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Abstract. Diesel engine is using prominently in islands and remote areas due to its reliability 

and stability for power generation. In recent years, most of the isolated power systems (e.g., 

islands and remote areas) have integrated renewable energies to reduce both the cost and 

pollution in diesel power generating system. However, due to intermittent and stochastic 

behaviour of renewable sources (e.g., solar and wind), it is unable to eliminate diesel generation 

entirely. In that case, low-load diesel operation (operation < 30% of maximum rated load) is 

particularly relevant for its ability to support higher levels of renewable penetration. In this paper, 

a thermodynamic model was developed using MATLAB for diesel engine combustion and 

performance. This model includes sub models such as heat release rate, heat transfer, double-

Wiebe function, and ignition delay correlation. Engine thermal efficiency (TE), brake power 

(BP), indicated mean effective pressure (IMEP) and brake specific fuel consumption (BSFC) has 

been taken into consideration for performance analysis. The simulation results show that at 25% 

load, in-cylinder pressure and temperature are 168 bar and 2300 K which are the cause of lower 

heat release rate (74 J/deg) and longer ignition delay (0.25 ~ 0.5 ms higher than that of 

conventional mode) and significantly responsible for lower efficiency (18%), brake power (4kW) 

and higher brake specific fuel consumption (1.2 g/kWh).  

1. Introduction 

Nowadays, diesel engines are widely used in power generation and heavy-duty transportation sectors 

for its high efficiency and fuel economy, larger power range and longer lifetime[1]. For a number of 

years now, diesel engine driven generators have traditionally been used to supply electricity relatively 

small power networks those are associated with industrial complexes, marine applications, remote and 

island communities [2].   

Most of the remote areas and islands communities are usually dependent on conventional diesel 

generation due to its reliability, low fuel cost and operational simplicity [3]. More recently, some 

technologies have been introduced in remote areas and islands power systems via renewable energy 

penetration to minimise dependency of diesel. The most common and abundant renewable sources i.e. 

solar and wind are employed for significant reduction of fuel consumption, however, they are uncertain 

and discontinuance, not able to remove diesel generation completely [4]. Moreover, the possibilities of 

highest renewable integration in hybrid systems can reduce the engine load dependency which lead to 

decrease fuel economy as well as system cost. In this case, low load (below 30% of maximum rated 

load) diesel operations are most relevant and flexible for maximum renewable energy utilization.  
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In terms of engine operation flexibility, diesel engine load limits and combustion efficiency are the 

main issues that arise in hybrid diesel systems during conventional mode of diesel operation [5-7]. 

Usually, operating uninterruptedly under low load mode can lead to ignition problems, increase lubricant 

oil consumption, and fuel dilution. The emergence and persistence of residue has a negative impact on 

the functional behaviour and on the lifetime of the engine. In addition, when a conventional engine is 

operating in low load mode, it cools down and due to low temperature in chamber, the fuel is partially 

burned, which can in turn produce a white smoke with high hydrocarbon emissions. The percentage of 

unburned fuel caused incomplete combustion and poor engine performance [8]. As low load mode 

shares a similar model to that of the conventional diesel mode [9]. 

Basically, diesel engine performance is influenced by in-cylinder mechanisms because it contributes 

to the air-fuel mixing and control of fuel burnt rate. Understanding and reliable prediction of the 

combustion characteristics and key parameters such as ignition delay, cylinder temperatures and 

pressures, characteristics of fuel, mixture of fuel-air ration are required for diesel engine modelling and 

optimal performance prediction [10, 11]. The objective of this paper is to investigates low load diesel 

combustion profiles and performance characteristics using combustion-oriented engine modelling and 

simulation. Generally, diesel engine models are categorised into three types i.e., multi-dimensional, 

zero-dimensional, and quasi-dimensional based on the performance, combustion, and emissions[12, 13]. 

Multi-dimensional models are used to optimize injection timing, design of combustion chamber and 

swirl-ratio. This model can predict engine combustion, performance, and emissions precisely [14-16]. 

The zero-dimensional models are used to predict engine combustion, performance including fuel 

economy. Besides, zero-dimensional models are divided by two types. First being MZ model that 

coupled with combustion inputs, air get in into cylinder and evaporation of fuel. Multi-zone model can 

predict combustion profiles of burn and unburn zone, engine performance and emissions [17, 18]. 

Second is the single-zone model which is a simplified thermodynamics model which normally can 

predict the engine combustion profiles and engine performance [19, 20]. Basically, there is two way in 

modelling combustion phase in diesel engines: one is the Arrhenius type equations considering mixture 

density, oxygen mass fraction and vapor of fuel present in combustion chamber [21]. Another type is 

the Wiebe law that predict HR for combustion phases in consideration of ID, cylinder pressure and 

injection pressure and temperature, mass of fuel exist during combustion [22, 23].  

In this study, the simplified single-zone thermodynamic model was developed and simulated in 

MATLAB to analyse engine combustion performance considering different loading conditions 

especially under low load. A double Wiebe model implementation has been considered to predict the 

premixed and diffusion phase of diesel engine combustion. The single-zone model predicts engine 

combustion profiles such as in cylinder pressures and temperatures, HRR and also mass of fuel and 

ignition delay. Another aim is to find out the key mechanisms which are responsible for low load 

operations and analyse engine performance under that (low load) conditions. 

2. Theoretical Study 

2.1 Description of the Model 

The combustion phase starts where air is admitted into cylinder through the intake stroke which depends 

on the ambient condition imposed. In adiabatic compression phase, mass of air is compressed to high 

temperature and pressure after closing the intake valve. Gas mixture pressure can be modelled 

considering the adiabatic compression theory i.e.,  𝑃𝑉γ =constant, where 𝛾 is the specific heat ratio. 

The time between the fuel injection and fuel burnt starts, is called ignition delay which significantly 

depends on fuel injection timing and temperature, engine load and speed and fuel cetane number. 

Combustion starts after ID and an overlap phase (compression and combustion) has risen cylinder 

pressure and temperature to high. In the expansion phase, piston shifts from Top Dead Centre to Bottom 

Dead Centre. As the exhaust valve opens, emission gases are released through the exhaust manifold. 

Figure 1 shows the picture of diesel engine. All input parameters and baseline conditions for combustion 

model simulation are given in table 1. 
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Table 1: Engine specifications and baseline conditions for model simulations 

 

Engine  4-stroke diesel, dry heavy-duty, 

direct-turbo  

Bore, Stroke 84 mm, 90 mm 

CR 18.9 

Rated speed/power 1500 rpm/19.1kW 

Injection timing 200 BTDC 

Combustion duration 400 BTDC 

Inlet manifold temperature 300 K 

Inlet manifold pressure 1.5 bar 

2.2 Mathematical Representation of the Model 

The purpose of single zone combustion model is to consideration the process which happen during a 

diesel combustion cycle. A double Wiebe law and sub-models are used to simulate the HRR between 

the time of IVC to EVO.  

2.2.1 Engine Geometry. During combustion, piston moves from TDC to BDC, for which area of cylinder, 

volume, and stroke w.r.t. crank angle changes vice-versa. The combustion chamber volume, 𝑽 can be 

found from the kinematic motion model. The following derivations are used for engine geometry 

calculations [25] to calculate engine geometry,     

𝑋(𝜑) = (𝑙 + 𝑅) − (𝑅𝑐𝑜𝑠(𝜑) + (𝑙2 − 𝑠𝑖𝑛2(𝜑))
1/2

)   (1) 

𝐴(𝜑) =
𝜋𝐵2

4
+

𝜋𝐵𝑆

2
(𝑅 + 1 − cos(𝜑) + (𝑅2 − 𝑠𝑖𝑛2(𝜑))1/2)  (2) 

𝑉(𝜑) = 𝑉𝑐 +
𝜋𝐵2

4
𝑋(𝜑)      (3) 

where, 𝑅 is crank radius ratio, the rod length is 𝑙 (m). Cylinder bore and stroke are denoted by 𝐵 and 

𝑆, respectively and 𝜑 is the CA (deg.). 

2.2.2 Cylinder Pressure. The in-cylinder and pressure with CA is calculated from the first law of 

thermodynamics. The pressure rate change against CA resolved and found as follows,  

𝑑𝑃

𝑑𝜑
= −𝛾

𝑃

𝑉

𝑑𝑉

𝑑𝜑
+

𝛾−1

𝑉
(

𝑑𝑄𝑤

𝑑𝜑
) +

𝛾−1

𝑉
(

𝑑𝑄𝑖𝑛

𝑑𝜑
) (

𝑑𝑋𝑏

𝑑𝜑
)    (4) 

where, 𝑃 is pressure and 𝑉 is volume, 𝛾 is the specific heat ratio, 𝑄𝑖𝑛 is the HRR (J/deg.), 𝑄𝑤 is the 

cylinder wall heat loss rate (J/deg.). 

 

 

 
 

Figure 1. a) Diesel generator, b) Engine   
 Figure 2. Typical diesel engine heat release 

rate diagram identifying different combustion 

phase diagram [24]. 
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2.2.3 ID Correlation. Ignition delay is typically defined as the time between start of injection and start 

of combustion. For this study, an ID correlation has been taken using charge pressure and temperature 

at TDC. It also takes the engine’s mean piston speed into account and calculates the activation energy 

as a function of cetane number (CN). This expression can be written as [26], 

𝐼𝐷(𝐶𝐴) = (0.36 +  0.22 𝑆𝑝
̅̅ ̅ )𝑒𝑥𝑝 (𝐸𝑎 (

1

𝑅𝑢𝑇
) − (

1

17190
) + (

21.2

𝑃 − 12.4
)

0.63
)  (5) 

The temperature and pressure in engine inlet manifold are assumed as proportional to the values 

when the piston is at BDC. When the piston is at TDC, the mean CR during the ID 𝐶𝑅𝑎𝑣−𝐷𝑃  is 

proportional to the CR when the piston is at TDC which can be written as 𝑇 = 𝑇𝑚 × 𝐶𝑅𝑐−1  and 𝑃 =
𝑃𝑚 × 𝐶𝑅𝑐 , respectively. Here, 𝑐 is the polytropic exponent of compression, 𝑇𝑚  is the absolute inlet 

manifold temperature in 𝐾 and 𝑃𝑚 is pressure in bar. The CN is an indicator of combustion speed of 

diesel fuel which is determines the fuel quality. The following expression can be the substitute for the 

activation energy,  

𝐸𝑎 =
618840

𝐶𝑁+25
 (J/mol)    (6) 

where, CN is the cetane number.  

2.2.4 Heat Release Rate model. The characteristics of  diesel engine combustion are mainly determines 

through HRR that is found from the measured pressure data as a function of CA (𝝋)  [27]. For 

combustion, the numerical formulation is given as summation of premixed and diffusion phase. The 

HRR varies with the in-cylinder pressure, volume, crank angle (𝝋) and specific heat ratio via equation 

(7),   
𝑑𝑄𝑛

𝑑𝜑
=

𝛾

𝛾−1
. 𝑃

𝑑𝑉

𝑑𝜑
+

1

𝛾−1
. 𝑉

𝑑𝑃

𝑑𝜑
+

𝑑𝑄𝑤

𝑑𝜑
     (7) 

where, 𝑉 is the cylinder volume, 𝑃 is cylinder pressure, 𝛾 is the specific heat ratio (𝛾 =1.35 was assumed 

to be the average of 𝛾 values during the compression and expansion, respectively). 

2.2.5 Wall Heat Transfer Model. According to the Newtonian model, heat transfers to the wall are 

calculated with the following equation: 

𝑑𝑄𝑤

𝑑𝜑
=

ℎ𝐴(𝜑)(𝑇𝑔𝑎𝑠−𝑇𝑤𝑎𝑙𝑙)

6𝑁
      (8) 

where, 𝑇𝑔𝑎𝑠 is the temperature of gas and  𝑇𝑤𝑎𝑙𝑙 is the temperature cylinder wall. The instantaneous area 

of the cylinder is 𝐴(𝜑)  and ℎ is the coefficient of heat transfer which is determined by the models [14, 

28-30]. In this study the rate of heat transfer during the burning process, calculated using the Woschni 

model [14] that has presented by below equation: 

ℎ = 3.01426𝐵−0.2𝑃0.8𝑇𝑔𝑎𝑠
−0.5𝑣0.8    (9) 

where, v is the velocity of burned gas that is written as,  

𝑣(𝜑) = 2.28𝑈𝑝
̅̅̅̅ + 𝐶1

𝑉𝑑𝑇𝑔𝑟

𝑝𝑟𝑉𝑟
(𝑝(𝜑) − 𝑝𝑚)    (10) 

The quantities 𝑇𝑔𝑟, 𝑝𝑟 and 𝑉𝑟 are the references of state properties of inlet valve closing and 𝑝𝑚 is 

the pressure at same time to obtained 𝑝 (pressure without combustion) w.r.t. crank angle (𝜑). The 

constant 𝐶1 represents for compression process, combustion, and expansion process. The diesel engine 

combustion phases can be found on the typical heat release-rate diagram that has shown in figure 2. This 

diagram shows the ignition delay period (a-b), combustion phases such as premixed (b-c), controlled 

(c-d) and late combustion (d-e) w.r.t. crank angle (deg.). 

2.2.6 Wiebe Law. Normally Wiebe law is used to characterise fraction of mass burn or burnt rate of a 

combustion [31, 32]. In DI engines, there is always a premixed combustion phase, except for a diffusion 

combustion phase[33]. The rate of HRR in a diesel engine combustion can be predicted with relatively 

https://en.wikipedia.org/wiki/Diesel_fuel
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simple way  and reasonable accuracy using double-Wiebe function [23, 34]. The standard Wiebe 

function can be expressed as: 

𝑥𝑏(𝜑) = 1 − exp [−𝑎 (
𝜑−𝜑0

∆φ
)

𝑀+1
]     (11) 

where, 𝑥𝑏(𝜑) is the mass fraction burnt, 𝜑 is the crank angle, 𝜑0  is the crank angle at the start of 

combustion (SOC), ∆φ is the combustion duration defined as the difference between 𝜑0 and the end of 

combustion (EOC), 𝑀 is the form factor which determines combustion process curve shape, and 𝑎 is 

the efficiency process curve which controls the duration of the combustion process. In diesel engine 

there are two phases of combustions such as premix and diffusion. equation (12) can be considered for 

different combustion phases,  

𝑥𝑏(𝜑) = 1 − ∑ 𝛽𝑘
2
𝑘=1 . exp [−𝑎𝑘 (

𝜑−𝜑𝑘

∆𝜑𝑘
)

𝑀𝑘+1
]    (12) 

where, 𝛽𝑘 is fraction of burnt fuel in the 𝑘th is combustion phase. 

3. MATLAB Script Procedure  

Matrix Laboratory (MATLAB) language was used to develop engine combustion and performance 

model because of its suitability and ease of simulation of these parameters. The MATLAB script began 

with known engine inputs (bore, stroke, connecting rod length, number of cylinders, compression ratio) 

and operating conditions. Based on all inputs, the area of the cylinder, clearance volume, and surface 

area of the piston head were calculated. In this step, the atmospheric conditions were chosen, for 

example, the initial inlet temperature and pressure considered were 298 K and 1 atm, respectively. Fuel 

inputs such as mass of the fuel, calorific value, lower heating values (LHV) and air-fuel ratio were 

considered.   

In the first loop of the program, a specified index was used to calculate instantaneous engine 

properties such as engine geometry, fuel properties etc. In addition, instantaneous properties like volume, 

pressure, and temperature were scripted for to calculate work done during the total range of the cycle. 

Indicated power, friction power, brake power, correction factor, etc, were used to calculate the brake 

specific fuel consumption. MATLAB script also has statements to cope up with heat release rate and 

wall heat transfer with Wischini model. Ignition delay was calculated from Hardenberg model.  

In plot sections, each plot was sized and given a title based on the minimum and maximum variable 

values. MATLAB script was developed to have plots between all the performance parameters as a 

function of CA.  

4. Simulation Results and Discussion 

The effect of engine load on the combustion process, the in-cylinder pressure, temperature and heat 

release were predicted at different loading conditions at 1500 rpm speed operation. 

4.1 Combustion Analysis under Low Load Conditions 

4.1.1 Cylinder Pressure Figure 3 represents the cylinder pressure at full, 75%, 50% and 25% engine 

loading conditions w.r.t. crank angle using standard diesel fuel kinematic viscosity. It can be seen from 

figure 3 that between 50~70 ATDC range, the in-cylinder pressure seems peak for all loading conditions 

and the trends is to reduce in-cylinder pressure with decreasing engine loads. The possible reason is that 

it could be the quantity of fuel burned decreases with reducing engine load which caused a decrease in 

the energy releases, resultant in a decrease in peak cylinder pressure. The decrease in pressure profile 

for lower loading operations may be due to lean fuel-air ratio, which increases ignition delay.  
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Figure 3. In-cylinder pressure vs CA at various 

loading operations 

 Figure 4. HRR vs CA at various loading 

operations 

4.1.2 HRR and Cylinder Temperature. Figure 4 shows the HRR, as a function of CA at various engine 

loading conditions. It can be found from figure 4 that HRR decreases when engine load decreases. At 

25% loading conditions, the peak heat release rate was achieved in engine powered by diesel and is 

equal to 74 J/deg CA. In full load conditions, the highest rate of heat release in the engine was achieved 

and the value is 89 J/deg CA. The possible reason is that less charge is delivered to the cylinder during 

the intake stroke at low load, hence lower temperature is reached at the time of ignition start. At full load 

to the cylinder, more air and gas mixture is supplied, and at the beginning of fuel injection higher in 

cylinder temperature is reached which is shown in figure 5.   

 

 

 

Figure 5. Cylinder temperature with CA at 

various loading operations. 

 Figure 6. Engine brake power at different loading 

operations.  

4.2 Performance Analysis under Low Load Conditions  

4.2.1 BP. Figure 6 illustrates brake power for different loading conditions at 1500 rpm speed diesel 

operating condition. It can be seen from this figure that brake power reduces with reduction of engine 

load. As lower load leads the lean fuel-air ratio (i.e., in ignition chamber is being igniting with too 

much air and too little fuel), hence increase the heat, friction, and mechanical losses which reduce 

engine brake power. Poor atomization, vaporisation and mixing of the fuel droplet with air during 

combustion performance due to low engine loading range cause brake power reduction. In addition, at 

low load range operation causes poor combustion performance that result in lower value of brake power 

[35, 36]. 

4.2.2 BSFC. Basically, BSFC of a diesel engine depends on the brake power and mass of fuel flow at a 

specific engine speed and load [37]. Figure 7 illustrates the BSFC w.r.t. different engine loads at speed 

(1500 rpm). The trend of BSFC with load is that it decreases with engine load. The reason for increasing 

BSFC with decreasing load is that at lower loads, the in-cylinder temperature in combustion chamber 

treats low which is the main barrier for proper mixing and atomization, resulting in lower combustion 
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efficiency. In addition, at low load with little fuel i.e., lean fuel-air ratio, heat liberated is absorbed by a 

large air present, result in high BSFC. 

 

 

 

Figure 7. BSFC at different loading 

operations 

 Figure 8. BTE at different loading operations 

4.2.3 BTE. Figure 8 shows BTE as a function of different load for diesel engine run on the diesel fuel. 

For low load condition, the brake thermal efficiency is comparatively lower. This can happen due to 

increment of heat losses and reduction of power at reduced load. Low load ranges lead to lean air-fuel 

mixture, lower combustion, and longer ignition delay which can reduce efficiency.  

4.2.4 Ignition Delay. Ignition delay time with crank angle has illustrated in figure 9. The trend shows 

that ignition delay (in milliseconds) increases when engine load decrease. The reason for that is, as load 

decreases the residual gas and cylinder wall temperature decreases, hence, result in lower air temperature 

at injection, which increase ignition delay time. Investigation has shown that lower load exhibited the 

larger ignition delay, due to poor mixture preparation and combustion result which impacts on engine 

response time.  

 

Figure 9. Ignition delay at different loading operations 

5. Synthesis of Information  

In this study, a combustion model for diesel engine has been developed using MATLAB. The study 

focused on the combustion and performance profiles of diesel engine at low load ranges. It was found 

that engine combustion characteristics (e.g., pressure, heat release rate and temperature) and the engine 

performance characteristics such as BP and BT decrease with decrease in engine load. On the other hand, 

BSFC is higher at lower engine load due to lean fuel air ratio which leads to an increase air pressure. 

Ignition delay result shows that ignition delay is longer at lower load because residual gas and cylinder 

wall temperature decreases at lower injection temperature at low load conditions.   
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6. Conclusions 

Nowadays, diesel engines are widely used as a reliable source in remote and island areas power systems 

to provide electricity. In terms of flexibility and maximum renewable penetration, this system needs to 

reduce engine load for getting better fuel economy. In this study, a single-zone thermodynamic model 

was developed using MATLAB for analysing combustion and performance characteristics under low 

load conditions. The results show that at lower loading operations, engine brake power and thermal 

efficiency decreases in comparison with conventional mode operations due to lean air-fuel mixture, 

lower in-cylinder pressure and temperature. Furthermore, brake specific fuel consumption (BSFC) 

increases at low load condition due to decreasing brake power and mass of fuel flow. Compared with 

conventional model operations, low load diesel shows lower efficiency and longer ignition delay times 

due to lower injection temperature and pressure. The range of ignition delay value varies from 0.25~0.5 

ms compared to that of conventional model operations (above 50% load of rated power) due to poor 

mixture preparation which drops engine efficiency. 
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