DOI: 10.1071/MF19119; TOC Head:

1 Blue carbon sequestration dynamics within tropical seagrass sediments: long-term

- 2 incubations for changes over climatic scales
- 3 Chee Hoe Chuan^AJohn Barry Gallagher^B, Swee Theng Chew^A and M. Zanuri Norlaila Binti^C
- ⁴ Borneo Marine Research Institute, Universiti Malaysia Sabah, Sabah Port Bypass, 88400 Kota
- 5 Kinabalu, Sabah, Malaysia.
- 6 BInstitute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery
- 7 Point, Tas 7004, Australia.
- 8 ^CCentre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- 9 BCorresponding author. Email: john.barry@usm.my
- Determination of blue carbon sequestration in seagrass sediments over climatic time scales (>100 years)
- 11 relies on several assumptions, including no loss of particulate organic carbon (POC) after 1–2 years, tight
- coupling between POC loss and CO₂ emissions, no dissolution of carbonates, and removal of the recalcitrant
- 13 black carbon (BC) contribution. We tested these assumptions via 500-day anoxic decomposition and
- 14 mineralisation experiment to capture centennial parameter decay dynamics from two sediment horizons
- 15 robustly dated as 2 and 18 years old. No loss of BC was detected, and decay of POC was best described for
- both horizons by near-identical reactivity continuum models. The models predicted average losses of 49 and
- 17 51% after 100 years of burial for the surface and 20–22-cm horizons respectively. However, the loss rate of
- 18 POC was far greater than the release rate of CO₂, even after accounting for CO₂ from particulate inorganic
- 19 carbon (PIC) production, possibly as siderite. The deficit could not be attributed to dissolved organic carbon
- 20 or dark CO₂ fixation. Instead, evidence based on δ¹³CO₂, acidity and lack of sulfate reduction suggested
- 21 methanogenesis. The results indicated the importance of centennial losses of POC and PIC precipitation and
- 22 possibly methanogenesis in estimating carbon sequestration rates.
- 23 **ToC Summary.** Seagrasses remove and bury CO₂ as sedimentary organic matter in sufficient amounts to
- 24 mitigate global warming. However, a 2-year sediment-incubation study indicated that 50% could be lost over
- 25 climatic time scales, forming greenhouse gases such as CO₂ and methane. This could lead to underestimated
- emissions within a carbon cap and trade market, if such losses are not taken into account.
- 27 MF19119
- 28 C. H. Chuan et al.
- 29 Seagrass sediment decomposition and mineralisation
- 30 **Additional keywords:** carbonate, diagenesis, methane, pyrogenic carbon, sediment geochemistry,
- 31 sediment isotope tomography.

Introduction

- 33 Seagrasses, along with mangroves, saltmarsh and seaweeds, are increasingly touted as a
- significant global carbon (C) sink (Mcleod *et al.* 2011). For seagrass in particular, this service is

35	based on two separate concepts, namely, sedimentary C stocks and rates of sedimentary C
36	sequestration. The stock- or storage-service concept, in the mitigation of greenhouse-gas
37	emissions, is a scalar concept and conceived at the meadow scale. It has traditionally been
38	estimated by potential C loss to mineralisation should it be disturbed over a climatic timescales
39	(Pendleton et al. 2012). Climatic timescales are defined to be close toc. 100 years, over which the
40	full impacts of feedbacks on climatic variability become evident (IPCC, 2013). The depth of such
41	disturbances, and the extent of its effect on the C stock, is dependent on the type of disturbance
42	(Siikamäki et al. 2013; Gallagher 2017) and is independent of the time it took the C to accumulate.
43	The sediment found within seagrass beds contains a sizable detrital organic component, consisting
44	of a mix of deposited seagrass litter, associated epiphyte and microalgal detritus, and additional
45	inputs from adjacent land activities, fluvial deposition, and saltmarsh and mangroves (Kennedy et
46	al. 2010). Inputs other than surface deposition have been recognised, such as seagrass root
47	exudates. Exudates feed the rhizosphere anoxic microflora under nitrogen (N)-depleted conditions
48	(Welsh 2000); however, how much this contributes to the sedimentary particulate organic C (POC)
49	is still unclear, and is beyond the scope of the present study. In contrast, the C-sequestration
50	service is a vector concept. Rates of sequestration depend on the balance between detrital
51	production and mineralisation relative to an alternative and likely non-vegetated state (Siikamäki et
52	al. 2013; Gallagher 2017). Non-vegetated sediments have, in general, shown increased rates of
53	mineralisation (Kristensen et al. 1995) and mobilisation of dissolved organic C (DOC) during
54	resuspension (Koelmans and Prevo 2003). Because this is a service in the mitigation of global
55	warming, its extent has been traditionally estimated as the rate at which sedimentary organic mass
56	accumulates over time scales ranging from inter-decadal to centennial (Duarte et al. 2013;
57	Gallagher 2015), subsequently integrated across the meadow.
58	Notwithstanding uncertainties about the size of past meadow coverage and the amount and fate
59	of exported litter (Gallagher 2014; Duarte and Krause-Jensen 2017), researchers are increasingly
60	recognising that the traditional methods of calculating sedimentary C-accumulation rates may have
61	built-in biases (Gallagher 2015; Johannessen and Macdonald 2016; Chew and Gallagher 2018).
62	For example, previous studies have failed to subtract allochthonous recalcitrant forms of C such as
63	black or pyrogenic C from estimated C stocks. Pyrogenic C is produced by incomplete combustion
64	of biomass and fossil fuels. It is considered sufficiently stable to be outside the climatic C loop
65	(Liang et al. 2008; Wang et al. 2016), and, thus, its storage and sequestration within seagrass-
66	ecosystem sediments cannot be counted as a greenhouse gas-mitigation service (Chew and
67	Gallagher 2018). Mass-accumulation rates of POC per unit time and area, the product of
68	sedimentation rates and POC concentrations, have assumed no significant losses after 1-2 years
69	within their surface sediments (Cebrian 1999). The humification of seagrass, macroalgae and
70	mangrove detritus has been shown to occur over several months after deposition, becoming more

DOI: 10.1071/MF19119; TOC Head:

recalcitrant after burial (Middelburg 1989; Burdige 2007). Further, any such losses are assumed to 71 72 be tightly coupled with carbon dioxide (CO₂) emissions, ostensibly from aerobic mineralisation or 73 sulfate reduction (Burdige 1991), whereby the release of ammonia can feed further production. Methanogenesis has been known to play a measurable role within highly organic non-vegetated 74 coastal sediments (Boehme et al. 1996). However, long-term incubation experiments with marine 75 non-vegetative sediments consisting of predominantly, but not exclusively, phytoplanktonic 76 sources have suggested that POC continues to be lost within deeper and older sediments (Westrich 77 and Berner 1984; Burdige 1991; Arndt et al. 2013; Canuel et al. 2017), with further losses of the 78 79 POC fraction being transformed to a mobile DOC pool (Holmer 1996; Hee et al. 2001; Burdige et al. 2016). Furthermore, the CO₂ need not be from organic mineralisation. Sulfate reduction within 80 non-vegetated coastal sediments has been found to result in sufficient alkalisation to produce CO2 81 from the subsequent precipitation of calcium carbonate (CaCO₃) in the form of particulate 82 inorganic C (PIC; Mucci et al. 2000; Rassmann et al. 2016). Should this be a phenomenon within 83 anoxic seagrass sediments, then this apparent emission source needs to be balanced with PIC 84 85 dissolution subsequent to re-alkalisation of the water column after disturbance of the non-vegetated state. This can reduce the partial pressure of carbon dioxide (pCO_2) in the water column, which 86 87 ironically becomes a net CO₂ sink from the atmosphere, the extent of which depends on the 88 residence time of the water body (Howard et al. 2018). 89 Aims This study aims, for the first time, to use long-term (500 days) 'open' anoxic slurry incubations 90 of tropical seagrass-meadow sediments to (1) estimate any centennial losses of POC by capturing 91 the rates and dynamics of POC and possibly otherwise stable black C (BC) mineralisation and 92 93 decomposition within highly organic sediments, and (2) recognise the suite of chemical and geochemical processes involved. Incubation was followed by a relatively short period of aeration 94 (30 days) to the anoxic incubation as a model for the immediate effects of disturbance on the 95 mineralisation and decomposition of both POC and PIC. Younger (1-2 years old) surface 96 97 sediments were used to compare the POC and PIC decomposition and mineralisation rates with

those of deeper, older horizons. This was undertaken by fitting the time series to the most appropriate diagenetic model (Arndt et al. 2013). After sediment deposition, ages were determined 99

with either an evaluated event or ²¹⁰Pb geochronology; the model was used to extrapolate any

101 losses over 100 years for a more considered rate of POC sequestration. The newly measured POC

102 was then further constrained by measurements of additional diagenetic variables, namely CO₂,

coloured dissolved organic matter (CDOM) as a proxy for the DOC pool, ammonia as evidence of 103

sulfate reduction and PIC, in the form of carbonate, so as to disentangle changes in CO₂ from

105 inorganic and organic dynamics.

98

100

Publisher: CSIRO; Journal: MF:Marine and Freshwater Research Article Type: Research Paper; Volume: ; Issue: ; Article ID: MF19119 DOI: 10.1071/MF19119; TOC Head:

Materials and methods

106

Study site 107 108 Two similar subtidal Enhalus sp. seagrass meadows in separate branches of the Salut-Mengkabong estuary were chosen for the study (Fig. 1). The region can be considered as 109 moderately urban; it is located 20 km north of a city centre (Kota Kinabalu, Sabah, Malaysia) and 110 111 within the penumbra of the near-annual south-western Borneo and Sumatra haze events. These 112 events ostensibly deposit BC into the estuary from peat fires on the southern part of the island as well as from slash-and-burn land-clearing activities (Gaveau et al. 2015; Chew and Gallagher 113 2018). The two bays are both turbid and shallow (1–3 m) and surrounded by mangrove forests with 114 exposed intertidal mud banks. The diurnal springs tides range ranged between 1.4 and 1.7 m and 115 116 neaps can vary between 0.2 and 0.8 m (Hoque et al. 2010). One meadow, within the Salut branch, 117 was used to collect sediments for the slurry incubations, whereas the other meadow, within the 118 Mengkabong branch, was used to constrain the Salut meadow's geochronology. This was 119 necessary for disentangling and identifying the likely and known regional-storm depositional 120 events from unknown local disturbances (Gallagher and Ross 2018). 121 Sediment collection and incubation The sediments for the decomposition experiment were taken in 2016 from 22 cores spaced ~30– 122 123 150 m apart. The cores were transported back to the laboratory under ice (ambient temperature in 124 icebox = 10.2°C), where the surface 2-cm and 20–22-cm horizons were extracted and pooled. The 125 latter horizon was taken a short distance ahead of the start of a transition to a lower, more fibrous 126 brown facies (>26 cm). Samples from each sediment horizon were pooled in the manner of 127 Westrich and Berner (1984) after wet sieving (1 mm) with previously filtered boiled seawater to 128 remove large shells, debris and benthic fauna. This was undertaken to remove the organic-matter 129 contribution of any live fauna from anoxic detrital decay, while maintaining the natural bacterial 130 flora present (Gontikaki et al. 2015). After this, the pooled samples were divided into four separate Mason jars under N, and filtered boiled seawater was added to make up a 400-cm³ slurry with a 131 final water content of 81.9%. Before the start of the incubation, the slurries were bubbled with N₂ 132 for 25 min and the anoxic status was checked (ellow Springs Instruments (YSI) Xylem-Analytics 133 Ltd, Australia ProDSS probe) before the Mason jar lids were replaced. To ensure that the sulfate 134 supply was not limiting sulfate reduction, additional sulfate was added in a stoichiometric 135 136 proportion to the measured amount of CO₂ emitted. This was undertaken after the first month and again a further three times over the course of the first 300 days of the experiment. As a further 137 precaution, sulfide and CO₂ traps were placed in the jar headspace to both inhibit and control any 138 build-up of metabolites and to measure net accumulative mineralisation. The sulfide traps were 139 constructed by using epoxy to fasten a 110-mm-diameter Whatman No. 1 filter paper saturated 140 141 with 1‰ zinc acetate to the underside of each jar lid. These were strategically folded to present a

142	large total surface area and were placed alongside lead acetate paper strips to visibly detect any				
143	ongoing emissions of hydrogen sulfide (H ₂ S). The filter papers were refreshed with fresh solution				
144	after every sampling procedure. The CO ₂ traps contained 2-3 g of dried high absorbance-capacity				
145	soda lime (Dharmakeerthi et al. 2015) placed in 15-cm³ polypropylene centrifuge tubes. The tube				
146	were open to the headspace and were replaced after each sampling time for further gravimetric				
147	measurements of CO2 accumulation rates. An additional set of soda lime traps was also placed in				
148	four Mason jars filled with filtered boiled seawater (400 cm³), which were added to the incubation				
149	cohort as CO ₂ procedural blanks (Keith and Wong 2006).				
150	The Mason jar sediment slurries and blanks were all incubated at 30°C in a constant-temperature				
151	room in the dark (covered in aluminium foil as a precaution against disturbance). The slurries were				
152	sampled after 7, 21, 42, 63, 105, 140, 175, 210, 308, 365, 400, 420, 470 and 500 days for POC,				
153	CDOM, ammonia, pH and CO ₂ . A Day 0 sample for POC was added after the first year. These				
154	were taken from the remaining pooled sediments (stored at -20°C) and replicated with sediments				
155	from corresponding horizons within the sediment core used for the meadow's geochronology. At				
156	selected times, samples were taken for $\delta^{13}C_{POC},$ $C:N_{POC}$ ratios for both horizons and $\delta^{13}CO_2$				
157	trapped by the soda lime for the surface sediments.				
158	After 500 days, additional aerated filtered seawater was added to the jars to bring the volume				
159	back to 400 cm ³ and the pH was adjusted to 8.5 with sodium hydroxide (NaOH; Analar). The				
160	slurries were again kept in the dark at 30°C and aerated for 30 days. To remove any possible				
161	organic and BC aerosols that might contaminate the slurry, the air was first passed through high-				
162	efficiency particulate arrestance (HEPA) filters. The filters also supported a coarse polyester mat				
163	impregnated with charcoal. The pH of the slurry was adjusted every few days to maintain acidity				
164	between pH 7 and 8, and distilled water was added to replace any evaporative loss (Westrich and				
165	Berner 1984).				
166	Sampling and analysis protocols				
167	The Mason jars were reopened under a N_2 atmosphere and the pH of the slurry water was				
168	measured after the sediment had settled (ATC portable PH-107 (PH-009) Shanghai Longway				
169	Optical Instruments), and their anoxic status was checked (YSI ProDSS). For sampling of the				
170	slurry, a cut-off syringe was used to extract 10 cm ³ of slurry after thorough mixing; the subsamples				
171	were placed in 15-cm³ polypropylene centrifuge tubes and frozen at -20°C before analysis. The				
172	remaining slurry was then bubbled with N_2 for 2 min as a precaution to maintain the anoxic				
173	conditions within the jar. The lids of the jars were then resealed under N_2 after the soda lime traps				
174	were removed, capped and replaced with identical traps. The traps were immediately oven-dried				
175	and reweighed after first softly cleaning the surface of the centrifuge tubes of any accumulated red				
176	biofilm, and CO ₂ was determined gravimetrically (Keith and Wong 2006). Blanks indicated no				

Publisher: CSIRO; Journal: MF:Marine and Freshwater Research Article Type: Research Paper; Volume: ; Issue: ; Article ID: MF19119 DOI: 10.1071/MF19119; TOC Head:

177	significant leakage of air into the Mason jars and typically showed an increase in weight of
178	~ 0.0332 g (standard error (s.e.) = 0.014, $n = 4$), a value that is 68% less than the weight increase
179	from the traps in the jars containing slurry samples.
180	After thawing, the slurry samples were centrifuged at 2500g for 20 min at ambient temperature
181	$(\sim 25^{\circ} \text{C})$ to separate the pore water for measurements of CDOM _{440nm} (Harvey <i>et al.</i> 2015),
182	ammonia (Strickland and Parsons 1968) and salinity (refractometer). The remaining sediment plug
183	was then dried at 105°C and the amount of water and sediment was noted to calculate the amount
184	remaining in the mason jars for CO2 accumulation as dry weight of sediment after correcting for
185	salinity (Lavelle and Massoth 1985). Particulate organic matter (POM), PIC and black organic
186	matter (BOM) from the dried sediment slug was measured gravimetrically by loss on ignition
187	(LOI _{0.45 g}) in a laboratory furnace (Carbolite CWF 1.8 L, Carbolite-Gero Ltd (UK); Heiri et al.
188	2001; Chew and Gallagher 2018). Additional inter-batch corrections resulting from possible
189	furnace aging and procedural handling differences were performed using in-house local sediment
190	standards taken from the middle of the cores $(n = 5)$ and randomly placed within the furnace.
191	Standards were previously dried (60°C) and stored frozen (-20°C). All POM and BOM values
192	were then converted to C content -using a local calibration regression. The regression was
193	constructed previously from sediments taken from Salut-Mengkabong seagrass and mangroves
194	(Chew and Gallagher 2018) by using the same furnace and in-house sediment standards. A
195	coefficient of 0.273 used to transform the LOI $_{550-950^{\circ}\text{C}}$ to PIC, by assuming the carbonate species to
196	be calcium salt (Santisteban et al. 2004). However, it should be noted that a later analysis of the
197	data suggested that the increase in carbonate may have been from ferrous salt. Until certainty is
198	established, in both the form of thermal decomposition equation during the analysis and identity of
199	the salt, all PIC contents are reported as CaCO ₃ . All measurements are presented, except for
200	CDOM _{440nm} , in molar units for stoichiometric comparisons. CDOM _{440nm} was converted to DOC to
201	give the organic dissolved pool dynamic an order of magnitude significance with other C variables.
202	As far as we are aware, the calibration used for the conversion is the only one available for 440-nm
203	determinations for an estuarine system (Harvey et al. 2015). The dataset is provided in the
204	Table/Fig. Sxx, available as Supplementary material to this paper should it be necessary for readers
205	to rework the CDOM _{440nm} and PIC content in light of new information.
206	Analyses of stable POC isotopes of $\delta^{13}C$ and their C : N ratios were performed on the two
207	horizons across separate mason jars at selected times (Days 0 and 210). Before analysis, the
208	samples were dried and vacuum sealed and sent to the Canadian Rivers Institute, University of
209	New Brunswick Nature Laboratory (SINLAB). Re-drying after acidification (10% HCl, Analar) to
210	remove PIC was performed before analysis at the institute. No isotope or element analysis was
211	undertaken for the local source materials, which would typically be required for an estimation of
212	their relative proportions. Nevertheless, estimations were gauged on the average ${}^{13}C_{POC}$ and $N:C$

DOI: 10.1071/MF19119; TOC Head:

endpoint signatures of seagrass, mangrove leaves and suspended particulate matter, using a model constructed for several tropical lagoons (Gonneea et al. 2004; Chen et al. 2017). In addition, stable isotopes of δ^{13} CO₂ trapped by the soda lime (Days 7, 210, 308 and 500) were measured from a surface-horizon mason jar replicate. The jar was selected at random, and the analysis at the Central Science laboratory was performed by mixing ground samples and subsamples under an Argon (Ar) atmosphere and placing ~2.5 mg into pre-flushed (Ar) vacutainers. The CO₂ was released after dissolving the powder with pure phosphoric acid before injection. Handling errors were tested on one sample (mean, -19.78; s.e. ± 0.98 , n = 4). Note that limited resources precluded any additional isotope analysis of either sediments or soda lime.

Sediment cores for the geochronology were collected using a sliding hammer Kajak corer (UWITEC, Austria) equipped with a 6-cm internal-diameter polycarbonate core tube; the sediment—water interface was stabilised with a porous polyurethane foam plug. The core was transported vertically under ice to the laboratory for push extraction. Water content, bulk density, porewater salinity and loss on ignition at 550°C and 950°C were measured every 2 cm (Gallagher and Ross 2018). The remaining sediment for each horizon was used to determine particle size (laser diffraction, model: 220 Type B, LISST-Portable XR, Sequoia Scientific (Australia)); after drying (50°C) and storage for 3 months, ²¹⁰Pb, ²²⁶Ra and ¹³⁷Cs radionuclide analysis was performed using gamma spectroscopy at the Malaysian Institute of Nuclear Technology (Bangi, Selangor).

Decomposition model

The reactivity-continuum (RC) model was chosen to model the POC decomposition time series (Boudreau 1991; Arndt *et al.* 2013; Mostovaya *et al.* 2017). Exploratory analysis indicated that this gave the best fit and was the most parsimonious descriptor of the POC dynamics over single and multi G models (Arndt *et al.* 2013). The model fits a continuous distribution of organic matter decomposition, from labile to increasingly recalcitrant, and was calculated as follows:

$$\frac{POC_t}{POC_0} = \left(\frac{a}{a+t}\right)^v (1)$$

where a is the apparent age of the organic mixture (years) within the deposit, as a measure of its degradability relative to an apparent age at the time of deposition. The exponent v is the gamma distribution coefficient, which describes the labile–recalcitrant distribution and dominance (1–0 respectively) of the organic mix of the sediment horizon. Taken together, the initial first-order decomposition coefficient, k_0 , is defined as v/a, which becomes increasingly recalcitrant with incubation and Burial time t. The parameter solutions were calculated iteratively, using a non-linear least-square parameter estimation within the software platform SigmaPlotTM 12.0. It should be noted that there is a rival continuous diagenetic model. The model, ostensibly constructed within phytoplanktonic and bacteria-dominated sediments, uses a power function to describe how organic matter becomes increasingly recalcitrant over apparent time (Middelburg 1989). Although

248	the two models are equivalent mathematically (Tarutis 1993) when applied within closed systems				
249	such as jars (i.e. no sediment accretion), the mix of seagrass litter, microalgae and mangroves in				
250	the sediment (see Results), all with very different intrinsic reactivities (Middelburg 1989;				
251	Kristensen 1994), would seem more aligned with an RC explanation than a relatively less				
252	parsimonious power model as a sum of differing degrees of aging across different organic sources.				
253	Geochronology				
254	Sediment isotope tomography (SIT) was used to model a continuous ²¹⁰ Pb geochronology down				
255	the uninterrupted depositional regions of the sediment core (Gallagher and Ross 2018). The model				
256	describes how the ²¹⁰ Pb activity of sedimentary horizons can be fitted to a function that includes				
257	the changes in the ²¹⁰ Pb flux and sedimentation velocity as the ²¹⁰ Pb decays over time (Carroll et				
258	al. 1999). The algorithm employs a parsimonious inverse solution to best simulate the ²¹⁰ Pb profile				
259	by solving for the model parameters for maximum disentanglement of the flux and sedimentation				
260	velocity terms (Liu et al. 1991). Further constraints and evaluations of solutions can be made by				
261	the presence of known events (Carroll et al. 1999). Such events are traditionally peaks or horizons				
262	of ¹³⁷ Cs from atomic fallout within baseline sediments, and depositional facies characteristic of				
263	surrounding material brought in by storms, earthquakes, floods or tsunamis.				
264	Supporting data, additional figures cited, and method details can be found in Supplementary				
265	material to this paper.				
266	Results				
267	Sediment-core descriptions				
268	The first 23 cm of the Salut and 25 cm of the Mengkabong meadows were visibly muddy				
269	(black), with no evidence of bioturbation. Below the 23-cm and 25-cm horizons, the character of				
270	the sediment visibly changed to a coarser mixture of more compact light and dark brown sediments				
271	containing a plethora of shell and mangrove wood debris (refer to Fig. S2). No sulfide could be				
272	detected by smell or with lead acetate strips left in the sediment for a minute while they were				
273	extruded into receiving tubes before separation.				
274	Sediment-horizon organic composition				
275	The ${}^{13}C_{POC}$ and their $N:C$ ratios taken through the incubation did not appear to change and the				
276	two horizons exhibited near identical signatures (Table 1). These signatures converged even further				
277	when the effects of diagenetic transformations were considered (Gälman et al. 2008; Gälman et al.				
278	$\frac{2009}{1}$). Interestingly, it was found that seagrass litter was likely to be a minor component (~5%).				
279	The remaining components of surface-suspended matter, ostensibly microalgae, and mangrove				
280	sources made up the remaining 25% and 70% respectively (refer to Supplementary material), in				
281	agreement with other ecosystems in the region (Chen et al. 2017).				

Publisher: CSIRO; Journal: MF:Marine and Freshwater Research Article Type: Research Paper; Volume: ; Issue: ; Article ID: MF19119 DOI: 10.1071/MF19119; TOC Head:

282	Geochronology			
283	Although the depths of the storm facies were similar, it was clear from the ²¹⁰ Pb-activity profile			
284	that the sedimentation dynamics within the baseline sediments were very different. The Salut			
285	meadow, an embayment isolated at the head of the branch and fed by a rivulet, supported peaks in			
286	activity at ~10 cm (Fig. 2), in contrast to a general decay in ²¹⁰ Pb activity from the surface of the			
287	Mengkabong meadow (Fig. 2), an embayment isolated from the main branch. The difference in			
288	dynamics was also highlighted in the inability to detect any 137Cs activity from atomic fallout			
289	events within Salut sediments, which were evident as significant ¹³⁷ Cs activity between 5 cm and			
290	13 cm, peaking at 5 cm down the Mengkabong meadow core. This relatively shallow signal is			
291	consistent with blow back of fallout from the 2011 Fukushima Daiichi nuclear accident			
292	(Kaeriyama 2017).			
293	When the SIT solution for the Mengkabong system was constrained by the timing of the			
294	Fukushima fallout, the age of the depositional event was estimated as ~mid-1990s. The only recent			
295	weather event of note was from the passage of tropical storm Greg (December 1996). The storm is			
296	regarded as a once-in-400-years occurrence for this region, which is commonly known as 'the land			
297	below the wind' because of its location south of the influence of the typhoon belt. The 1996, storm			
298	triggered floods that severely affected the western coast of the state (Abdullah and Tussin 2014),			
299	and a local resident shared his experience as a witness to a coastal surge of ~4 m within the			
300	adjacent mangrove forests (Mohammad Asri bin Mohammad Suari, pers. comm.). With the			
301	confirmation that the depositional event was likely to be tropical storm Greg, the SIT model now			
302	adds constraints for the Salut meadow baseline sediments of age no older than 1996. On the basis			
303	of these solutions, the origin of the very different ²¹⁰ Pb dynamics becomes apparent. In Salut, both			
304	the flux of the excess ²¹⁰ Pb activity and the sedimentation rates of the meadow fell over time. In			
305	Mengkabong, rates of sedimentation and ²¹⁰ Pb activities remained relatively constant (220 g m ⁻²			
306	per year, Fig. 2) and were interrupted only by an increase in excess ²¹⁰ Pb activity consistent with			
307	shoreline development during a peak in annual rainfall (~ 2005 , unpubl. data Swee Theng Chew).			
308	These show relatively high sequestration rates near the top of the range, even before any correction			
309	for loss over time (Fig. 2).			
310	Incubation experiment			
311	Throughout the incubation experiment, the pH of both surface sediments and sediments taken			
312	from 20–22 cm became increasingly acidic over time (Fig. 3). The older sediments taken from 20–			
313	22 cm were more acidic and remained invariant and acidic. Surface-sediment slurries, in contrast,			
314	were initially less acidic; however, their acidity increased over time, reaching an asymptote after			
315	300 days equal to that of the older sediment slurry. The experiment failed to detect the presence of			
316	H ₂ S within the jar headspace (no blackening of the lead acetate strips) that would infer ongoing			

sulfate reduction.

Publisher: CSIRO; Journal: MF:Marine and Freshwater Research Article Type: Research Paper; Volume: ; Issue: ; Article ID: MF19119 DOI: 10.1071/MF19119; TOC Head:

318	Even though the initial BC represented a modest fraction of the POC (0.079 and 0.067 mol per					
319	100 g or 11-13%), its influence on the POC dynamics was not apparent because there was no					
320	significant decay in the BC content over the 500 days, and RC solutions with the time series failed					
321	to converge. The anoxic decay of POC for the surface- and older 20-22 cm-horizon sediments					
322	fitted the RC model well, and the separation of the terms was within acceptable limits (Fig. 4).					
323	Surface-sediment POC content was greater than that of sediments taken from 20-22 cm. However,					
324	we found no significant difference in their RC decay and apparent age parameters for the					
325	decomposable fraction (Fig. 5), despite different interdecadal depositional ages (18 years).					
326	Projections suggested that both horizons would have lost close to 30% of their POC content within					
327	the first several years (6–7). Nevertheless, the overarching dynamics were such that both horizons					
328	converged to losses of ~49 and 51% after 100 years of burial.					
329	In contrast to POC, the dynamics of PIC, DOC and ammonia (NH ₃) were not continuous. After					
330	~300 days, the carbonate content started to increase for both sediment horizons and appeared to					
331	move towards an asymptote. This was accompanied by an increase in NH3 and a decrease in DOC					
332	content (Fig. 3) after the NH ₃ content had first fallen and the DOC content increased (Fig. 3). Pools					
333	of DOC and NH ₃ were notably an order of magnitude smaller than that of POC. Only the					
334	cumulative CO ₂ , after correction for PIC generation after the 300 days, showed steady-state					
335	dynamics that slowed towards an asymptote (Fig. 6). However, there appeared to be a notable					
336	deficit in the amount of CO2 emitted for the amount of POC decomposed, in particular, for the					
337	deeper, older sediment horizon. Furthermore, the $\delta^{13}C_{POC}$ isotopic signatures were not coupled to					
338	each other. The $\delta^{13}CO_2$ values extracted from the soda lime were both relatively constant and very					
339	much heavier than those extracted from the POC mixture. The $\delta^{13}CO_2$ was measured as $-19.78 \pm$					
340	1.95 $(n = 4)$ at Day 7, -17.74 $(n = 1)$ at Day 189, -19.30 $(n = 1)$ at Day 308 and -18.56 $(n = 1)$ at					
341	Day 500, the end of the incubation experiment. Meanwhile, at the same time, the NH ₃ , DOC and					
342	PIC contents in the sediment slurry remained relatively constant up until about Day 365, when a					
343	change in trend was observed (Fig. 3). From Day 365 until the end of the incubation experiment,					
344	both PIC and NH ₃ concentrations in the surface-sediment slurry increased, with an increase of					
345	46.48% (s.e. = 3.91, n = 4) in PIC and 60.86% (s.e. = 1.57, n = 4) in NH ₃ concentrations, whereas					
346	DOC concentrations dropped by as much as 73.77% (s.e. $= 8.75$, $n = 4$) over the same period of					
347	time. Meanwhile, for the sediment slurry taken from 20-22 cm, PIC and NH ₃ concentrations					
348	increased by 50.57% (s.e. = 1.44, $n = 4$) and 73.19% (s.e. = 2.17, $n = 4$) respectively, whereas					
349	DOC concentrations dropped by 28.44% (s.e. = 4.89 , $n = 4$).					
350	Aeration incubation					
351	The short aeration pulse over 30 days after the completion of the 500-day anoxic incubation					
352	showed a large decrease in POC (18.86%, s.e. $= 4.09$, $n = 4$ for surface sediments; 16.99%, s.e. $=$					
353	5.04, $n = 4$ for sediments from 20–22 cm), outside that of the parameters of the anoxic					

DOI: 10.1071/MF19119; TOC Head:

mineralisation models (Fig. 4). This increase in decomposition was also in line with a

disproportionate increase in DOC over the anoxic mineralisation, confirming that, for both

horizons, organic aging had little effect on the recalcitrance of the buried POC.

Discussion

355

357

358

377

378379

380

381

382

383

384

385 386

387

388

Decomposition

359 Assuming the incubation was sufficiently long to capture interdecadal decay parameters, it appears that POC deposited, on average within 1-2 years of deposition may suffer significant 360 361 losses over climatic scales (49–51%). However, we must suggest caution in applying the surface-362 horizon extrapolations as a generalisation to seagrass beds in other locales, as such sediments will 363 inevitably change their redox status from an aerobic- to an anaerobic-dominated form of 364 mineralisation. Aerobic mineralisation is clearly the more rapid of the two, the result of greater efficiency in the mineralisation of the recalcitrant fractions (Kristensen et al. 1995). As well as 365 changing redox conditions, the nature of the organic mixture will likely affect the decay parameters 366 367 of the RC model. Clearly, the remaining half of the organic C, a seemingly recalcitrant fraction, is more than can be accounted for by the <10% contribution of the BC alone. It is also unlikely, in 368 369 this case, that any presence of phytolith-occluded C was responsible, given that the BC 370 methodology may have inadvertently included this form (Chew and Gallagher 2018). What 371 remains is up to speculation; it may consist of bacterial necromass (Burdige 2007) and, an increasingly important vector, especially within Southeast Asian coastal ecosystems, namely 372 microplastics (Nor and Obbard 2014; Li et al. 2019). Although microplastics have turnover times 373 374 of over 1000 years (Gewert et al. 2015), their amounts as C within soils and sediments remain 375 largely unknown. Some values have been estimated for terrestrial soils (Rillig 2018), ranging from 376 0.1–5% of POC for pristine environs to as much as 6.7% by soil weight.

Whatever value the overall decay parameters may take over space or time, it remains puzzling that we found little difference in the POC decomposition-model parameters between the surface and the deeper sediment horizons. This was not apparent in coastal non-vegetative sediments, which are dominated by more labile phytoplanktonic organic sources (Burdige 1991; Zimmerman and Canuel 2002). This can be explained by the following two possible theories: either the sediments in these types of meadows were well mixed, which is unlikely given the presence of ¹³⁷Cs peaks and ²¹⁰Pb decay series, or the stable-isotope signatures and recalcitrance are not covariant down the sediment columns. For the latter to be consistent, mangrove sources would need to balance an increase in recalcitrance between or within other organic sources because they are buried over time. In essence, a mix of the reactivity continuum and power models would best describe this. However, it cannot be discounted that changes in physical protection and benthic consumption parameters may also play some role (Arndt et al. 2013). Indeed, it is this sedimentary

DOI: 10.1071/MF19119; TOC Head:

protection component that will likely reduce the generality of the result across meadows. In the more exposed and turbulent meadows, seagrass sediments are composed of larger, sandier particles (Gallagher et al. 2019). Such particles lack the necessary cohesiveness, surface area, and fine pore structures required to exclude bacterial influence (Burdige 2007). Furthermore, no account of the role of fauna reworking between surface oxic and surface anoxic sediments was found within the sediments collected. We found no standout evidence of burrows from our multiple core collections, and such reworking can only enhance mineralisation (Burdige 2007). Nevertheless, if prevalent, this would lead to an even larger bias in sediment sequestration assumption than what the present study suggests. Diagenesis and the coupling between CO₂ and decomposition

The mineralisation and decomposition series have several notable features. These are seemingly punctuated dynamics of carbonate, NH₃ and DOC, the CO₂ deficits with POC decomposition, and the notably heavier ¹³CO₂ signature over that of ¹³C_{POC}. These dynamics suggest that the incubation experiment was not at a steady-state because different diagenetic processes switched on and off. How this affects the decomposition-model parameters is uncertain, but it is unlikely that the result is an underestimate, given that the observed diagenetic switches are likely to reflect a resource limitation that the incubation failed to supply. Nevertheless, this limitation is common to any natural perturbation experiment attempting to discover what is possible under a different set of conditions than that which may be encountered in other systems.

Within the limits of our monitored variables, the results imply that the initial fall in NH₃ content under dark anoxic conditions is synonymous with coupled dissimilatory nitrate reduction (DNRA) and denitrification by anammox autotrophic CO₂ fixation (Ni and Zhang 2013). Indeed, recent work has also shown an unexpectedly high degree of anammox and DNRA in the upper muddy seagrass sediments of a subtropical lagoon (Salk *et al.* 2017). Nevertheless, the relatively small changes in NH₃ indicate that any dark CO₂ fixation would not have affected the overall CO₂ dynamics, even after considering a stoichiometry of C:NH₃ of 15:1 (Koeve and Kähler 2010). However, it could be argued that the production of archaeal necromass may have contributed to an increasingly recalcitrant pool of POC over time (Burdige 2007); the extent to which this would contribute to the decomposition dynamics would depend, in part, on the supply of nitrate for coupled DNRA. A reduction in the supply of nitrates may perhaps be responsible for a change to another mineralisation process responsible for the increase in both NH₃ and PIC after 300 days.

Anoxic PIC and NH₃ production within marine coastal sediment, although consistent with sulfate reduction (Burdige 1991; Mucci *et al.* 2000), is also inconsistent with several sedimentary parameters and observations. First, we could not detect any H₂S produced within the Mason jar headspace throughout the incubation period. Second, molar NH₃: CO₂ ratios were clearly an order

DOI: 10.1071/MF19119; TOC Head:

424	of 10 ³ larger than those found for marine sediments dominated by sulfate reduction (Burdige
425	1991). What is not clear are the reasons for the increase in PIC, of sufficient amounts to affect the
426	CO ₂ dynamics. Nevertheless, the lack of evidence for significant levels of sulfate reduction and
427	alkalinisation points to another type of mineralisation, one that can support a suitable acidic
428	microenvironment. Recently, it has been demonstrated that an iron-reducing bacterium can
429	precipitate siderite (FeCO ₃) within acidic sediments at ambient temperatures (30°C). It was
430	suggested that alkalinisation at the cell walls was induced mainly by its production of NH ₃ . Indeed,
431	the dynamics of the parameters measured herein fall within the scientific justification of inference
432	to the best explanation (Lipton 2000). The sediments were acidic and there was a parallel rise in
433	NH ₃ production with PIC outside the stoichiometry of sulfate reduction. Furthermore, additional
434	analysis of selected remaining sediment samples retained throughout the incubation experiment
435	indicated that the total iron content was sufficient to support siderite formation (0.051 mol 100 g ⁻¹ ,
436	s.d. = 0.0064 , $n = 60$; see Table/Fig. Sxxxx), but only to levels to which the carbonate appears to
437	be reaching an asymptote ($\sim 0.15 \text{ mol } 100 \text{ g}^{-1}$, Fig. 3).
438	However, what is clear is that the overall CO ₂ dynamics observed fall well short of accounting
439	for the continued loss of POC, irrespective of PIC and DOC. By itself, this implies that there must
440	be another mineralisation product. As far as we are aware, methane (CH ₄) formed from
441	methanogenesis is the remaining alternative. Methanogenesis would result in the release of both
442	CO ₂ and CH ₄ , within its own sedimentary niche, where any iron reducers cannot directly compete
443	(Bray et al. 2017). Although we did not measure CH ₄ during this incubation, the supposition is
444	supported by the relatively constant ¹³ C _{POC} values and considerably heavier ¹³ CO ₂ ratios of it
445	mineralised gas, trapped on the soda lime, over the incubation (Table 1). Such patterns have also
446	been found for highly organic coastal marine sediments where a considerably lighter ¹³ CH ₄
447	(~58.9‰) balances out the heavier ¹³ CO ₂ (~19.2‰) fraction, to maintain a constant heavy source
448	of ¹³ C _{POC} over time (Boehme et al. 1996). Why methanogens should dominate mineralisation over
449	sulfate reduction is not clear. Perhaps it is due to the high acidity of sediments seemingly supplied
450	from the adjacent mangrove mudflats (Marchand et al. 2004) and iron-reducing bacteria
451	(Koschorreck 2008).
452	Conclusions
453	The incubation experiment appears to capture the long-term decomposition parameters for POC.
454	The RC model seems to indicate that current estimates of C sequestration may be significantly
455	overestimated, in this case, by ~50%, unless corrections can be made for loss over centennial time
456	scales. More information is needed across different sedimentary environs covariant with tropical
457	species and sources of organic C (Gallagher et al. 2019). Furthermore, much remains to be
458	investigated on the coupling of POC losses to greenhouse-gas emissions that have different
459	atmospheric warming effects and the roles of processes post-disposition, such as dark CO ₂ fixation

Publisher: CSIRO; Journal: MF:Marine and Freshwater Research Article Type: Research Paper; Volume: ; Issue: ; Article ID: MF19119 DOI: 10.1071/MF19119; TOC Head:

460	and carbonate formation on net CO ₂ emissions. Without certainty in both the estimates and the				
461	conceptual model, there will not be sufficient certainty in the estimates of C storage and				
462	sequestration services rendered by seagrass ecosystems for use in cap-and-trade C markets to				
463	embrace these ecosystems as part of a solution to climate change.				
464	Author contributions				
465	CHC and JBG assisted in fieldwork and design of equipment and analysis of the iron content.				
466	CHC conducted the incubation experiment and the remaining variables, created the figures and				
467	tables, compiled the supplementary material and the statistical analyses within the tables, and				
468	contributed to the modelling. JBG was responsible for the concept, the final modelling solution and				
469	led the writing of the manuscript. STC collected cores and performed the SIT ²¹⁰ Pb event				
470	geochronology under supervision from JBG. NMZ provided the statement on recalcitrant carbon in				
471	the form of microplastics found in the discussion. All authors approved the final version of the				
472	manuscript and agree to be accountable for all aspects of the manuscript.				
473	Conflicts of interest				
474	The authors declare that they have no conflicts of interest.				
475	Declaration of funding				
476	This research was funded in part by the Malaysian Ministry of Science Technology and				
477	Innovation (FRG0424-SG-1/2015), which funded the stable isotope analysis and the rental of the				
478	boat used in the collection of the sample cores.				
479	Acknowledgements				
480	Our thanks go to our boatman Awang Azmee and Michael Yap Tzuen-Kiat for help in collection and				
481	analysis of the samples.				
482	References				
483	<eref>Abdullah, M. H., and Tussin, A. M. (2014). Tropical cyclone, rough seas and severe weather</eref>				
484	monitoring and early warning system in Malaysia. Available at https://www.jma.go.jp/jma/jma-eng/jma-				
485	center/rsmc-hp-pub-				
486	eg/2014_Effective_TC_Warning/presentation/11_March/country_report/Country_Report_Malaysia.pdf </td				
487	eref>				
488	<jrn>Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, P. (2013).</jrn>				
489	Quantifying the degradation of organic matter in marine sediments: a review and synthesis. <i>Earth-Science</i>				
490	Reviews 123, 53–86. doi:10.1016/j.earscirev.2013.02.008				
491	<jrn>Boehme, S. E., Blair, N. E., Chanton, J. P., and Martens, C. S. (1996). A mass balance of 13C and 12C</jrn>				
492	in an organic-rich methane-producing marine sediment. Geochimica et Cosmochimica Acta 60(20), 3835—				

3848. doi:10.1016/0016-7037(96)00204-9</jrn>

```
<jrn>Boudreau, B. (1991). On a reactive continuum representation of organic matter diagenesis. American
494
                 Journal of Science <mark>291</mark>, 507–538. doi:10.2475/ajs.291.5.507</jrn>
495
            <irn>Bray, M. S., Wu, J., Reed, B. C., Kretz, C. B., Belli, K. M., Simister, R. L., Henny, C., Stewart, F. J.,
496
                 DiChristina, T. J., Brandes, J. A., Fowle, D. A., Crowe, S. A., and Glass, J. B. (2017). Shifting microbial
497
498
                 communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations.
499
                 Geobiology 15(5), 678–689. doi:10.1111/gbi.12239</jrn>
             <jrn>Burdige, D. J. (1991). The kinetics of organic matter mineralization in anoxic marine sediments.
500
                 Journal of Marine Research <mark>49</mark>(4), 727–761. doi:10.1357/00222409178499<u>5710</u></irn>
501
             <jrn>Burdige, D. J. (2007). Preservation of organic matter in marine sediments: controls, mechanisms, and
502
                 an imbalance in sediment organic carbon budgets? Chemical Reviews 107(2), 467–485.
503
504
                 doi:10.1021/cr050347q</jrn>
             <jrn>Burdige, D. J., Komada, T., Magen, C., and Chanton, J. P. (2016). Modeling studies of dissolved
505
506
                 organic matter cycling in Santa Barbara Basin (CA, USA) sediments. Geochimica et Cosmochimica Acta
507
                 195, 100–119. doi:10.1016/j.gca.2016.09.007</jrn>
508
            <edb>Canuel, E. A., Brush, G. S., Cronin, T. M., Lockwood, R., and Zimmerman, A. R. (2017).
509
                 Paleoecology studies in Chesapeake Bay: a model system for understanding interactions between climate,
510
                 anthropogenic activities and the environment. In 'Applications of Paleoenvironmental Techniques in
511
                 Estuarine Studies'. pp. 495–527. (Springer: Netherlands, Dordrecht)</edb>
            <jrn>Carroll, J., Lerche, I., Abraham, J. D., and Cisar, D. J. (1999). Sediment ages and flux variations from
512
                 depth profiles of <sup>210</sup>Pb: lake and marine examples. Applied Radiation and Isotopes 50(4), 793–804.
513
                 doi:10.1016/S0969-8043(98)00099-2</jrn>
514
             <jrn>Cebrian, J. (1999). Patterns in the fate of production in plant communities. American Naturalist 154(4),
515
                 449–468. doi:10.1086/303244</jrn>
516
            <irn>Chen, G., Azkab, M. H., Chmura, G. L., Chen, S., Sastrosuwondo, P., Ma, Z., Dharmawan, I. W. E.,
517
518
                 Yin, X., and Chen, B. (2017). Mangroves as a major source of soil carbon storage in adjacent seagrass
519
                 meadows. Scientific Reports 7, 42406. doi:10.1038/srep42406</jrn>
520
             <jrn>Chew, S. T., and Gallagher, J. B. (2018). Accounting for black carbon lowers estimates of blue carbon
                 storage services. Scientific Reports 8(1), 2553. doi:10.1038/s41598-018-20644-2</jrn>
521
             <br/>

522
523
                 the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin,
524
                 G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
525
                 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 119-158.
             <irn>Dharmakeerthi, R.S., Hanley, K., Whitman, T., Woolf, D., and Lehmann, J. (2015) Organic carbon
526
527
                 dynamics in soils with pyrogenic organic matter that received plant residue additions over seven years.
                 Soil Biology and Biochemistry 88, 268–274. doi:10.1016/j.soilbio.2015.06.003</jrn>
528
```

```
<jrn>Duarte, C. M., and Krause-Jensen, D. (2017). Export from seagrass meadows contributes to marine
529
          carbon sequestration. Frontiers in Marine Science 4, 13. doi:10.3389/fmars.2017.00013</jrn>
530
        <jrn>Duarte, C. M., Kennedy, H., Marbà, N., and Hendriks, I. (2013). Assessing the capacity of seagrass
531
532
           meadows for carbon burial: current limitations and future strategies. Ocean and Coastal Management 83,
           32–38. doi:10.1016/j.ocecoaman.2011.09.001</jrn>
533
534
        <conf>Gallagher, J. B. (2014). Explicit and implicit assumptions within the blue carbon conceptual model: a
535
          critique. In 'Proceedings of the International Conference on Marine Science and Aquaculture 2014:
536
          Ecosystem Perspectives in Sustainable Development', 18–20 March 2014, Kota Kinabalu, Sabah,
537
          Malaysia. (Ed. S. Mustaffa) pp. 26–40 (Universiti Malaysia Sabah).</conf>
538
        <edb>Gallagher, J. B. (2015). The implications of global climate change and aquaculture on blue carbon
539
          sequestration and storage within submerged aquatic ecosystems. In 'Aquaculture Ecosystems'. (Eds S.
540
          Mustafa and R. Shapawi.) pp. 243–280. (Wiley Blackwell: Oxford, UK.)</edb>
541
        <jrn>Gallagher, J. B. (2017). Taking stock of mangrove and seagrass blue carbon ecosystems: a perspective
542
           for future carbon trading. Borneo Journal of Marine Science and Aquaculture 1(1), 71–74.</jrn>
        <jrn>Gallagher, J. B., and Ross, D. J. (2018). Sediment geochronology for bar-built estuaries subject to flood
543
544
           deposition and erosion: a robust multiproxy approach across an estuarine zone. The Holocene 28(3), 341-
          353. doi:10.1177/0959683617729441</jrn>
545
        <jrn>Gallagher, J. B., Chuan, C. H., Yap, T. K., and Fredelina Dona, W. F. (2019). Carbon stocks of coastal
546
547
           seagrass in Southeast Asia may be far lower than anticipated when accounting for black carbon. Biology
548
           Letters 15(5), 20180745. doi:10.1098/rsbl.2018.0745</jrn>
549
        <jrn>Gälman, V., Rydberg, J., Bindler, R., and Renberg, I. (2008). Carbon and nitrogen loss rates during
          aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnology and
550
           Oceanography 53(3), 1076–1082. doi:10.4319/lo.2008.53.3.1076</jrn>
551
        \langle \text{jrn} \rangle Gälman, V., Rydberg, J., and Bigler, C. (2009). Decadal diagenetic effects on \delta^{13}C and \delta^{15}N studied in
552
553
           varved lake sediment. Limnology and Oceanography <mark>54(3</mark>), 917–924.
          doi:10.4319/lo.2009.54.3.0917</jrn>
554
        irn><mark>Gaveau, D. L. A., Salim, M. A., Hergoualc'h, K., Locatelli, B., Sloan, S., Wooster, M., Marlier, M. E., (</mark>
555
          Molidena, E., Yaen, H., DeFries, R., Verchot, L., Murdiyarso, D., Nasi, R., Holmgren, P., and Sheil, D.
556
          (2015). Major atmospheric emissions from peat fires in Southeast Asia during non-drought years:
557
           evidence from the 2013 Sumatran fires. Scientific Reports 4, 6112. doi:10.1038/srep06112</jrn>
558
        <irn>Gewert, B., Plassmann, M. M., and MacLeod, M. (2015). Pathways for degradation of plastic polymers
559
           floating in the marine environment. Environmental Science. Processes & Impacts 17(9), 1513–1521.
560
           doi:10.1039/C5EM00207A</jrn>
561
        <jrn>Gonneea, M. E., Paytan, A., and Herrera-Silveira, J. A. (2004). Tracing organic matter sources and
562
          carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science 61(2),
563
564
          211–227. doi:10.1016/j.ecss.2004.04.015</jrn>
```

```
<jrn>Gontikaki, E., Thornton, B., Cornulier, T., and Witte, U. (2015). Occurrence of priming in the
565
          degradation of lignocellulose in marine sediments. PLoS One 10(12), e0143917
566
          doi:10.1371/journal.pone.0143917</jrn>
567
        <jrn>Harvey, E. T., Kratzer, S., and Andersson, A. (2015). Relationships between colored dissolved organic
568
          matter and dissolved organic carbon in different coastal gradients of the Baltic Sea. Ambio 44(3), 392–
569
          401. doi:10.1007/s13280-015-0658-4</jrn>
570
        <irn>Hee, C. A., Pease, T. K., Alperin, M. J., and Martens, C. S. (2001), Dissolved organic carbon
571
          production and consumption in anoxic marine sediments: a pulsed-tracer experiment. Limnology and
572
          Oceanography 46(8), 1908–1920. doi:10.4319/lo.2001.46.8.1908</jrn>
573
574
        <jrn>Heiri, O., Lotter, A. F., and Lemcke, G. (2001). Loss on ignition as a method for estimating organic
          and carbonate content in sediments: reproducibility and comparability of results. Journal of
575
          Paleolimnology 25(1), 101–110. doi:10.1023/A:1008119611481
576
        <irn>Holmer, M. (1996). Composition and fate of dissolved organic carbon derived from phytoplankton
577
578
          detritus in coastal marine sediments. Marine Ecology Progress Series 141(1-3), 217-228.
579
          doi:10.3354/meps141217</jrn>
       <irn>Hoque, M. A., Ahad, B. G., and Saleh, E. (2010). Hydrodynamics and suspended sediment transport at
580
581
          tidal inlets of Salut Mengkabong Lagoon, Sabah, Malaysia. International Journal of Sediment Research.
582
          25(4), 399–410. doi:10.1016/S1001-6279(11)60007-3</ir>
        <jrn>Howard, J. L., Creed, J. C., Aguiar, M. V. P., and Fouqurean, J. W. (2018). CO<sub>2</sub> released by carbonate
583
          sediment production in some coastal areas may offset the benefits of seagrass 'blue carbon' storage.
584
          Limnology and Oceanography 63(1), 160–172. doi:10.1002/lno.10621</jrn>
585
        <jrn>Johannessen, S. C., and Macdonald, R. W. (2016). Geoengineering with seagrasses: is credit due where
586
          credit is given? Environmental Research Letters 11(11), 113001. doi:10.1088/1748-
587
588
          <u>9326/11/11/113001</u></jrn>
589
        <jrn>Kaeriyama, H. (2017). Oceanic dispersion of Fukushima-derived radioactive cesium: a review.
          Fisheries Oceanography <mark>26</mark>(2), 99–113. doi:10.1111/fog.12177</jrn>
590
        <jrn>Keith, H., and Wong, S. C. (2006). Measurement of soil CO<sub>2</sub> efflux using soda lime absorption: both
591
          quantitative and reliable. Soil Biology & Biochemistry 38(5), 1121–1131.
592
          doi:10.1016/j.soilbio.2005.09.012</jrn>
593
        <jrn>Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marba, N., and Middelburg, J.
594
          J. (2010). Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles
595
          24, GB4026. doi:10.1029/2010GB003848</jrn>
596
        <jrn>Koelmans, A. A., and Prevo, L. (2003). Production of dissolved organic carbon in aquatic sediment
597
          suspensions. Water Research 37(9), 2217–2222. doi:10.1016/S0043-1354(02)00581-X
598
```

```
<jrn>Koeve, W., and Kähler, P. (2010). Heterotrophic denitrification vs. autotrophic anammox: quantifying
599
           collateral effects on the oceanic carbon cycle. Biogeosciences 7(8), 2327–2337. doi:10.5194/bg-7-2327-
600
601
           <mark>2010</mark></jrn>
        <jrn>Koschorreck, M. (2008). Microbial sulphate reduction at a low pH. FEMS Microbiology Ecology 64(3),
602
          329–342. doi:10.1111/j.1574-6941.2008.00482.x</jrn>
603
        <jrn>Kristensen, E. (1994). Decomposition of microalgae, vascular plants and sediment detritus in seawater-
604
          use of stepwise thermogravimetry. Biogeochemistry 26(1), 1-24. doi:10.1007/BF02180401</jrn>
605
        <jrn>Kristensen, E., Ahmed, S. I., and Devol, A. H. (1995). Aerobic and anaerobic decomposition of organic
606
          matter in marine sediment: which is fastest? Limnology and Oceanography 40(8), 1430–1437.
607
608
          doi:10.4319/lo.1995.40.8.1430</jrn>
        <other>Lavelle, J. W., Massoth, G. J., and Crecelius E. A. (1985). 'Sedimentation Rates in Puget Sound
609
          from <sup>210</sup>Pb Measurements.' NOAA technical memorandum ERL PMEL-61 (Sequim). (Pacific Marine
610
611
          Research Laboratory, Sequim, USA))</other>
612
        <jrn>Li, R., Zhang, L., Xue, B., and Wang, Y. (2019). Abundance and characteristics of microplastics in the
           mangrove sediment of the semi-enclosed Maowei Sea of the south China sea: new implications for
613
          location, rhizosphere, and sediment compositions. Environmental Pollution 244, 685–692.
614
           doi:10.1016/j.envpol.2018.10.089</jrn>
615
        <irn>Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., Luizão, F. J., Engelhard,
616
          M. H., Neves, E. G., and Wirick, S. (2008). Stability of biomass-derived black carbon in soils.
617
           Geochimica et Cosmochimica Acta <mark>72</mark>, 6069–6078. doi:10.1016/j.gca.2008.09.028</jrn>
618
619
        <edb>Lipton, P. (2000). Inference to the best explanation. In 'A Companion to the Philosophy of Science'.
          (Ed. WH Newton-Smith.) pp. 184–193. (Blackwell, Oxford (UK))</edb>
620
621
        <jrn>Liu, J., Carroll, J. L., and Lerche, I. (1991). A technique for disentangling temporal source and
           sediment variations from radioactive isotope measurements with depth. Nuclear Geophysics 5(1-2), 31-
622
623
           45.</jrn>
        <irn>Marchand, C., Baltzer, F., Lallier-Vergès, E., and Albéric, P. (2004). Pore-water chemistry in
624
           mangrove sediments: relationship with species composition and developmental stages (French Guiana).
625
626
           Marine Geology 208(2-4), 361-381. doi:10.1016/j.margeo.2004.04.015</jrn>
        <jrn>Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E.,
627
628
          Schlesinger, W. H., and Silliman, B. R. (2011). A blueprint for blue carbon: toward an improved
          understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the
629
          Environment <mark>9</mark>(10), 552–560. doi:10.1890/110004</jrn>
630
631
        <jrn>Middelburg, J. J. (1989). A simple rate model for organic matter decomposition in marine sediments.
632
           Geochimica et Cosmochimica Acta <mark>53(7</mark>), 1577–1581. doi:10.1016/0016-7037(89)90239-1</jrn>
```

```
<jrn>Mostovaya, A., Hawkes, J. A., Koehler, B., Dittmar, T., and Tranvik, L. J. (2017). Emergence of the
633
           reactivity continuum of organic matter from kinetics of a multitude of individual molecular constituents.
634
          Environmental Science & Technology 51(20), 11571–11579. doi:10.1021/acs.est.7b02876</jrn>
635
        <irn>Mucci, A., Sundby, B., Gehlen, M., Arakaki, T., Zhong, S., and Silverberg, N. (2000). The fate of
636
           carbon in continental shelf sediments of eastern Canada: a case study. Deep-sea Research. Part II, Topical
637
           Studies in Oceanography 47(3-4), 733-760. doi:10.1016/S0967-0645(99)00124-1</jrn>
638
        <irn>Ni, S.-Q., and Zhang, J. (2013). Anaerobic ammonium oxidation: from laboratory to full-scale
639
          application. BioMed Research International 2013, 469360. doi:10.1155/2013/469360</jrn>
640
        <jrn>Nor, N. H., and Obbard, J. P. (2014). Microplastics in Singapore's coastal mangrove ecosystems.
641
           Marine Pollution Bulletin <mark>79</mark>(1–2), 278–283.</jrn>
642
        <irn>Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C.,
643
          Fourqurean, J. W., Kauffman, J. B., Marba, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., and
644
645
          Baldera, A. (2012). Estimating global 'blue carbon' emissions from conversion and degradation of
646
           vegetated coastal ecosystems. PLoS One 7(9), e43542. doi:10.1371/journal.pone.0043542</jrn>
        <irn>Rassmann, J., Lansard, B., Pozzato, L., and Rabouille, C. (2016). Carbonate chemistry in sediment
647
           porewaters of the Rhône River delta driven by early diagenesis (northwestern Mediterranean).
648
           Biogeosciences 13(18), 5379–5394. doi:10.5194/bg-13-5379-2016</jrn>
649
        <irn>Rillig, M. C. (2018). Microplastic disguising as soil carbon storage. Environmental Science &
650
           Technology 52(11), 6079–6080. doi:10.1021/acs.est.8b02338</irn>
651
        <jrn>Salk, K. R., Erler, D. V., Eyre, B. D., Carlson-Perret, N., and Ostrom, N. E. (2017). Unexpectedly high
652
           degree of anammox and DNRA in seagrass sediments: description and application of a revised isotope
653
          pairing technique. Geochimica et Cosmochimica Acta 211, 64–78. doi:10.1016/j.gca.2017.05.012</jrn>
654
        <jrn>Santisteban, J. I., Mediavilla, R., Lopez-Pamo, E., Dabrio, C. J., Zapata, M. B. R., Garcia, M. J. G.,
655
           Castano, S., and Martinez-Alfaro, P. E. (2004). Loss on ignition: a qualitative or quantitative method for
656
657
          organic matter and carbonate mineral content in sediments? Journal of Paleolimnology 32(3), 287–299.
           doi:10.1023/B:JOPL.0000042999.30131.5b</jrn>
658
        <jrn>Siikamäki, J., Sanchirico, J. N., Jardine, S., McLaughlin, D., and Morris, D. (2013). Blue carbon:
659
           coastal ecosystems, their carbon storage, and potential for reducing emissions. Environment 55(6), 14-29.
660
          doi:10.1080/00139157.2013.843981</jrn>
661
662
        <br/>bok><mark>Strickland</mark>, J.D.H., and <mark>Parsons</mark>, T.R. (1968). 'A Practical Manual of Seawater Analysis.' (Queens
663
          Printer: Ottawa, ON, Canada.)</bok>
        <jrn>Tarutis, W. J. (1993). On the equivalence of the power and reactive continuum models of organic
664
           matter diagenesis. Geochimica et Cosmochimica Acta 57(6), 1349–1350. doi:10.1016/0016-
665
666
          7037(93)90071-4</jrn>
```

- 667 <jrn>Wang, J., Xiong, Z., and Kuzyakov, Y. (2016). Biochar stability in soil: meta-analysis of
- decomposition and priming effects. Global Change Biology. Bioenergy 8(3), 512–523.
- 669 <u>doi:10.1111/gcbb.12266</u></jrn>
- 670 <jrn>Welsh, D. T. (2000). Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and
- significance to primary productivity. *Ecology Letters* 3(1), 58–71. doi:10.1046/j.1461-
- 672 0248.2000.00111.x</jrn>
- 673 <jrn>Westrich, J. T., and Berner, R. B. (1984). The role of sedimentary organic matter in bacterial sulfate
- 674 reduction: the G model tested. *Limnology and Oceanography* **29**(2), 236–249.
- 675 doi:10.4319/lo.1984.29.2.0236</jrn>
- 676 <jrn>Zimmerman, A. R., and Canuel, E. A. (2002). Sediment geochemical records of eutrophication in the
- 677 mesohaline Chesapeake Bay. *Limnology and Oceanography* **47**(4), 1084–1093.
- 678 <u>doi:10.4319/lo.2002.47.4.1084</u></jrn>
- 679 Handling Editor: Siti Maryam Yaakub
- **Fig. 1.** The Salut–Mengkabong estuary site used in the study. Salut is the southern arm of the estuary,
- 681 whereas Mengkabong is the lagoon situated to the North. The sites at which the seagrass sediments were
- obtained for the incubation experiment (\blacktriangle) and the sample cores used for SIT data (\circ) are indicated. The
- 683 seagrass distribution information is based on collective indigenous knowledge, whereas the mangrove
- distribution is obtained from the World Atlas of Mangroves Version 3 (Spalding et al. 2018) and from
- 685 Google Earth. (Map data: Google 2019; Landsat/Copernicus, Digital Globe, Bornean Biodiversity and
- 686 Ecosystems Conservation (BBEC) Sabah and WWF Malaysia 2017.) The line map was produced with QGIS
- v3.6.0 and Adobe Illustrator CS6.
- 688 Fig. 2. Radiogeochronological profiles down the upper seagrass sediments of Salut estuary–Mengkabong
- lagoon. The shaded area represents the mangrove deposition event. (a) The ¹³⁷Cs activity () down the
- Mengkabong meadow sediments; no activity could be detected down the Salut meadow sediments. (b, c) The
- respective supporting 226 Ra (\bullet) and total 210 Pb_{total} activity (\circ). (d, e) The resultant mean excess or
- unsupported ²¹⁰Pb_{excess} activity, corrected for ²²⁶Ra, outside the deposition event (●) superimposed on their
- 693 respective stable sediment isotope tomography (SIT) simulations (\circ), together with (f) their resultant
- particulate organic carbon (POC) sequestration rates for Mengkabong (\circ) and Salut meadows (\bullet). (g, h)
- 695 Changes over time in the sedimentation and ²¹⁰Pb_{excess} parameters as simulated by SIT in the Mengkabong
- and Salut sediment columns, with the actual recorded ²¹⁰Pb_{excess} activity (•) and ²¹⁰Pb_{excess} activity (o) being
- indicated as modelled by SIT. Error bars denote the standard deviations of the counts of the radioactive
- decay for each horizon.
- 699 Fig. 3. Values of pH, particulate inorganic carbon (PIC), dissolved organic carbon (DOC) and ammonia
- measured in the sediments throughout the incubation experiment. (a) The pH of the sediment slurries from
- Day 105 until the end of the anoxic incubation period. (b, c) The PIC content of the sediment. (d, e) The
- DOC content of the porewater of the sediment slurry. (f, g) The ammonia concentrations of the porewater of
- the sediment slurry. Values are given for (b, d, f) sediment collected from the surface 2-cm horizon and (c, e, f)

DOI: 10.1071/MF19119; TOC Head:

g) sediment collected from the 20–22 cm horizon. The last point in each series (*) shows the final values of the sediments after a 30-day re-oxygenation period. Error bars indicate standard errors (n = 4).

Fig. 4. Particulate organic matter (POC) content and loss of POC fraction of the sediments used over the anoxic incubation and subsequent re-oxygenation. The mean POC content corresponds to (a) the surface 2 cm and (b) the sediment collected from the 20–22-cm horizon. Error bars indicate the standard errors (n = 4). The loss of the POC fraction over time in (c) the surface 2 cm and (d) the sediment collected from the 20–22-cm horizon, using the reactivity continuum model. Broken lines indicate the 95% confidence limit, as do the errors on the final point. The last point in each series (*, for a and b; \blacksquare , for c and d) shows the final value of the sediments after a 30-day re-oxygenation period.

Fig. 5. Extrapolations of the fraction of remaining particulate organic carbon (POC) within the sediments over 100 years following deposition. The broken line corresponds to the sediments collected from the 20-22-cm horizon, which were dated to deposition c. 1996, whereas the solid line corresponds to the sediments collected from the surface 2 cm, deposited in 2016.

Fig. 6. Cumulative CO_2 absorbed by soda lime and net loss of the particulate organic carbon (POC) fraction of the sediments used over the anoxic incubation. (a) The sediment was collected from the surface 2 cm and (b) the sediment was collected from the 20–22-cm horizon. Error bars indicate the standard errors (n = 4). The series indicated by circles (\bullet) is the cumulative CO_2 absorbed over the course of the incubation, whereas the series indicated by triangles (solid triangle) is the cumulative loss of POC over the same period.

Table 1. Dry mass of particulate sedimentary carbon (C) and stable nitrogen (N) isotopes and their molar ratios from the incubation jars

S and B refer to the surface (0–2 cm) and bottom (20–22 cm) horizons, followed by the day number during the incubation on which the sediments were extracted. All δ^{13} C values have been normalised to preindustrial times (Suess effect), using their modelled depositional age. S0 and B0 are from single samples, whereas S210 and B210 are the means of four subsamples with their respective standard errors

Sample	δ ¹³ C (‰)	C (%)	N (%)	N: C ratio
S0	-24.61	7.83	0.61	0.066
S210	-24.71 ± 0.04	7.64 ± 0.13	0.58 ± 0.004	0.065 ± 0.0007
B0	-24.06	7.47	0.62	0.071
B210	-24.22 ± 0.03	7.61 ± 0.11	0.63 ± 0.004	0.070 ± 0.0007

¹The 30% was calculated as the time of symmetry of the second derivative of the decay series, as percentage lost over percentage of time over a span of 100 years ($\Delta lost/\Delta t = 1$). Although it is a continuous function, because both scales are of the same magnitude, it, thus, marks the threshold time of a significant slowdown in decomposition.