the tasks used may not be representative of all 
activities conducted in virtual reality.  We also recognise that 25 participants — although sufficient to 
cover the 4! combinations — is a small study. 

In further work, therefore, we would like to expand participation and would like to investigate whether 
differing primary and secondary tasks reinforce our results.  Additionally, we have not as yet investigated 
the impact on segments of the population.  Our study was too small to make conclusions based around 
demographic differences.  We would like to explore this aspect in the future also. 
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