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Determination of blue carbon sequestration in seagrass sediments over climatic time scales (>100 years) 10 

relies on several assumptions, including no loss of particulate organic carbon (POC) after 1–2 years, tight 11 

coupling between POC loss and CO2 emissions, no dissolution of carbonates, and removal of the recalcitrant 12 

black carbon (BC) contribution. We tested these assumptions via 500-day anoxic decomposition and 13 

mineralisation experiment to capture centennial parameter decay dynamics from two sediment horizons 14 

robustly dated as 2 and 18 years old. No loss of BC was detected, and decay of POC was best described for 15 

both horizons by near-identical reactivity continuum models. The models predicted average losses of 49 and 16 

51% after 100 years of burial for the surface and 20–22-cm horizons respectively. However, the loss rate of 17 

POC was far greater than the release rate of CO2, even after accounting for CO2 from particulate inorganic 18 

carbon (PIC) production, possibly as siderite. The deficit could not be attributed to dissolved organic carbon 19 

or dark CO2 fixation. Instead, evidence based on δ13CO2, acidity and lack of sulfate reduction suggested 20 

methanogenesis. The results indicated the importance of centennial losses of POC and PIC precipitation and 21 

possibly methanogenesis in estimating carbon sequestration rates. 22 

ToC Summary. Seagrasses remove and bury CO2 as sedimentary organic matter in sufficient amounts to 23 

mitigate global warming. However, a 2-year sediment-incubation study indicated that 50% could be lost over 24 

climatic time scales, forming greenhouse gases such as CO2 and methane. This could lead to underestimated 25 

emissions within a carbon cap and trade market, if such losses are not taken into account. 26 
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Seagrass sediment decomposition and mineralisation 29 

Additional keywords: carbonate, diagenesis, methane, pyrogenic carbon, sediment geochemistry, 30 

sediment isotope tomography. 31 

Introduction 32 

Seagrasses, along with mangroves, saltmarsh and seaweeds, are increasingly touted as a 33 

significant global carbon (C) sink (Mcleod et al. 2011). For seagrass in particular, this service is 34 
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based on two separate concepts, namely, sedimentary C stocks and rates of sedimentary C 35 

sequestration. The stock- or storage-service concept, in the mitigation of greenhouse-gas 36 

emissions, is a scalar concept and conceived at the meadow scale. It has traditionally been 37 

estimated by potential C loss to mineralisation should it be disturbed over a climatic timescales 38 

(Pendleton et al. 2012). Climatic timescales are defined to be close toc. 100 years, over which the 39 

full impacts of feedbacks on climatic variability become evident (IPCC,2013). The depth of such 40 

disturbances, and the extent of its effect on the C stock, is dependent on the type of disturbance 41 

(Siikamäki et al. 2013; Gallagher 2017) and is independent of the time it took the C to accumulate. 42 

The sediment found within seagrass beds contains a sizable detrital organic component, consisting 43 

of a mix of deposited seagrass litter, associated epiphyte and microalgal detritus, and additional 44 

inputs from adjacent land activities, fluvial deposition, and saltmarsh and mangroves (Kennedy et 45 

al. 2010). Inputs other than surface deposition have been recognised, such as seagrass root 46 

exudates. Exudates feed the rhizosphere anoxic microflora under nitrogen (N)-depleted conditions 47 

(Welsh 2000); however, how much this contributes to the sedimentary particulate organic C (POC) 48 

is still unclear, and is beyond the scope of the present study. In contrast, the C-sequestration 49 

service is a vector concept. Rates of sequestration depend on the balance between detrital 50 

production and mineralisation relative to an alternative and likely non-vegetated state (Siikamäki et 51 

al. 2013; Gallagher 2017). Non-vegetated sediments have, in general, shown increased rates of 52 

mineralisation (Kristensen et al. 1995) and mobilisation of dissolved organic C (DOC) during 53 

resuspension (Koelmans and Prevo 2003). Because this is a service in the mitigation of global 54 

warming, its extent has been traditionally estimated as the rate at which sedimentary organic mass 55 

accumulates over time scales ranging from inter-decadal to centennial (Duarte et al. 2013; 56 

Gallagher 2015), subsequently integrated across the meadow. 57 

Notwithstanding uncertainties about the size of past meadow coverage and the amount and fate 58 

of exported litter (Gallagher 2014; Duarte and Krause-Jensen 2017), researchers are increasingly 59 

recognising that the traditional methods of calculating sedimentary C-accumulation rates may have 60 

built-in biases (Gallagher 2015; Johannessen and Macdonald 2016; Chew and Gallagher 2018). 61 

For example, previous studies have failed to subtract allochthonous recalcitrant forms of C such as 62 

black or pyrogenic C from estimated C stocks. Pyrogenic C is produced by incomplete combustion 63 

of biomass and fossil fuels. It is considered sufficiently stable to be outside the climatic C loop 64 

(Liang et al. 2008; Wang et al. 2016), and, thus, its storage and sequestration within seagrass-65 

ecosystem sediments cannot be counted as a greenhouse gas-mitigation service (Chew and 66 

Gallagher 2018). Mass-accumulation rates of POC per unit time and area, the product of 67 

sedimentation rates and POC concentrations, have assumed no significant losses after 1–2 years 68 

within their surface sediments (Cebrian 1999). The humification of seagrass, macroalgae and 69 

mangrove detritus has been shown to occur over several months after deposition, becoming more 70 
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recalcitrant after burial (Middelburg 1989; Burdige 2007). Further, any such losses are assumed to 71 

be tightly coupled with carbon dioxide (CO2) emissions, ostensibly from aerobic mineralisation or 72 

sulfate reduction (Burdige 1991), whereby the release of ammonia can feed further production. 73 

Methanogenesis has been known to play a measurable role within highly organic non-vegetated 74 

coastal sediments (Boehme et al. 1996). However, long-term incubation experiments with marine 75 

non-vegetative sediments consisting of predominantly, but not exclusively, phytoplanktonic 76 

sources have suggested that POC continues to be lost within deeper and older sediments (Westrich 77 

and Berner 1984; Burdige 1991; Arndt et al. 2013; Canuel et al. 2017), with further losses of the 78 

POC fraction being transformed to a mobile DOC pool (Holmer 1996; Hee et al. 2001; Burdige et 79 

al. 2016). Furthermore, the CO2 need not be from organic mineralisation. Sulfate reduction within 80 

non-vegetated coastal sediments has been found to result in sufficient alkalisation to produce CO2 81 

from the subsequent precipitation of calcium carbonate (CaCO3) in the form of particulate 82 

inorganic C (PIC; Mucci et al. 2000; Rassmann et al. 2016). Should this be a phenomenon within 83 

anoxic seagrass sediments, then this apparent emission source needs to be balanced with PIC 84 

dissolution subsequent to re-alkalisation of the water column after disturbance of the non-vegetated 85 

state. This can reduce the partial pressure of carbon dioxide (pCO2)in the water column, which 86 

ironically becomes a net CO2 sink from the atmosphere, the extent of which depends on the 87 

residence time of the water body (Howard et al. 2018). 88 

Aims 89 

This study aims, for the first time, to use long-term (500 days) ‘open’ anoxic slurry incubations 90 

of tropical seagrass-meadow sediments to (1) estimate any centennial losses of POC by capturing 91 

the rates and dynamics of POC and possibly otherwise stable black C (BC) mineralisation and 92 

decomposition within highly organic sediments, and (2) recognise the suite of chemical and 93 

geochemical processes involved. Incubation was followed by a relatively short period of aeration 94 

(30 days) to the anoxic incubation as a model for the immediate effects of disturbance on the 95 

mineralisation and decomposition of both POC and PIC. Younger (1–2 years old) surface 96 

sediments were used to compare the POC and PIC decomposition and mineralisation rates with 97 

those of deeper, older horizons. This was undertaken by fitting the time series to the most 98 

appropriate diagenetic model (Arndt et al. 2013). After sediment deposition, ages were determined 99 

with either an evaluated event or 210Pb geochronology; the model was used to extrapolate any 100 

losses over 100 years for a more considered rate of POC sequestration. The newly measured POC 101 

was then further constrained by measurements of additional diagenetic variables, namely CO2, 102 

coloured dissolved organic matter (CDOM) as a proxy for the DOC pool, ammonia as evidence of 103 

sulfate reduction and PIC, in the form of carbonate, so as to disentangle changes in CO2 from 104 

inorganic and organic dynamics. 105 
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Materials and methods 106 

Study site 107 

Two similar subtidal Enhalus sp. seagrass meadows in separate branches of the Salut–108 

Mengkabong estuary were chosen for the study (Fig. 1). The region can be considered as 109 

moderately urban; it is located 20 km north of a city centre (Kota Kinabalu, Sabah, Malaysia) and 110 

within the penumbra of the near-annual south-western Borneo and Sumatra haze events. These 111 

events ostensibly deposit BC into the estuary from peat fires on the southern part of the island as 112 

well as from slash-and-burn land-clearing activities (Gaveau et al. 2015; Chew and Gallagher 113 

2018). The two bays are both turbid and shallow (1–3 m) and surrounded by mangrove forests with 114 

exposed intertidal mud banks. The diurnal springs tides range ranged between 1.4 and 1.7 m and 115 

neaps can vary between 0.2 and 0.8 m (Hoque et al. 2010). One meadow, within the Salut branch, 116 

was used to collect sediments for the slurry incubations, whereas the other meadow, within the 117 

Mengkabong branch, was used to constrain the Salut meadow’s geochronology. This was 118 

necessary for disentangling and identifying the likely and known regional-storm depositional 119 

events from unknown local disturbances (Gallagher and Ross 2018). 120 

Sediment collection and incubation 121 

The sediments for the decomposition experiment were taken in 2016 from 22 cores spaced ~30–122 

150 m apart. The cores were transported back to the laboratory under ice (ambient temperature in 123 

icebox = 10.2°C), where the surface 2-cm and 20–22-cm horizons were extracted and pooled. The 124 

latter horizon was taken a short distance ahead of the start of a transition to a lower, more fibrous 125 

brown facies (>26 cm). Samples from each sediment horizon were pooled in the manner of 126 

Westrich and Berner (1984) after wet sieving (1 mm) with previously filtered boiled seawater to 127 

remove large shells, debris and benthic fauna. This was undertaken to remove the organic-matter 128 

contribution of any live fauna from anoxic detrital decay, while maintaining the natural bacterial 129 

flora present (Gontikaki et al. 2015). After this, the pooled samples were divided into four separate 130 

Mason jars under N, and filtered boiled seawater was added to make up a 400-cm3 slurry with a 131 

final water content of 81.9%. Before the start of the incubation, the slurries were bubbled with N2 132 

for 25 min and the anoxic status was checked (ellow Springs Instruments (YSI) Xylem-Analytics 133 

Ltd, Australia  ProDSS probe) before the Mason jar lids were replaced. To ensure that the sulfate 134 

supply was not limiting sulfate reduction, additional sulfate was added in a stoichiometric 135 

proportion to the measured amount of CO2 emitted. This was undertaken after the first month and 136 

again a further three times over the course of the first 300 days of the experiment. As a further 137 

precaution, sulfide and CO2 traps were placed in the jar headspace to both inhibit and control any 138 

build-up of metabolites and to measure net accumulative mineralisation. The sulfide traps were 139 

constructed by using epoxy to fasten a 110-mm-diameter Whatman No. 1 filter paper saturated 140 

with 1‰ zinc acetate to the underside of each jar lid. These were strategically folded to present a 141 
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large total surface area and were placed alongside lead acetate paper strips to visibly detect any 142 

ongoing emissions of hydrogen sulfide (H2S). The filter papers were refreshed with fresh solution 143 

after every sampling procedure. The CO2 traps contained 2–3 g of dried high absorbance-capacity 144 

soda lime (Dharmakeerthi et al. 2015) placed in 15-cm3  polypropylene centrifuge tubes. The tubes 145 

were open to the headspace and were replaced after each sampling time for further gravimetric 146 

measurements of CO2 accumulation rates. An additional set of soda lime traps was also placed in 147 

four Mason jars filled with filtered boiled seawater (400 cm3), which were added to the incubation 148 

cohort as CO2 procedural blanks (Keith and Wong 2006). 149 

The Mason jar sediment slurries and blanks were all incubated at 30°C in a constant-temperature 150 

room in the dark (covered in aluminium foil as a precaution against disturbance). The slurries were 151 

sampled after 7, 21, 42, 63, 105, 140, 175, 210, 308, 365, 400, 420, 470 and 500 days for POC, 152 

CDOM, ammonia, pH and CO2. A Day 0 sample for POC was added after the first year. These 153 

were taken from the remaining pooled sediments (stored at −20°C) and replicated with sediments 154 

from corresponding horizons within the sediment core used for the meadow’s geochronology. At 155 

selected times, samples were taken for δ13CPOC, C : NPOC ratios for both horizons and δ13CO2 156 

trapped by the soda lime for the surface sediments. 157 

After 500 days, additional aerated filtered seawater was added to the jars to bring the volume 158 

back to 400 cm3 and the pH was adjusted to 8.5 with sodium hydroxide (NaOH; Analar). The 159 

slurries were again kept in the dark at 30°C and aerated for 30 days. To remove any possible 160 

organic and BC aerosols that might contaminate the slurry, the air was first passed through high-161 

efficiency particulate arrestance (HEPA) filters. The filters also supported a coarse polyester mat 162 

impregnated with charcoal. The pH of the slurry was adjusted every few days to maintain acidity 163 

between pH 7 and 8, and distilled water was added to replace any evaporative loss (Westrich and 164 

Berner 1984). 165 

Sampling and analysis protocols 166 

The Mason jars were reopened under a N2 atmosphere and the pH of the slurry water was 167 

measured after the sediment had settled (ATC portable PH-107 (PH-009) Shanghai Longway 168 

Optical Instruments), and their anoxic status was checked (YSI ProDSS). For sampling of the 169 

slurry, a cut-off syringe was used to extract 10 cm3 of slurry after thorough mixing; the subsamples 170 

were placed in 15-cm3 polypropylene centrifuge tubes and frozen at −20°C before analysis. The 171 

remaining slurry was then bubbled with N2 for 2 min as a precaution to maintain the anoxic 172 

conditions within the jar. The lids of the jars were then resealed under N2 after the soda lime traps 173 

were removed, capped and replaced with identical traps. The traps were immediately oven-dried 174 

and reweighed after first softly cleaning the surface of the centrifuge tubes of any accumulated red 175 

biofilm, and CO2 was determined gravimetrically (Keith and Wong 2006). Blanks indicated no 176 
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significant leakage of air into the Mason jars and typically showed an increase in weight of 177 

~0.0332 g (standard error (s.e.) = 0.014, n = 4), a value that is 68% less than the weight increase 178 

from the traps in the jars containing slurry samples. 179 

After thawing, the slurry samples were centrifuged at 2500g for 20 min at ambient temperature 180 

(~25°C ) to separate the pore water for measurements of CDOM440nm (Harvey et al. 2015), 181 

ammonia (Strickland and Parsons 1968) and salinity (refractometer). The remaining sediment plug 182 

was then dried at 105°C and the amount of water and sediment was noted to calculate the amount 183 

remaining in the mason jars for CO2 accumulation as dry weight of sediment after correcting for 184 

salinity (Lavelle and Massoth 1985). Particulate organic matter (POM), PIC and black organic 185 

matter (BOM) from the dried sediment slug was measured gravimetrically by loss on ignition 186 

(LOI0.45 g) in a laboratory furnace (Carbolite CWF 1.8 L, Carbolite-Gero Ltd (UK); Heiri et al. 187 

2001; Chew and Gallagher 2018). Additional inter-batch corrections resulting from possible 188 

furnace aging and procedural handling differences were performed using in-house local sediment 189 

standards taken from the middle of the cores (n = 5) and randomly placed within the furnace. 190 

Standards were previously dried (60°C) and stored frozen (−20°C). All POM and BOM values 191 

were then converted to C content -using a local calibration regression. The regression was 192 

constructed previously from sediments taken from Salut–Mengkabong seagrass and mangroves 193 

(Chew and Gallagher 2018) by using the same furnace and in-house sediment standards. A 194 

coefficient of 0.273 used to transform the LOI550–950°C to PIC, by assuming the carbonate species to 195 

be calcium salt (Santisteban et al. 2004). However, it should be noted that a later analysis of the 196 

data suggested that the increase in carbonate may have been from ferrous salt. Until certainty is 197 

established, in both the form of thermal decomposition equation during the analysis and identity of 198 

the salt, all PIC contents are reported as CaCO3. All measurements are presented, except for 199 

CDOM440nm, in molar units for stoichiometric comparisons. CDOM440nm was converted to DOC to 200 

give the organic dissolved pool dynamic an order of magnitude significance with other C variables. 201 

As far as we are aware, the calibration used for the conversion is the only one available for 440-nm 202 

determinations for an estuarine system (Harvey et al. 2015). The dataset is provided in the 203 

Table/Fig. Sxx, available as Supplementary material to this paper should it be necessary for readers 204 

to rework the CDOM440nm and PIC content in light of new information. 205 

Analyses of stable POC isotopes of δ13C and their C : N ratios were performed on the two 206 

horizons across separate mason jars at selected times (Days 0 and 210). Before analysis, the 207 

samples were dried and vacuum sealed and sent to the Canadian Rivers Institute, University of 208 

New Brunswick Nature Laboratory (SINLAB). Re-drying after acidification (10% HCl, Analar) to 209 

remove PIC was performed before analysis at the institute. No isotope or element analysis was 210 

undertaken for the local source materials, which would typically be required for an estimation of 211 

their relative proportions. Nevertheless, estimations were gauged on the average 13CPOC and N : C 212 
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endpoint signatures of seagrass, mangrove leaves and suspended particulate matter, using a model 213 

constructed for several tropical lagoons (Gonneea et al. 2004; Chen et al. 2017). In addition, stable 214 

isotopes of δ13CO2 trapped by the soda lime (Days 7, 210, 308 and 500) were measured from a 215 

surface-horizon mason jar replicate. The jar was selected at random, and the analysis at the Central 216 

Science laboratory was performed by mixing ground samples and subsamples under an Argon (Ar) 217 

atmosphere and placing ~2.5 mg into pre-flushed (Ar) vacutainers. The CO2 was released after 218 

dissolving the powder with pure phosphoric acid before injection. Handling errors were tested on 219 

one sample (mean, –19.78; s.e. ± 0.98, n = 4). Note that limited resources precluded any additional 220 

isotope analysis of either sediments or soda lime. 221 

Sediment cores for the geochronology were collected using a sliding hammer Kajak corer 222 

(UWITEC, Austria) equipped with a 6-cm internal-diameter polycarbonate core tube; the 223 

sediment–water interface was stabilised with a porous polyurethane foam plug. The core was 224 

transported vertically under ice to the laboratory for push extraction. Water content, bulk density, 225 

porewater salinity and loss on ignition at 550°C and 950°C were measured every 2 cm (Gallagher 226 

and Ross 2018). The remaining sediment for each horizon was used to determine particle size 227 

(laser diffraction, model: 220 Type B, LISST-Portable XR, Sequoia Scientific (Australia) ); after 228 

drying (50°C) and storage for 3 months, 210Pb, 226Ra and 137Cs radionuclide analysis was performed 229 

using gamma spectroscopy at the Malaysian Institute of Nuclear Technology (Bangi, Selangor). 230 

Decomposition model 231 

The reactivity-continuum (RC) model was chosen to model the POC decomposition time series 232 

(Boudreau 1991; Arndt et al. 2013; Mostovaya et al. 2017). Exploratory analysis indicated that this 233 

gave the best fit and was the most parsimonious descriptor of the POC dynamics over single and 234 

multi G models (Arndt et al. 2013). The model fits a continuous distribution of organic matter 235 

decomposition, from labile to increasingly recalcitrant, and was calculated as follows: 236 

𝑃𝑂𝐶𝑡

𝑃𝑂𝐶0
 =  ( 

𝑎

𝑎+𝑡
)

𝑣
 (1) 237 

where 𝑎 is the apparent age of the organic mixture (years) within the deposit, as a measure of its 238 

degradability relative to an apparent age at the time of deposition. The exponent v is the gamma 239 

distribution coefficient, which describes the labile–recalcitrant distribution and dominance (1–0 240 

respectively) of the organic mix of the sediment horizon. Taken together, the initial first-order 241 

decomposition coefficient, k0, is defined as v/a, which becomes increasingly recalcitrant with 242 

incubation and Burial time t. The parameter solutions were calculated iteratively, using a non-243 

linear least-square parameter estimation within the software platform SigmaPlot™ 12.0. It should 244 

be noted that there is a rival continuous diagenetic model. The model, ostensibly constructed 245 

within phytoplanktonic and bacteria-dominated sediments, uses a power function to describe how 246 

organic matter becomes increasingly recalcitrant over apparent time (Middelburg 1989). Although 247 
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the two models are equivalent mathematically (Tarutis 1993) when applied within closed systems 248 

such as jars (i.e. no sediment accretion), the mix of seagrass litter, microalgae and mangroves in 249 

the sediment (see Results), all with very different intrinsic reactivities (Middelburg 1989; 250 

Kristensen 1994), would seem more aligned with an RC explanation than a relatively less 251 

parsimonious power model as a sum of differing degrees of aging across different organic sources. 252 

Geochronology 253 

Sediment isotope tomography (SIT) was used to model a continuous 210Pb geochronology down 254 

the uninterrupted depositional regions of the sediment core (Gallagher and Ross 2018). The model 255 

describes how the 210Pb activity of sedimentary horizons can be fitted to a function that includes 256 

the changes in the 210Pb flux and sedimentation velocity as the 210Pb decays over time (Carroll et 257 

al. 1999). The algorithm employs a parsimonious inverse solution to best simulate the 210Pb profile 258 

by solving for the model parameters for maximum disentanglement of the flux and sedimentation 259 

velocity terms (Liu et al. 1991). Further constraints and evaluations of solutions can be made by 260 

the presence of known events (Carroll et al. 1999). Such events are traditionally peaks or horizons 261 

of 137Cs from atomic fallout within baseline sediments, and depositional facies characteristic of 262 

surrounding material brought in by storms, earthquakes, floods or tsunamis. 263 

Supporting data, additional figures cited, and method details can be found in Supplementary 264 

material to this paper. 265 

Results 266 

Sediment-core descriptions 267 

The first 23 cm of the Salut and 25 cm of the Mengkabong meadows were visibly muddy 268 

(black), with no evidence of bioturbation. Below the 23-cm and 25-cm horizons, the character of 269 

the sediment visibly changed to a coarser mixture of more compact light and dark brown sediments 270 

containing a plethora of shell and mangrove wood debris (refer to Fig. S2). No sulfide could be 271 

detected by smell or with lead acetate strips left in the sediment for a minute while they were 272 

extruded into receiving tubes before separation. 273 

Sediment-horizon organic composition 274 

The 13CPOC and their N : C ratios taken through the incubation did not appear to change and the 275 

two horizons exhibited near identical signatures (Table 1). These signatures converged even further 276 

when the effects of diagenetic transformations were considered (Gälman et al. 2008; Gälman et al. 277 

2009). Interestingly, it was found that seagrass litter was likely to be a minor component (~5%). 278 

The remaining components of surface-suspended matter, ostensibly microalgae, and mangrove 279 

sources made up the remaining 25% and 70% respectively (refer to Supplementary material), in 280 

agreement with other ecosystems in the region (Chen et al. 2017). 281 
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Geochronology 282 

Although the depths of the storm facies were similar, it was clear from the 210Pb-activity profiles 283 

that the sedimentation dynamics within the baseline sediments were very different. The Salut 284 

meadow, an embayment isolated at the head of the branch and fed by a rivulet, supported peaks in 285 

activity at ~10 cm (Fig. 2), in contrast to a general decay in 210Pb activity from the surface of the 286 

Mengkabong meadow (Fig. 2), an embayment isolated from the main branch. The difference in 287 

dynamics was also highlighted in the inability to detect any 137Cs activity from atomic fallout 288 

events within Salut sediments, which were evident as significant 137Cs activity between 5 cm and 289 

13 cm, peaking at 5 cm down the Mengkabong meadow core. This relatively shallow signal is 290 

consistent with blow back of fallout from the 2011 Fukushima Daiichi nuclear accident 291 

(Kaeriyama 2017). 292 

When the SIT solution for the Mengkabong system was constrained by the timing of the 293 

Fukushima fallout, the age of the depositional event was estimated as ~mid-1990s. The only recent 294 

weather event of note was from the passage of tropical storm Greg (December 1996). The storm is 295 

regarded as a once-in-400-years occurrence for this region, which is commonly known as ‘the land 296 

below the wind’ because of its location south of the influence of the typhoon belt. The 1996, storm 297 

triggered floods that severely affected the western coast of the state (Abdullah and Tussin 2014), 298 

and a local resident shared his experience as a witness to a coastal surge of ~4 m within the 299 

adjacent mangrove forests (Mohammad Asri  bin Mohammad Suari, pers. comm.). With the 300 

confirmation that the depositional event was likely to be tropical storm Greg, the SIT model now 301 

adds constraints for the Salut meadow baseline sediments of age no older than 1996. On the basis 302 

of these solutions, the origin of the very different 210Pb dynamics becomes apparent. In Salut, both 303 

the flux of the excess 210Pb activity and the sedimentation rates of the meadow fell over time. In 304 

Mengkabong, rates of sedimentation and 210Pb activities remained relatively constant (220 g m–2 305 

per year, Fig. 2) and were interrupted only by an increase in excess 210Pb activity consistent with 306 

shoreline development during a peak in annual rainfall (~2005, unpubl. data Swee Theng Chew ). 307 

These show relatively high sequestration rates near the top of the range, even before any correction 308 

for loss over time (Fig. 2). 309 

Incubation experiment 310 

Throughout the incubation experiment, the pH of both surface sediments and sediments taken 311 

from 20–22 cm became increasingly acidic over time (Fig. 3). The older sediments taken from 20–312 

22 cm were more acidic and remained invariant and acidic. Surface-sediment slurries, in contrast, 313 

were initially less acidic; however, their acidity increased over time, reaching an asymptote after 314 

300 days equal to that of the older sediment slurry. The experiment failed to detect the presence of 315 

H2S within the jar headspace (no blackening of the lead acetate strips) that would infer ongoing 316 

sulfate reduction. 317 
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Even though the initial BC represented a modest fraction of the POC (0.079 and 0.067 mol per 318 

100 g or 11–13%), its influence on the POC dynamics was not apparent because there was no 319 

significant decay in the BC content over the 500 days, and RC solutions with the time series failed 320 

to converge. The anoxic decay of POC for the surface- and older 20–22 cm-horizon sediments 321 

fitted the RC model well, and the separation of the terms was within acceptable limits (Fig. 4). 322 

Surface-sediment POC content was greater than that of sediments taken from 20–22 cm. However, 323 

we found no significant difference in their RC decay and apparent age parameters for the 324 

decomposable fraction (Fig. 5), despite different interdecadal depositional ages (18 years). 325 

Projections suggested that both horizons would have lost close to 30% of their POC content within 326 

the first several years (6–7)1. Nevertheless, the overarching dynamics were such that both horizons 327 

converged to losses of ~49 and 51% after 100 years of burial. 328 

In contrast to POC, the dynamics of PIC, DOC and ammonia (NH3) were not continuous. After 329 

~300 days, the carbonate content started to increase for both sediment horizons and appeared to 330 

move towards an asymptote. This was accompanied by an increase in NH3 and a decrease in DOC 331 

content (Fig. 3) after the NH3 content had first fallen and the DOC content increased (Fig. 3). Pools 332 

of DOC and NH3 were notably an order of magnitude smaller than that of POC. Only the 333 

cumulative CO2, after correction for PIC generation after the 300 days, showed steady-state 334 

dynamics that slowed towards an asymptote (Fig. 6). However, there appeared to be a notable 335 

deficit in the amount of CO2 emitted for the amount of POC decomposed, in particular, for the 336 

deeper, older sediment horizon. Furthermore, the δ13CPOC isotopic signatures were not coupled to 337 

each other. The δ13CO2 values extracted from the soda lime were both relatively constant and very 338 

much heavier than those extracted from the POC mixture. Theδ13CO2 was measured as  −19.78 ± 339 

1.95 (n = 4) at Day 7, −17.74 (n = 1) at Day 189, −19.30 (n = 1) at Day 308 and −18.56 (n = 1) at 340 

Day 500, the end of the incubation experiment. Meanwhile, at the same time, the NH3, DOC and 341 

PIC contents in the sediment slurry remained relatively constant up until about Day 365, when a 342 

change in trend was observed (Fig. 3). From Day 365 until the end of the incubation experiment, 343 

both PIC and NH3 concentrations in the surface-sediment slurry increased, with an increase of 344 

46.48% (s.e. = 3.91, n = 4) in PIC and 60.86% (s.e. = 1.57, n = 4) in NH3 concentrations, whereas 345 

DOC concentrations dropped by as much as 73.77% (s.e. = 8.75, n = 4) over the same period of 346 

time. Meanwhile, for the sediment slurry taken from 20–22 cm, PIC and NH3 concentrations 347 

increased by 50.57% (s.e. = 1.44, n = 4) and 73.19% (s.e. = 2.17, n = 4) respectively, whereas 348 

DOC concentrations dropped by 28.44% (s.e. = 4.89, n = 4). 349 

Aeration incubation 350 

The short aeration pulse over 30 days after the completion of the 500-day anoxic incubation 351 

showed a large decrease in POC (18.86%, s.e. = 4.09, n = 4 for surface sediments; 16.99%, s.e. = 352 

5.04, n = 4 for sediments from 20–22 cm), outside that of the parameters of the anoxic 353 
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mineralisation models (Fig. 4). This increase in decomposition was also in line with a 354 

disproportionate increase in DOC over the anoxic mineralisation, confirming that, for both 355 

horizons, organic aging had little effect on the recalcitrance of the buried POC. 356 

Discussion 357 

Decomposition 358 

Assuming the incubation was sufficiently long to capture interdecadal decay parameters, it 359 

appears that POC deposited, on average within 1–2 years of deposition may suffer significant 360 

losses over climatic scales (49–51%). However, we must suggest caution in applying the surface-361 

horizon extrapolations as a generalisation to seagrass beds in other locales, as such sediments will 362 

inevitably change their redox status from an aerobic- to an anaerobic-dominated form of 363 

mineralisation. Aerobic mineralisation is clearly the more rapid of the two, the result of greater 364 

efficiency in the mineralisation of the recalcitrant fractions (Kristensen et al. 1995). As well as 365 

changing redox conditions, the nature of the organic mixture will likely affect the decay parameters 366 

of the RC model. Clearly, the remaining half of the organic C, a seemingly recalcitrant fraction, is 367 

more than can be accounted for by the <10% contribution of the BC alone. It is also unlikely, in 368 

this case, that any presence of phytolith-occluded C was responsible, given that the BC 369 

methodology may have inadvertently included this form (Chew and Gallagher 2018). What 370 

remains is up to speculation; it may consist of bacterial necromass (Burdige 2007) and, an 371 

increasingly important vector, especially within Southeast Asian coastal ecosystems, namely 372 

microplastics (Nor and Obbard 2014; Li et al. 2019). Although microplastics have turnover times 373 

of over 1000 years (Gewert et al. 2015), their amounts as C within soils and sediments remain 374 

largely unknown. Some values have been estimated for terrestrial soils (Rillig 2018), ranging from 375 

0.1–5% of POC for pristine environs to as much as 6.7% by soil weight. 376 

Whatever value the overall decay parameters may take over space or time, it remains puzzling 377 

that we found little difference in the POC decomposition-model parameters between the surface 378 

and the deeper sediment horizons. This was not apparent in coastal non-vegetative sediments, 379 

which are dominated by more labile phytoplanktonic organic sources (Burdige 1991; Zimmerman 380 

and Canuel 2002). This can be explained by the following two possible theories: either the 381 

sediments in these types of meadows were well mixed, which is unlikely given the presence of 382 

137Cs peaks and 210Pb decay series, or the stable-isotope signatures and recalcitrance are not 383 

covariant down the sediment columns. For the latter to be consistent, mangrove sources would 384 

need to balance an increase in recalcitrance between or within other organic sources because they 385 

are buried over time. In essence, a mix of the reactivity continuum and power models would best 386 

describe this. However, it cannot be discounted that changes in physical protection and benthic 387 

consumption parameters may also play some role (Arndt et al. 2013). Indeed, it is this sedimentary 388 
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protection component that will likely reduce the generality of the result across meadows. In the 389 

more exposed and turbulent meadows, seagrass sediments are composed of larger, sandier particles 390 

(Gallagher et al. 2019). Such particles lack the necessary cohesiveness, surface area, and fine pore 391 

structures required to exclude bacterial influence (Burdige 2007). Furthermore, no account of the 392 

role of fauna reworking between surface oxic and surface anoxic sediments was found within the 393 

sediments collected. We found no standout evidence of burrows from our multiple core collections, 394 

and such reworking can only enhance mineralisation (Burdige 2007). Nevertheless, if prevalent, 395 

this would lead to an even larger bias in sediment sequestration assumption than what the present 396 

study suggests. 397 

Diagenesis and the coupling between CO2 and decomposition 398 

The mineralisation and decomposition series have several notable features. These are seemingly 399 

punctuated dynamics of carbonate, NH3 and DOC, the CO2 deficits with POC decomposition, and 400 

the notably heavier 13CO2 signature over that of 13CPOC. These dynamics suggest that the incubation 401 

experiment was not at a steady-state because different diagenetic processes switched on and off. 402 

How this affects the decomposition-model parameters is uncertain, but it is unlikely that the result 403 

is an underestimate, given that the observed diagenetic switches are likely to reflect a resource 404 

limitation that the incubation failed to supply. Nevertheless, this limitation is common to any 405 

natural perturbation experiment attempting to discover what is possible under a different set of 406 

conditions than that which may be encountered in other systems. 407 

Within the limits of our monitored variables, the results imply that the initial fall in NH3 content 408 

under dark anoxic conditions is synonymous with coupled dissimilatory nitrate reduction (DNRA) 409 

and denitrification by anammox autotrophic CO2 fixation (Ni and Zhang 2013). Indeed, recent 410 

work has also shown an unexpectedly high degree of anammox and DNRA in the upper muddy 411 

seagrass sediments of a subtropical lagoon (Salk et al. 2017). Nevertheless, the relatively small 412 

changes in NH3 indicate that any dark CO2 fixation would not have affected the overall CO2 413 

dynamics, even after considering a stoichiometry of C : NH3 of 15 : 1 (Koeve and Kähler 2010). 414 

However, it could be argued that the production of archaeal necromass may have contributed to an 415 

increasingly recalcitrant pool of POC over time (Burdige 2007); the extent to which this would 416 

contribute to the decomposition dynamics would depend, in part, on the supply of nitrate for 417 

coupled DNRA. A reduction in the supply of nitrates may perhaps be responsible for a change to 418 

another mineralisation process responsible for the increase in both NH3 and PIC after 300 days. 419 

Anoxic PIC and NH3 production within marine coastal sediment, although consistent with 420 

sulfate reduction (Burdige 1991; Mucci et al. 2000), is also inconsistent with several sedimentary 421 

parameters and observations. First, we could not detect any H2S produced within the Mason jar 422 

headspace throughout the incubation period. Second, molar NH3 : CO2 ratios were clearly an order 423 



Publisher: CSIRO; Journal: MF:Marine and Freshwater Research 

 Article Type: Research Paper; Volume: ; Issue: ; Article ID: MF19119 

 DOI: 10.1071/MF19119; TOC Head:  

Page 13 of 21 

of 103 larger than those found for marine sediments dominated by sulfate reduction (Burdige 424 

1991). What is not clear are the reasons for the increase in PIC, of sufficient amounts to affect the 425 

CO2 dynamics. Nevertheless, the lack of evidence for significant levels of sulfate reduction and 426 

alkalinisation points to another type of mineralisation, one that can support a suitable acidic 427 

microenvironment. Recently, it has been demonstrated that an iron-reducing bacterium can 428 

precipitate siderite (FeCO3) within acidic sediments at ambient temperatures (30°C). It was 429 

suggested that alkalinisation at the cell walls was induced mainly by its production of NH3. Indeed, 430 

the dynamics of the parameters measured herein fall within the scientific justification of inference 431 

to the best explanation (Lipton 2000). The sediments were acidic and there was a parallel rise in 432 

NH3 production with PIC outside the stoichiometry of sulfate reduction. Furthermore, additional 433 

analysis of selected remaining sediment samples retained throughout the incubation experiment 434 

indicated that the total iron content was sufficient to support siderite formation (0.051 mol 100 g−1, 435 

s.d. = 0.0064, n = 60; see Table/Fig. Sxxxx), but only to levels to which the carbonate appears to 436 

be reaching an asymptote (~0.15 mol 100 g−1, Fig. 3). 437 

However, what is clear is that the overall CO2 dynamics observed fall well short of accounting 438 

for the continued loss of POC, irrespective of PIC and DOC. By itself, this implies that there must 439 

be another mineralisation product. As far as we are aware, methane (CH4) formed from 440 

methanogenesis is the remaining alternative. Methanogenesis would result in the release of both 441 

CO2 and CH4, within its own sedimentary niche, where any iron reducers cannot directly compete 442 

(Bray et al. 2017). Although we did not measure CH4 during this incubation, the supposition is 443 

supported by the relatively constant 13CPOC values and considerably heavier 13CO2 ratios of it 444 

mineralised gas, trapped on the soda lime, over the incubation (Table 1). Such patterns have also 445 

been found for highly organic coastal marine sediments where a considerably lighter 13CH4 446 

(~58.9‰) balances out the heavier 13CO2 (~19.2‰) fraction, to maintain a constant heavy source 447 

of 13CPOC over time (Boehme et al. 1996). Why methanogens should dominate mineralisation over 448 

sulfate reduction is not clear. Perhaps it is due to the high acidity of sediments seemingly supplied 449 

from the adjacent mangrove mudflats (Marchand et al. 2004) and iron-reducing bacteria 450 

(Koschorreck 2008). 451 

Conclusions 452 

The incubation experiment appears to capture the long-term decomposition parameters for POC. 453 

The RC model seems to indicate that current estimates of C sequestration may be significantly 454 

overestimated, in this case, by ~50%, unless corrections can be made for loss over centennial time 455 

scales. More information is needed across different sedimentary environs covariant with tropical 456 

species and sources of organic C (Gallagher et al. 2019). Furthermore, much remains to be 457 

investigated on the coupling of POC losses to greenhouse-gas emissions that have different 458 

atmospheric warming effects and the roles of processes post-disposition, such as dark CO2 fixation 459 
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and carbonate formation on net CO2 emissions. Without certainty in both the estimates and the 460 

conceptual model, there will not be sufficient certainty in the estimates of C storage and 461 

sequestration services rendered by seagrass ecosystems for use in cap-and-trade C markets to 462 

embrace these ecosystems as part of a solution to climate change. 463 
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Fig. 1. The Salut–Mengkabong estuary site used in the study. Salut is the southern arm of the estuary, 680 

whereas Mengkabong is the lagoon situated to the North. The sites at which the seagrass sediments were 681 

obtained for the incubation experiment (▲) and the sample cores used for SIT data (○) are indicated. The 682 

seagrass distribution information is based on collective indigenous knowledge, whereas the mangrove 683 

distribution is obtained from the World Atlas of Mangroves Version 3 (Spalding et al. 2018) and from 684 

Google Earth. (Map data: Google 2019; Landsat/Copernicus, Digital Globe, Bornean Biodiversity and 685 

Ecosystems Conservation (BBEC) Sabah and WWF Malaysia 2017.) The line map was produced with QGIS 686 

v3.6.0 and Adobe Illustrator CS6. 687 

Fig. 2. Radiogeochronological profiles down the upper seagrass sediments of Salut estuary–Mengkabong 688 

lagoon. The shaded area represents the mangrove deposition event. (a) The 137Cs activity (►) down the 689 

Mengkabong meadow sediments; no activity could be detected down the Salut meadow sediments. (b, c) The 690 

respective supporting 226Ra (●) and total 210Pbtotal activity (○). (d, e) The resultant mean excess or 691 

unsupported 210Pbexcess activity, corrected for 226Ra, outside the deposition event (●) superimposed on their 692 

respective stable sediment isotope tomography (SIT) simulations (○), together with (f) their resultant 693 

particulate organic carbon (POC) sequestration rates for Mengkabong (○) and Salut meadows (●). (g, h) 694 

Changes over time in the sedimentation and 210Pbexcess parameters as simulated by SIT in the Mengkabong 695 

and Salut sediment columns, with the actual recorded 210Pbexcess activity (●) and 210Pbexcess activity (○) being 696 

indicated as modelled by SIT. Error bars denote the standard deviations of the counts of the radioactive 697 

decay for each horizon. 698 

Fig. 3. Values of pH, particulate inorganic carbon (PIC), dissolved organic carbon (DOC) and ammonia 699 

measured in the sediments throughout the incubation experiment. (a) The pH of the sediment slurries from 700 

Day 105 until the end of the anoxic incubation period. (b, c) The PIC content of the sediment. (d, e) The 701 

DOC content of the porewater of the sediment slurry. (f, g) The ammonia concentrations of the porewater of 702 

the sediment slurry. Values are given for (b, d, f) sediment collected from the surface 2-cm horizon and (c, e, 703 
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g) sediment collected from the 20–22 cm horizon. The last point in each series (*) shows the final values of 704 

the sediments after a 30-day re-oxygenation period. Error bars indicate standard errors (n = 4). 705 

Fig. 4. Particulate organic matter (POC) content and loss of POC fraction of the sediments used over the 706 

anoxic incubation and subsequent re-oxygenation. The mean POC content corresponds to (a) the surface 2 707 

cm and (b) the sediment collected from the 20–22-cm horizon. Error bars indicate the standard errors (n = 4). 708 

The loss of the POC fraction over time in (c) the surface 2 cm and (d) the sediment collected from the 20–22-709 

cm horizon, using the reactivity continuum model. Broken lines indicate the 95% confidence limit, as do the 710 

errors on the final point. The last point in each series (*, for a and b; ■, for c and d) shows the final value of 711 

the sediments after a 30-day re-oxygenation period. 712 

Fig. 5. Extrapolations of the fraction of remaining particulate organic carbon (POC) within the sediments 713 

over 100 years following deposition. The broken line corresponds to the sediments collected from the 20–22-714 

cm horizon, which were dated to deposition c. 1996, whereas the solid line corresponds to the sediments 715 

collected from the surface 2 cm, deposited in 2016. 716 

Fig. 6. Cumulative CO2 absorbed by soda lime and net loss of the particulate organic carbon (POC) 717 

fraction of the sediments used over the anoxic incubation. (a) The sediment was collected from the surface 2 718 

cm and (b) the sediment was collected from the 20–22-cm horizon. Error bars indicate the standard errors (n 719 

= 4). The series indicated by circles (●) is the cumulative CO2 absorbed over the course of the incubation, 720 

whereas the series indicated by triangles (solid triangle) is the cumulative loss of POC over the same period. 721 

Table 1. Dry mass of particulate sedimentary carbon (C) and stable nitrogen (N) isotopes 722 

and their molar ratios from the incubation jars 723 

S and B refer to the surface (0–2 cm) and bottom (20–22 cm) horizons, followed by the day 724 

number during the incubation on which the sediments were extracted. All δ13C values have been 725 

normalised to preindustrial times (Suess effect), using their modelled depositional age. S0 and B0 726 

are from single samples, whereas S210 and B210 are the means of four subsamples with their 727 

respective standard errors 728 

Sample δ13C (‰) C (%) N (%) N : C ratio 

S0 −24.61 7.83 0.61 0.066 

S210 −24.71 ± 0.04 7.64 ± 0.13 0.58 ± 0.004 0.065 ± 0.0007 

B0 −24.06 7.47 0.62 0.071 

B210 −24.22 ± 0.03 7.61 ± 0.11 0.63 ± 0.004 0.070 ± 0.0007 

1The 30% was calculated as the time of symmetry of the second derivative of the decay series, as percentage 729 

lost over percentage of time over a span of 100 years (∆𝑙𝑜𝑠𝑡 ∆𝑡 =⁄ 1). Although it is a continuous 730 

function, because both scales are of the same magnitude, it, thus, marks the threshold time of a significant 731 

slowdown in decomposition. 732 


