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Abstract: The automated classification of acid rock drainage (ARD) potential developed in this
study is based on a manual ARD Index (ARDI) logging code. Several components of the ARDI
require accurate identification of sulfide minerals that hyperspectral drill core scanning technologies
cannot yet report. To overcome this, a new methodology was developed that uses red—green—blue
(RGB) true color images generated by Corescan® to determine the presence or absence of sulfides
using supervised classification. The output images were then recombined with Corescan® visible
to near infrared-shortwave infrared (VNIR-SWIR) mineral classifications to obtain information that
allowed an automated ARDI (A-ARDI) assessment to be performed. To test this, A-ARDI estimations
and the resulting acid-forming potential classifications for 22 drill core samples obtained from a
porphyry Cu-Au deposit were compared to ARDI classifications made from manual observations and
geochemical and mineralogical analyses. Results indicated overall agreement between automated
and manual ARD potential classifications and those from geochemical and mineralogical analyses.
Major differences between manual and automated ARDI results were a function of differences in
estimates of sulfide and neutralizer mineral concentrations, likely due to the subjective nature of
manual estimates of mineral content and automated classification image resolution limitations. The
automated approach presented here for the classification of ARD potential offers rapid and repeatable
outcomes that complement manual and analyses derived classifications. Methods for automated ARD
classification from digital drill core data represent a step-change for geoenvironmental management
practices in the mining industry.
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1. Introduction

Accurate classification of the acid forming potential of waste rock is vital to ensure the appropriate
management of potential environmental hazards associated with mining operations [1]. One potential
hazard is the generation of acid rock drainage (ARD), which forms when iron-sulfide minerals (e.g.,
pyrite, pyrrhotite, chalcopyrite) contained in mine waste materials (e.g., waste rock, tailings) are
exposed to oxygen and water and aided by bacterial catalysis (e.g., Acidithiobacillus ferrooxidans,
Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans), undergo oxidation to produce acid, metals and
sulfate as shown in Equations (1)-(3) [1,2]:

FeS, +7/20, + H,O — Fe** +250,%~ + 2H* (1)

Fe(1 — %)S + (2 — x/2)O, + xH,O — (1 — x)Fe** +SO4>~ + 2xH* ()
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8CuFeS; + 340, + 2H,0 — 4H* + 8Cu?* + 4Fe®*" + 165042~ + 2Fe,05 (3)

Whilst other minerals (e.g., sulfates) can also produce acid in a mine waste environment (e.g.,
Equation (4) where M is AI** or Fe>* for alunite and jarosite, respectively), the traditional focus in a
mine waste characterization program is on iron-sulfides. This is because there is a shorter lag-time to
acid generation and they typically dominate the acid forming mineralogy.

KM;3(OH)(SOy),[s0lid] + 3H,O — 3M(OH)3[solid] + 3H* + K* + 250,2~ (4)

Lowering mine drainage pH conditions promotes the mobilization of potentially deleterious
metals, which poses severe pollution risks to adjacent and downstream ecosystems with many well
documented examples (e.g., Rio Tinto mine, Spain [3-5], Mt. Lyell mine, Australia [6], Iron Mountain
mine, United States [7-9]).

Current methods for ARD classification typically follow modifications of the wheel approach [10]
or the AMIRA P387A Handbook [11], which focus on the integrated use of static and kinetic chemical
tests. These tests involve using small (<10 g) quantities of pulverized representative samples of mine
waste to determine their sulfur (or sulfide-sulfur) contents, neutralizing capacity or the amount of
acidity generated by oxidation [1,2]. To supplement these labor intensive and subjective assessments
of drill core and/or hand specimens, protocols have been developed including the ARD Index (ARDI),
which directly calculates the acid-forming (or neutralizing) potential of a rock mass [12]. The ARDI is
derived from manual observations of five key indicators of acid-forming potential (A—sulfide content;
B—sulfide alteration; C—sulfide morphology; D—primary neutralizer content; and E—sulfide mineral
association). ARDI indicator scores are obtained by assessing the concentration, degree of weathering
and textural properties (e.g., veined, disseminated or massive) of sulfide minerals, the concentration of
neutralizing minerals (e.g., carbonates) and the proximity of chemically reactive or inert minerals to
observed sulfides. Each ARDI indicator receives a score from 0 to 10 (except for parameters D and E
which are scored from —5 to 10), which are summed together. A maximum of 50/50 (extremely acid
forming) and a minimum of —10/50 (potential neutralizing capacity) is permitted. The final ARDI
score enables the assignment of a risk ranking; the accuracy of this is enhanced if ARDI values are
also screened against total sulfur or paste pH values [12]. However, manual logging methods are
often subject to operator bias. Further, manual and analytical approaches are commonly limited by the
amount of material (number of samples) that can be assessed due to time and financial constraints.

A key source of information for assessing ARD potential is the estimation of reactive sulfide
concentration, typically by using geochemical and mineralogical techniques. For example, sulfide
concentrations can be achieved using X-ray diffractometry (XRD), although this is relatively expensive
and only possible on a limited number of samples that may not be entirely representative of the
rock mass from which they were taken. Other sulfide identification methods use microwave-based
infrared (IR) thermography which, in the case of pyrite and chalcopyrite, exploit their semi-conductive
properties, which result in more rapid heating than oxides and silicate minerals [13]. However, this is
not easily applied to whole drill core and requires imaging to be conducted after heating.

Hyperspectral core scanning platforms such as those provided by Corescan®, an Australian-based
global services company, offer rapid, non-destructive analysis of large volumes of drill core samples
using visible to near infrared-shortwave infrared (VNIR-SWIR) data for mineral identification [14].
Such platforms are increasingly being used in geometallurgical characterization programs. However, as
sulfides do not have characteristic absorption features in the VNIR-SWIR range of the electromagnetic
spectrum, it is difficult to distinguish their presence using these data [15-17]. Bolin and Moon [16]
suggested that instead, it may be possible to use red-green-blue (RGB) image data for sulfide
identification in conjunction with hyperspectral data in VNIR regions (444796 nm). In their study,
iron-sulfides were identified using supervised image classification. Such an approach would be highly
advantageous as it utilizes data that are not only very easy to obtain but is already being collected in a
systematic and uniform manner through commercial systems.
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In this study, a method for identifying sulfides in Corescan® RGB true color imagery was
developed and used to calculate A-ARDI values for a suite of drill core materials. The A-ARDI
results and classified ARD potential are compared to manually derived equivalents and geochemical-
and mineralogical-based classifications as a basis for a discussion on the merits of this approach.

Although this research provides an example of automated mineral identification from RGB and
VNIR-SWIR imagery for geoenvironmental applications, the mineralogical information obtained using
these methods will also be of benefit to mine-scale spatial and statistical models for geometallurgical
applications. For example, accurate estimation of the concentration and spatial context of minerals,
including sulfides, identified in drill core collected during resource definition drilling campaigns
will benefit strategic planning over the life of the proposed mine by providing information on the
spatial distribution of geometallurgically important minerals. Further developments regarding the
textural characterization of minerals and mineral assemblages and briefly explored in this research,
have implications for optimizing comminution in ore processing systems. The ability to link accurate
information on the spatial distribution of minerals and their textural relationships with laboratory and
operational data, such as hardness, particle size and alteration characteristics, provide an opportunity
to refine, in real-time, metal processing streams to maximize efficiency and recovery.

2. Materials and Methods

Twenty-two core samples collected from one drill hole at a porphyry Cu—-Au deposit were used
to evaluate A-ARDI classifications. These were specifically chosen as they represent a range of
mineralization, texture and alteration characteristics allowing for robust assessment of A-ARDI-based
classifications. These samples were imaged by Corescan® using the Hyperspectral Core Imager
Mark-1II (HCI-3) system (Corescan Pty Ltd). The HCI-3 system collects RGB visible wavelength
imagery, laser derived digital surface models (DSM), and VNIR-SWIR spectra across the surface of
drill core. RGB imagery was collected at a pixel resolution of 60 pm and laser data was collected at a
horizontal resolution of 200 pm with a vertical precision of 15 um. VNIR-SWIR spectra were collected
across wavelengths of 448-2500 nm via 514 bands with a spectral resolution of 4 nm and at a spatial
resolution of 500 um. The scanning capabilities and sensor array of the Corescan® system allows
for rapid, non-destructive imaging of drill core to produce continuous true-color photographs, and
VNIR-SWIR derived mineral classifications. Mineral classifications were generated by comparing
spectral reflectance signatures to an amalgamated reference spectral library (such as the USGS Spectral
Library Version 7 [18]) consisting of more than 1000 separate minerals and mineral sub-species.
Through a series of custom algorithms for spectral matching, identified minerals were mapped into
visual abundance images and mineral classification maps. The mineral classification maps are a
visual display of all interpreted minerals in a single image that captures mineral distributions and
relationships, as well as textural variation. Mineral concentrations were obtained by calculating the
percentage of pixels classified as a given mineral within a single image.

The input data used to define A-ARDI values were obtained from Corescan® RGB true color
images, and VNIR-SWIR-based mineral classifications. A-ARDI values were derived using four key
stages: (1) identification of iron-sulfide minerals from the supervised classification of RGB image
bands; (2) estimation of sulfide and neutralizer mineral (e.g., calcite) concentrations from RGB-derived
classifications and VNIR-SWIR mineral classifications, respectively; (3) characterization of sulfide
mineral geometries; and (4) quantification of sulfide mineral associations.

To train the sulfide classifier, sulfide and other (all other minerals) class training data were defined
by digitizing small regions within representative RGB images. Additional other class training data
were supplemented by taking a uniform random sample of 5000 pixels within a training image.
Classification was carried out on RGB bands and RGB band ratios (R/B, R/G, G/B and R/B x
G/B). Training data initially contained an unequal number of sulfide and other class instances. Class
imbalance is a significant issue for classifiers that attempt to minimize classification error using 0-1 loss
functions [19] such that classifier predictions will be biased towards the majority class. Class imbalance
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was addressed by under sampling the majority class (other) by a factor of four using random sampling,
and oversampling the minority class (sulfides) via the Synthetic Minority Oversampling Technique
(SMOTE; [19]). The resulting balanced training data were combined from 15 drill core samples (some
of which were not included in the 22 samples analyzed in this study) to construct a single Random
Forests classifier [20].

Random Forests [20] is a machine learning supervised classification algorithm that combines
multiple decision trees, based on the Classification and Regression Trees (CART) of Breiman et al. [21],
via a majority vote. Individual decision trees are trained using the Gini Index, or similar measure,
which identifies optimal splitting thresholds for a given node by maximizing the homogeneity of
training samples with respect to candidate classes within the resulting child nodes. Random selection
of input features and sampling with replacement (i.e., bagging) ensure that individual decision trees
are unique. Class predictions are generated by a vote cast by all decision trees. Class membership
probabilities are calculated from the proportion of votes cast for candidate classes across all decision
trees [22].

The trained Random Forests classifier was used to predict sulfide or other class labels with
associated class membership probabilities for all image pixels (instances) within drill core samples
(Figure 1). Sulfide classifications were filtered via a morphological image filter (kernel size 5 x 5 pixels)
that fills in small regions of other classifications within regions classified as dominantly sulfide by
growing and then eroding regions of sulfide classifications. The result was further processed using
a median image filter (kernel size 5 x 5 pixels), equivalent to assigning the modal class label within
a neighborhood to the center pixel. These image filtering steps smooth sulfide classified images to
reduce noise or speckle (Figure 1).

RGB Classification
¥ 73

10 20 30 40 50 mm

Il other

sulfide

Figure 1. Example of red-green-blue (RGB) image, sulfide class membership probability, sulfide
classifications and filtered sulfide classifications for drill core sample 12.
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Based on the information in Parbhakar-Fox et al. [12], A-ARDI indicator values were generated
by estimating sulfide concentration (e.g., 10% sulfide concentration results in an A-ARDI indicator
A value of 1.0) and morphology (i.e., textural characteristics), such as disseminated or massive and
degree of veining, from classified images via methods outlined by Cracknell [23]. Carbonate mineral
concentrations and sulfide mineral associations were assessed in combination with information from
VNIR-SWIR mineral classifications. Indicator values are summed to give the final ARDI value used for
acid forming potential classifications (see Table 1 in Parbhakar-Fox et al. [12]). Manually derived ARDI
values for the 22 samples following the methodology in Parbhakar-Fox et al. [12] were collected and
used for evaluation of and comparison to the A-ARDI classification methodology.

Table 1. Automated and manually derived acid rock drainage (ARD) indicator and index values.

Manual ARDI Automated ARDI Diff.
Sample ARDI
A B C D E ARDI A B C D E ARDI
1 2 10 2 0 0 14 0.5 10 2 0.5 15 14.5 0.5
2 1 9 6 -3 -2 11 0 0 0 -3 0 -3 —14
3 1 8 5 -2 -2 10 0 0 0 0 0 0 -10
4 1 8 5 -1 0 13 0 0 0 0 0 0 —-13
5 1.5 8 5 -1 -1 12.5 0 0 0 0 0 0 —125
6 1.5 10 4 -2 -3 10.5 0 0 0 0 0 0 —-105
7 3 8 4 -1 -1 13 0 0 0 0 0 0 —-13
8 6 9 7 -1 6 27 1 10 5 0.5 1.5 18 -9
9 7 9 7 -1 6 28 25 10 5 25 2 22 —6
10 6 7 7 6 8 34 2.5 10 6 2.5 0.5 21.5 —125
11 5 7 7 -1 6 24 2 10 5 1 2 20 —4
12 2 8 6 -2 3 17 0.5 10 5 0.5 2.5 18.5 1.5
13 1.5 9 8 -3 0 15.5 1 10 5 0.5 0.5 17 1.5
14 1 6 8 1 1 17 0 0 0 0 0 0 -17
15 1 8 7 -1 1 16 0 0 0 0 0 0 —16
16 1 6 5 -2 -1 9 0 0 0 0 0 0 -9
17 2 7 8 -2 0 15 0 0 0 -0.5 0 -0.5 —155
18 6 8 8 -1 7 28 2 10 5 2 0 19 -9
19 2 8 9 -2 -1 16 0.5 10 5 0.5 —-15 145 -15
20 1 8 7 -1 0 15 0 0 0 0 0 0 —15
21 0 0 0 0 0 0 0 0 0 0 0 0 0
22 1 7 8 -1 1 16 0.5 10 8 0.5 25 21.5 5.5

As a further validation measure for both manual ARDI and A-ARDI classifications, mineralogical
and geochemical analyses were performed. Mineralogical assessments involved analyses using
a Bruker D2 phaser X-ray diffractometer (XRD) (Bruker, Billerica, MA, USA) fitted with a with a
cobalt-X-ray tube at the University of Tasmania (UTAS). Each sample was micronized to 10 um
and loaded into the sample chamber (operating parameters: 30 kV, 10 mA, scan range: 5 to 90°
(26), 0.02° step size, 0.6 s per step). Mineral phases were identified using Bruker DIFFRAC.EVA
software (version 2.0) package with the PDF-2 (2012 release) mineral database. Semi-quantitative
modal mineralogy was calculated using Bruker’s proprietary software, Topas (Version 4.2), which
enables users to perform Rietveld refinements. Limits of detection ranged from 0.5 to 1.0 wt. %
modal abundance. Total carbonate and sulfide values were screened against each other to derive a
mineralogical ARD classification [24]. Geochemical static testing included: total carbon (%) and sulfur
(%) analyses performed using a Thermo Finnigan EA 1112 Series Flash Elemental Analyser at the
Central Science Laboratory, UTAS and Sobek testing, paste pH testing and multi-addition NAG pH
testing [25,26] performed at the Earth Science Laboratories, UTAS. Total sulfur values allowed the
calculation of maximum potential acidity (MPA, kg H,SO4/t) with acid neutralizing capacity (ANC,
kg HySO4/t) values derived from Sobek testing [1]. Together these values were used to calculate the
net acid producing potential (NAPP = MPA — ANC, kg H»SO4/t) which is typically screened against
net acid generation (NAG) pH values to give a geochemical ARD classification. As an extra measure,
NAG pH and paste pH values were compared to indicate the lag-time to ARD classification [27].
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3. Results

Table 1 compares individual A-ARDI indicator values and overall A-ARDI values to those
generated using manual observations. Sulfide% based A-ARDI indicator A values are consistently
lower than manually derived equivalents. The data presented in Figure 2a and Table 2 suggest
estimates of sulfide% from manual observations are overestimated (based on XRD analyses) by 10-40%
(mean difference 17.1%). In contrast, the majority of Corescan derived estimates of sulfide% are within
£5% (mean difference —1.2%) of XRD sulfide%. Indicator B values for the A-ARDI approach default to
10 given the lack of Fe-oxides in these samples, and are therefore higher than the equivalent manually
derived values. A-ARDI indicator C, based on sulfide morphological characteristics, are typically
lower than manually derived equivalents due to differences in sulfide% estimates. Neutralizer%
A-ARDI indicator D values are generally higher than manually derived values. Figure 2b and Table 2
show that this difference is due to an overestimation of carbonate mineral abundance from manual
observations (mean difference 6.3%) and an underestimation of carbonate mineral abundance from the
Corescan mineral classifications (mean difference —5.5%). A-ARDI indicator E values are generally
lower than manual estimates for samples where sulfide% is deemed to be approaching 0. Table 1
shows that for the samples with ~0% sulfide minerals classified from RGB imagery A-ARDI values
are considerably less (in the order of —10) than manually derived ARDI. Conversely, most of the
samples where ~0% sulfide minerals have been classified correspond to manual ARDI indicator A
values of 1.5 or less, again highlighting an overestimation of sulfide% from manual observations
especially for very low concentrations of sulfides. If samples with very low concentrations (or absence)
of sulfides are disregarded, the differences between manual and A-ARDI values indicate overall higher
A-ARDI estimates.
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Figure 2. Comparison of XRD derived concentrations and manual and automated estimation
of concentration for (a) sulfides and (b) calcite/carbonate minerals. The solid line indicates a
1:1 relationship.
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Table 2. XRD derived and automated and manually estimated concentrations of sulfides and
calcite/carbonate minerals.

Sample XRD Automated/Corescan Manual
Sulfide% Calcite% Sulfide% Carbonate% Sulfide% Carbonate%
1 35 0.7 5.1 0.0 20 0
2 0.9 50.9 0.0 64.9 10 50
3 2.7 23.2 0.7 2.2 10 30
4 0.3 11.9 0.1 15 10 10
5 0.8 11.5 2.3 0.5 15 10
6 0.1 134 0.8 0.7 15 30
7 5.7 12.6 2.5 0.2 30 10
8 21.7 8.0 7.9 14 60 10
9 32.2 9.9 24.5 2.7 70 10
10 32.1 1.2 26.5 1.3 60 0
11 23.3 14.8 18.2 20.7 50 10
12 4.9 194 43 0.5 20 30
13 2.6 11.6 8.2 1.8 15 50
14 0.6 14 0.0 0.0 10 0
15 0.7 3.7 0.4 0.1 10 10
16 0.4 8.8 0.2 44 10 30
17 0.5 17.1 1.0 8.2 20 30
18 22.2 1.3 19.6 0.0 60 10
19 0.5 7.4 6.6 5.5 20 30
20 0.9 43 0.1 1.2 10 10
21 2.3 5.4 1.2 2.6 0 0
22 0.4 3.4 4.0 0.2 10 10

Table 3 compares A-ARDI- and manual ARDI-based acid forming potential classifications against
those derived using geochemical analyses and XRD-derived mineralogical analyses. Discrepancies
between the A-ARDI and NAPP vs. NAG pH classifications are clear. However, the latter is taken
to represent a “worst-case” scenario and therefore is forecasting that eventually, if all sulfides are
allowed to oxidize with no formation of armoring layers, secondary phases, or alkaline-buffering, a
net ARD condition will arise [1]. Automated ARDI comparison against stage-one classifications as
per [12] shows further discrepancies for samples 8, 9 and 11. For sample 8, the manual ARDI has
identified the ARD potential as PAF (27/50) whilst the A-ARDI classified it as NAF (18/50). ARD
classification using XRD values, NAG pH (pH 1.9) and total sulfur (1.35%) also considered this sample
as PAF suggesting that the A-ARDI potentially missed a proportion of fine-grained disseminated
sulfides, thus assigning a lower score. In the case of sample 9, the manual ARDI score (28/50) is higher
compared to the automated value (22/50), however, both classify it as PAF which is likely correct
when considering its total sulfur content (4.84%) and NAG pH of 1.8. For sample 11, a lower (by
only 4 points) A-ARDI score than via manual observation was obtained. However, geochemical data
suggests sample 11 is more likely PAF (total sulfur: 3.72% and NAG pH: 2.2). Again, the automated
sulfide classification has encountered difficulties in detecting fine-grained disseminated sulfides due
to RGB image resolution limitations while the Corescan® mineral classifications have underestimated
carbonate% content (Table 2). These drill core materials were unweathered, therefore, high (i.e., >pH 6)
paste pH values were obtained and when screened against NAG pH values all samples are, at worst,
only PAF with a significant lag-time anticipated for ARD formation [27]. Despite these classification
discrepancies, caution must be exercised when using geochemical data only to classify acid forming
potential (as extensively discussed in the literature) due to the many limitations associated with
individual tests. The supplementation and comparison of these laboratory tests with manual ARDI
and A-ARDI outcomes, which include consideration of the textural control on ARD formation, result
in an enhanced comprehension of the future waste’s geoenvironmental properties [1,2].



Minerals 2018, 8, 571 8of 11

Table 3. Comparison of geochemical, mineralogical and automated ARDI (A-ARDI) classifications
(abbreviations: AF, acid forming; ANC, acid neutralizing capacity; NAF, non-acid forming; PNC,
potential neutralizing capacity; PAF, potentially acid forming; LR., low risk; UC, uncertain; S,
total sulfur).

GMT Approach: Stage One GMT Approach: Stage Two
Sample S vs. Paste ARDI vs. Paste vs. NAPP vs. Manual
ARDIvs. pH Paste pH NAG pH NAGpH XRD sgpr  A-ARDI
1 NAF NAF PNC/NAF PAF-LR PAF NAF NAF NAF
2 NAF NAF NAF PAF-LR ucC NAF NAF ANC
3 NAF NAF NAF PAF-LR NAF NAF NAF PNC
4 NAF NAF NAF PAF-LR NAF NAF NAF PNC
5 NAF PAF NAF PAF-LR NAF NAF NAF PNC
6 NAF NAF NAF PAF-LR ucC NAF NAF PNC
7 NAF NAF NAF PAF-LR ucC NAF NAF PNC
8 NAF NAF NAF PAF-LR PAF PAF PAF NAF
9 NAF PAF NAF PAF-LR PAF PAF PAF PAF
10 NAF NAF NAF PAF-LR PAF PAF AF PAF
11 NAF PAF NAF PAF-LR ucC PAF PAF NAF
12 PAF PAF PAF PAF-LR ucC NAF NAF NAF
13 NAF NAF NAF PAF-LR ucC NAF NAF NAF
14 NAF NAF NAF PAF-LR ucC NAF NAF PNC
15 NAF NAF NAF PAF-LR ucC NAF NAF PNC
16 NAF NAF ANC PAF-LR NAF NAF NAF PNC
17 NAF NAF ANC PAF-LR ucC NAF NAF ANC
18 AF PAF AF PAF-LR PAF PAF PAF NAF
19 NAF PAF NAF PAF-LR ucC NAF NAF NAF
20 PAF PAF PAF PAF-LR NAF NAF NAF PNC
21 PAF PAF NAF PAF-LR ucC NAF PNC PNC
22 NAF NAF PNC/NAF PAF-LR ucC NAF NAF PAF

4. Discussion

Despite the fact that sulfides do not display characteristic spectral absorption features at
VNIR-SWIR wavelengths [16], Figure 2a and Table 2 show that the discrimination of sulfides from other
minerals using RGB true color imagery and Random Forests supervised classification was successful.
Nevertheless, Table 2 shows that there is a slight underestimation of automated sulfide% for many
samples, which is likely due to RGB image resolution limitations that hinder the discrimination of
fine-grained disseminated sulfides. This issue is further compounded by the image filtering steps
employed to generate the final sulfide classification. Image filtering, used to reduce false positive
classifications resulting from the low spectral resolution of the input features (e.g., RGB bands and
associated band ratios), also leads to an increase in size of the smallest sulfide mineral grains that can be
identified. Improvements in the detection of fine-grained minerals can only be realized by increasing
the resolution of scanners, which Corescan® is currently developing, and by careful optimization of
image filtering parameters (e.g., kernel size).

On average, the absolute difference between calculated A-ARDI values and manually obtained
values is 9. The most obvious discrepancy between manual and A-ARDI classifications arise from
contrasting mineral concentration estimates. Across all drill core samples, the calculated sulfide% is
up to 40% less than the manual estimate of sulfide% (Figure 2a and Table 2). This difference affects
indicator A (sulfide%), indicator C (sulfide morphology) and indicator D (neutralizer%) calculations.
Samples with the greatest difference in A-ARDI and manual observations were those which obtained
automated sulfide concentrations close to zero. The results presented in Table 2 indicate that the
automated sulfide classification of samples with low XRD sulfide% (e.g., <5%) generates approximately
equivalent sulfide concentrations. However, the choice of rounding sulfide% to the nearest 5% when
calculating A-ARDI indicator A values resulted in many of these samples being assigned a score of
0 (e.g., sulfide% <2.5% generates A-ARDI indicator A values of 0). A potential solution would be to
convert sulfide concentrations >1% to an A-ARDI indicator A value of 0.5. This would ensure that
only samples with extremely low sulfide concentrations generate an overall A-ARDI value of 0.
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Another major discrepancy was the overestimation of parameters D and E when manually
assessed (e.g., sample 10). The key contrasts between the results of the automated and manual methods
for sample 10 were observed for indicator D (neutralizer%) and indicator E (mineral association) values,
which can be attributed to a significant difference in the visual estimation of the amount of carbonate
minerals present (Figure 2b and Table 2), with mineralogical classifications showing that the A-ARDI
is most likely more accurate.

There were no Fe-oxides identified in the samples assessed and the degree of fracturing has not
been estimated. As a result, a default value of 10 was assigned to ARDI indicator B (sulfide alteration).
Fe-oxides can be easily identified from VNIR-SWIR hyperspectral data due to characteristic absorption
features at near infrared (NIR) wavelengths. However, quantifying degree of fracturing will require
alternative information derived from the DSM of the drill core surface. It is therefore reasonable to
include parameters representing Fe-oxide content and degree of fracturing into future versions of
the A-ARDI

Whilst the manual ARDI represents the front line in assessing ARD potential in drill core, and
should continue to do so with an awareness of its subjective limitations, complementary datasets
collected by drill core scanning technologies should be used to assess and validate ARDI results.
This will improve deposit-wide characterization for comparison with mineralogical datasets, which
provide accurate quantification of the reactive acid-forming and primary neutralizing phases [28],
and will show strong classification agreement between both datasets (e.g., ARDI contributing to the
refinement of NAF classifications); hence, indicating its robust nature for geoenvironmental domaining.
Ultimately, it should be used to complement other geoenvironmental domaining indexes developed
specifically for drill core analyses to improve early environmental forecasting and contribute to
improve mine-planning activities.

5. Conclusions

This study highlights that rapid and repeatable automated classifications of ARD potential are
possible from routinely collected digital drill core data, therefore, maximizing the value of data
collecting during early life-of-mine stages. Further, by obtaining this forecasting information, reliable
guidance is given for selecting samples for traditional waste classification sampling campaigns.
Nevertheless, the automated approach to classification of ARD potential documented here should
still be used in conjunction with manual observations and those obtained from geochemical and
mineralogical analyses.

A key outcome of this research is the successful automated classification of sulfides from
red-green-blue true color drill core imagery. Our results indicate estimations of sulfide percentage
concentration from Random Forests classified images is more accurate (mean difference —1.2%) than
the manual estimate of sulfide concentration (mean difference 17.1%) when compared to XRD analyses.
These observations highlight the challenges faced by human operators in accurately estimating mineral
percentages, especially at very low concentrations.

As core scanning technology evolves, higher resolution images and additional data will become
available to improve automated sulfide recognition and lead to better geoenvironmental modelling
including the classification of acid forming potential, particularly when used in conjunction with
other core scanning derived algorithms. Collectively, these tools represent an opportunity to
integrate innovative approaches based on emerging technologies and machine learning into ore body
characterization for improved environmental planning. This will enable this sector of the industry
to move towards its next step-change, whereby static testing, which is fraught with limitations may
eventually be superseded by these growing technological capabilities.
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