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1 INTRODUCTION 

It is anticipated that agricultural output will have to increase by 70% to feed a population of 

more than 9 billion by the year 2050 (Benkeblia 2012). The capacity of global high-intensity 

farming systems to continue to guarantee productive returns whilst maintaining system stability 

will eventually decline, and thus new opportunities for agriculture are being realised in tropical 

environments. As population growth is greatest in tropical regions, and commensurate with 

rapid industrialisation and a change in traditional land use practices, it is presumed that 

equatorial production systems will be some of the most vulnerable to climate change.  

 

The pressure on tropical agricultural systems is two-fold. Firstly, tropical agricultural systems 

are located primarily in areas of political instability, with high populations vulnerable both to 

the impacts of climate change itself, and with lesser current organisational or community 

knowledge to be able to plan and implement sustainable and intensive food production systems. 

A second challenge depends on the capacity of tropical agricultural land managers and 

researchers to assess and strengthen the adaptive capacity of food crops to the predicted 

temperature and carbon dioxide raising which might be above the goal of 2 C by the end of 

this century - which now appears to be a conservative estimate of temperature increase 

(Challinor et al. 2014). 

 

Temperature and rainfall fluctuations, deficits and efficacy are suitable indicators of climate 

change as they both reflect a general increase or decrease in climate variables over time 

(Nwagbara 2008, 2015; Uguru et al. 2011). Typically, tropical regions are characterised by a 

limited variation in temperature, but a wide variation in rainfall. Therefore, the tropics contain 

some of the wettest and driest locations on Earth subject to variations in these conditions. Total 

warming in the tropics is estimated to be about 0.7-0.8 o C. Regions within the tropics such as 
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the Sahara, Sahel and Arabian Peninsula have been among the most rapidly warming across 

the globe.  

 

Tropical agricultural systems are located between the latitudes of 22.5 North and 22.5 South 

(Figure 1). These systems are characterized by high level of solar, relatively high and consistent 

temperatures through the year, high number of storm systems as cyclones, hurricanes, and 

thunderstorms, and air pressure distribution producing varying patterns of wind and air-mass 

movement.  

 

<Insert Figure 1 here> 

 

According to Köppen (1900a, 1900b), two main agricultural tropical systems fall into this 

classification. The first are humid tropics (HT) characterized by constantly warmth, and high 

annual rainfall supporting dense tropical rain forests, while high rainfall and good soil moisture 

maintain evergreen forests. These systems are well adapted with low soil erosion and good 

fertility, therefore more adapted to perennial and forest crops. The second are the wet-dry 

tropics (WDT) with greater variation and contrasting rainfall in specific seasons during the 

year. some well-suited annual crops, forages, and tree fruits. However, the latter are considered 

the most fragile and most in need of novel production approaches. 

 

In this chapter, we assess the vulnerability and resilience of tropical agricultural systems to the 

hypothesised, modelled and actual measured impacts of a changing climate. We examine 

potential system vulnerabilities associated with soils, biosecurity and crop productivity, 

highlighting risks and opportunities associated with an increasingly warm, yet variable, 

climate. 
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2 TROPICAL AGRICULTURE SYSTEMS 

The tropics provide important environmental services and resources and productive lands  that 

are essential to meeting future global food supply (Goldsmith and Cohn 2017). The tropics are 

also the site of increased commercial agricultural expansion (Laurance et al. 2014).  

 

There is a lack of standardised and widely accepted definitions relating to farming systems 

which can impose serious limitations on the adaptability of farmers in the face of climate 

change (Morton, 2007). In this section, we attempt to clarify nomenclature pertaining to 

agricultural systems by distinguishing between crop production systems (the series of 

processes involved in the growing of crops ) and the farming system which in turn is an integral 

part of the broader agro-ecosystem and landscape (FAO 2017). A hierarchical approach to 

farming systems allows one to consider impacts and opportunities across a broad-spectrum of 

land management approaches in turn.  

 

Farming systems of the tropics include arable systems, pastoral approaches, mixed approaches, 

subsistence dependencies, commercial, intensive, extensive, sedentary and nomadic farming 

(Fig. 2). Primarily, however, tropical farming systems are typically small family holdings 

(some – semi-commercial, many subsistence farming system), which comprise 85% of the 

world’s farms (Harvey et al. 2014a) and are actually the backbone of agricultural commodities 

trading in developing countries (IFPRI 2017).  

 

Traditional farming is characterised by methods such as slash-and-burn agriculture which 

requires clear-felling and fire techniques to establish a suitable area for crop production. 

Traditional agriculture simply put adopts farming systems that require the least input, that is, 
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it is a farming system that enables farmers to meet the economic demand of feeding the modern 

world with minimal physical effort. Minimising physical effort sees modern machinery like 

tractors and harvesters used, as well as chemically engineered herbicides, pesticides and 

fungicides to conquer soil-borne disease (Bodin 2017).  

 

<Insert Figure 2 here> 

 

3 GENERALISED IMPACTS OF CLIMATE CHANGE ON AGRICULTURE IN 

THE TROPICS 

The vulnerability of tropical crops to climate change is primarily influenced by four factors – 

(1) the changes that will occur in the climate in tropical regions; (2) the capacity of agricultural 

soils and growing media to continue to provide water, nutrients and stability to agricultural 

crops; (3) the inherent capacity of the crop or variety to withstand variation in rainfall, nutrients, 

CO2 and modified management practices; and, (4) the governability and management of 

farming systems and the adaptive capacity of tropical agricultural communities. 

 

3.1 Climate variability 

Recent climate simulation exercises grouped in international projects such as CMIP-5 or 

Cordex and using Global Circulation Models (GCMs) and sometimes Regional Climate 

Models have provided improved results on the future evolution of climate variables 

(temperatures, rainfall, wind) at regional and sometimes local scales. However, even if the skill 

of such models has dramatically improved, there is still – and will always be- uncertainties on 

future climate change due to (i) differences among climate models (ii) uncertainties on data 

and (iii) assumptions on future Greenhouse gases (GHG) emissions. This third type of 

uncertainty is generally taken into account using GHG emission scenarios (like the former 
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‘SRES’ scenarios) or concentration pathways (called RCP and used for the last IPCC report) 

that represent several potential world futures in terms of emission (Table 1). 

 

<Insert Table 1 here> 

 

Uncertainty in future climate projections is a very important parameter that should not be 

forgotten in order to avoid maladaptation. For some regions of the World (Mediterranean area 

or Southern Africa for example) the models agreement is high for temperature increase and 

precipitation decrease, even if the magnitude differs among models. For other regions like West 

Africa, the situation is more challenging, and the climate models project contrasted cumulated 

rainfall evolution, except for some regions like Senegal where a significant decrease could 

occur in the future (Sylla et al. 2016). So, in West Africa, it is difficult to conclude whether the 

cumulated annual rainfall will decrease or not. However, studies like Déqué et al. 2016 project 

that there would be less rainy days but with more intense rainfall in the future. More intense 

rainy events are also projected by Sylla et al. (2016) for a pessimistic pathway (RCP8.5). In 

this region, like in many regions of the world, the future warming is projected to be significant 

and ranges between +1°C and +3.2°C in 2100 for a medium concentration pathway (RCP4.5). 

With more pessimistic pathways (RCP8.5) and for some models, the temperature increase 

could even reach +6°C. These climatic changes may have several impacts on cropping systems. 

Taking them into account is necessary in order to design relevant public policies and to reach 

the Sustainable Development Goals.  

 

First, climate changes will impact crop production, especially in areas of the world like the 

Sahel where agriculture is rainfed and thus depends a lot on rainfall variations. Temperature 

increase plays also a non-negligible role as it increases potential evapotranspiration and can 
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shorten crop cycle (Sultan et al. 2013 for cereals in West Africa). The global warming caused 

by the increase temperature is expected to cause a serious perturbation of hydrological cycle 

elements like increase in atmospheric water vapour, shifting precipitation patterns and changes 

in precipitation in the tropics. These phenomena are arousing a large debate and much 

uncertainties on the temporal and spatial variabilities of rainfall events (Adhikari et al. 2014; 

Challinor and Wheeler 2008). Thus, climate impacts on crop productivity are expected to be 

negative in many tropical regions like East or West Africa for major crops: maize, sorghum, 

millet, groundnuts (Schlenker and Lobell 2010; Roudier et al. 2011: Sultan et al. 2013), whilst 

regions such as northern Australia and Indonesia may be able to expand and diversify 

production due to the relative stability of rainfall in these regions, and the expansion of the 

tropics into areas that are currently unable to support tropical crops, to the south.  

 

3.2 Impacts on soils 

Fifty percent of the worlds’ agricultural soils are degraded, yet there is a need to rapidly 

increase food production to satisfy a growing population. Most of the acceleration in 

agricultural production is expected to occur in tropical regions, where tensions between 

increasing urbanisation, nature conservation, and land clearing for agriculture are especially 

strong.  It has long been known that land clearing for agriculture increases nitrous oxide 

emissions from soils (Luizão et al. 1989) and is commensurate with increased soil acidification 

due to ion pumping interruptions (Tighe, et al. 2009) and soil structural decline (Guo and 

Gifford 2002).  

 

Tropical horticultural soils have primarily developed under conditions of high rainfall, and 

hence liable to leaching and increased availability of iron, aluminium and manganese. Climate 

change will increase storms and rainfall events in many parts of the tropics, leading to localised 
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leaching and waterlogging of high clay and volcanic soils. These soils, which are moderately 

acidic, will thus experience further declines in pH and as such, there is an increased risk of ion 

toxicity to crops. Substantial inputs of lime and other soil conditioners will be required to 

reverse soil acidification due to increased rainfall events and waterlogging. 

 

Soil erosion and depletion will be a further consequence of climate change and estimated mean 

annual soil erodibility has shown a clear climate effect (Salvador-Sanchis et al. 2008), with 

distinctly different erosional patterns affecting soils in wet and dry tropics, as opposed to those 

in temperate areas. Possible explanations for distinctly different erosion patterns include soil 

laterisation and sesquioxide dynamics in tropical soils, as well as the larger infiltration rates of 

clay soils due to year-round warm temperatures (Borselli et al. 2012). In regions of the tropics 

that are becoming increasingly arid, a switch between chemical weathering and fluvial erosion 

to physical weathering and aeolian erosion is expected. As climate change will result in 

increased wind speeds, farmers will need to reconsider clearing all available air for food 

production, lest there be no windbreaks or soil coverage by plastic sheeting, cover crops or 

residue to prevent wind erosion.  

 

Soil compaction is exacerbated by frequent wet-dry oscillations which cause structural decline 

in tropical soils. Consequently, soils become increasingly impermeable to oxygen and the 

movement of water, both of which increase risks of soil-borne fungal and bacterial diseases in 

warm climates (Ishak et. al. 2013). The disease-soil-plant cycle is poorly understood, but 

certainly in the context of wet-dry oscillations, the negative effects of climate change the 

quantity and distribution of freshwater, are expected to outweigh the benefits of overall 

increases in global precipitation due to a climate change (Thornton et al. 2014). Central‐West 

Asia, North Africa, Asia and North America, are likely to be particularly affected by reduced 
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freshwater availability (Rosegrant et al. 2009) as severe water constraints become apparent by 

2050 (Rockström et al. 2009). 

 

Organic carbon sequestration will be significantly affected depending on soil texture and 

structure, rainfall, temperature (Lal 2004a). Soil temperature might affect carbon 

decomposition of soils and even though much work has been conducted, still a consensus has 

to emerge on the temperature sensitivity of soil carbon decomposition (Davidson and Janssens 

2006). Potentially, tropical soils could also lose fertility in a shorter time caused by the 

destruction of the tropical forest, and in the tropics cropland suitability will be lost 

consequently to climate (Ramankutty et al. 2002), while organic soils (peats) drying caused 

higher temperatures might result in high loss rates of soils carbon (Schimel et al. 1994). This 

high loss of organic matter has shown to be correlated with a low maintenance of availability 

of some mineral nutrients in soils (Maranguit et al. 2017). On the other hand, climate change 

and global warming have also shown to affect soils respiration in the tropics, and this increased 

respiration likely provides a positive feedback to the greenhouse effect (Raich and Schlesinger 

1992). Thus, whilst frequent tillage will cause a net loss of C (Bajgai et al. 2015a, 2015b), 

residue incorporation to increase organic matter content can also enhance and accelerate soil 

respiration rates (Bajgai et al. 2013). 

 

In this context, it is admitted that soil C sequestration plays a major role in carbon cycle and 

contributes to restore degraded soils, biomass production water purification, as well as reducing 

CO2 atmosphere-enrichment (Batjes 1996; Lal 2004b). Therefore, increasing soil C 

sequestration through improving the productivity and sustainability of existing agricultural 

lands might be considered as a significant mitigation (Paustian et al. 1997). Importantly, the 

role of microbial biomass carbon in the aggregation of soil, the transformation of C and the 
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availability of nutrients shows is significant in the labile pool of tropical agricultural soils, and 

can be efficiently conserved and manipulated for its functional attributes when conservation 

tillage practices are implemented in farming systems (Li et al. 2018). Nonetheless, SOC 

increases require careful interpretation to assess whether or not they represent genuine climate 

change mitigation as opposed to redistribution of organic C within the landscape or soil profile 

(Powlson et al. 2016). 

 

3.3 Pests and diseases 

The expansion of the wet tropics into the northern and southern hemisphere as the global 

climate changes will result in range expansion of many tropical pests and diseases and their 

vectors (Bebber et al. 2013). Northern Australia as is vulnerable to invasion from weeds, pests 

and diseases given its close proximity to New Guinea and the Indonesian archipelago which 

are both ‘true’ tropical environments (Scott et al. 2014). The frequency and wind speeds of 

tropical cyclones in northern Australia could accelerate as much as 10% (Ash 2007), potentially 

increasing the likelihood of wind-borne weeds, pests and pathogens from countries further 

north (Scott et al. 2014).  Anticipated impacts and therefore the vulnerability of production 

systems depend largely on species mixes, crops grown in the savanna, feed resources for 

livestock-cropping systems and feeding strategies (Thornton et al. 2009).  

 

Rainfall and temperature interactions and their impacts on disease transmission are complex. 

However, major diseases of smallholder crops in Africa are likely to be associated with changes 

in rainfall - Maize Streak Virus and Cassava Mosaic Virus will predominate areas with 

increased rainfall, and Sorghum Head Smut (a fungal disease) will be likely in areas where 

rainfall decreases (Chancellor and Kubirba 2006). Even in areas where rainfall is far less of a 

problem, intense heat and insolation are likely to both enhance the vulnerability of coffee 
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plantations, but also leave these and other crops susceptible to increased disease burden (Fain 

et al. 2017). Finally, increased levels of atmospheric carbon dioxide have a part to play in 

Fusarium spp. pathogenesis in grain crops such as wheat (Tiedemann and Firsching 2000), 

which are already marginal in most parts of the tropics due to the dramatically shrinking ‘cold’ 

season that allows some staple crops to be grown in India and Australia. 

 

When an acute spike in temperature and atmospheric CO2 occurred between the Paleocene and 

Eocene epochs, the linked climatic shifts resulted in an increased percentage of damaged leaves 

and diversity of damage by insect herbivores (De Lucia et al. 2008). Decreases in native 

agrobiodiversity could substantially increase risk of crop failure from extreme climatic events 

and increase crop vulnerability to disease (Garrett 2008). In fact, even a short change in 

seasonal link can dramatically increase the proportion of parasitic insects, leading to increased 

defoliation of tree and fodder crops by insect pests. 

 

Because we are not yet able to fully appreciate the relationship between the changing climate 

and the likelihood of disease (Chakraborty and Newton 2014), some researchers have 

considered reporting impacts using indirect methods, such as farmer surveys. In the context of 

rice production, diseases that arose due to increased and unexpected waterlogging carried 

through into storage facilities, were shown to impact up to a quarter of the harvested yield 

almost 90% of the time, whilst the risk of losing between half- to three-quarters of household 

income due to a significant disease outbreak was double that of risks associated with cyclones 

and severe flooding (Table 2). 

 

 

<Insert Table 2 here> 
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Plant pests and diseases could potentially reduce yields of major crops by 50%. These losses 

are even more significant in developing regions or regions heavily dependent on subsistence 

livelihoods. Average losses of rice in the period 2001–2003 totalled 37·4%, of which 15·1% 

was due to invertebrate pests, 10·8% because of fungal and bacterial pathogens 10.2% from 

weeds and 1·4% due to viruses (Oerke 2006). Each year an estimated 10–16% of global harvest 

(Strange and Scott 2005; Oerke 2006) is lost to plant diseases.  

 

 3.4 Crop and varietal impacts 

Climate change is also constraining regional production, productivity and yield of major crops, 

and plants have been categorized into two groups: (i) plants that will be affected negatively by 

CC and considered as “losers’, and plants that will benefit from CC and considered as 

“winners”. Any significant yield decrease in tropical agricultural zones is primarily due to the 

temperature rise in more arid regions like the Mediterranean and the Middle East, versus the 

impacts of soil structural decline and poor root system development in regions that will 

experience more extreme rainfall events such as northern Australia, South East Asia, and the 

Gulf of Mexico (Pandey, et. al. 2016). It is important to emphasise that these general statements 

about crop productivity cannot be extended to all crops without in-depth analysis, however, it 

is acknowledged that yield decreases will be more significant in the tropical regions compared 

to the temperate ones, even though these late will undergo similar impact on yields (Berg et al 

2012).  

 

Globally, different scenarios have been developed to predict the decline in crop production and 

yields. As shown in Table 2, decline in yield varies and it is clear that some regions will be 

more affected than others, and the decline in cereals is more significant than other crops. 

However, some crops have been reported to be more resilient and the decline is predicted to be 
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much less than less or non-resilient crops such cereals. In their review on impact of climate 

change on major crops in eastern Africa, Adhikari et al. (2014) reported that wheat yield will 

decline by 72%, maize, rice and soybean by c.a. 45%, while millet and sorghum yield, 

considered as more resilient, will decline by < 20%. In their review, the same authors reported 

that sweet potato, potato and cassava will be less affected by climate change, and will have 

their yield varying from -15% to +10%. Other crops such tea and coffee will have their yield 

declining by up to 40% and similar loss will be observed on banana and sugarcane production. 

Similar results have been reported by Tito et al. (2018) who indicated that increases risk of 

crop yield losses and food insecurity in the tropical Andes. They indicated that an increase by 

1.3°C and 2.6 °C, will cause a decline of maize and potatoes yield by > 87%. Even though 

these crops are cultivated at higher altitudes, maize production decline ranged between 21% 

and 29% in response to new soil conditions. 

 

<Insert Table 2 here> 

 

Consequently, it is urgent to think how (i) to sustainably increase farm productivity in order to 

secure enough food for our growing population, (ii) strengthening resilience to climate change 

and variability, since climatic disruption needs copping and resilient agrosystems, alleviate 

global warming by reducing greenhouse gas emissions (Challinor et al. 2009; Howden et al. 

2007), last and least planning adaptations in agricultural water management (Cai et al. 2015a, 

2015b). 

 

4 VULNERABILITIES OF TROPICAL CROPS AND PRODUCTION SYSTEMS 

TO CLIMATE CHANGE  

4.1 Vulnerability of tropical crops to climate change 
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Vulnerability of a tropical crop production system or of farming practices can be described as 

the net difference between the impacts driven by climate change, and the ability to adapt, or as 

described by (Kelly and Adger 2000) vulnerability is the capacity of people and social groups 

to respond to, recover from and adapt to stresses placed on their livelihoods and well-being. 

Environmental pressures on tropical agroecosystems driven by increased agricultural demand 

will result in asymmetrical declines in ecosystem services depending on future management 

trajectories and adaptive capacity of land managers (Goldsmith and Cohn 2017; Schlenker and 

Lobell 2010; Williams and Jackson 2007). Ultimately the vulnerability and sensitivity of 

tropical farming to climate change depends on the type of production system used, with tropical 

agricultural systems being more vulnerable due to a high concentration of developing nations 

and populations, primarily dependent on rain-feed systems (Battisti and Naylor 2009). 

 

The climate in northern Australia is highly varied ranging from arid in the south to monsoonal 

in the far north and humid tropical in the east (Willcocks and Young 1991). Given the high 

variability of tropical cyclones in northern Australia, the region comparably to other continents 

in the tropics receives the highest variation in annual rainfall from less than 100 millimetres to 

over 2000 millimetres (Dewar and Wallis 1999). This variability in climate across the north 

Australian tropics has facilitated the emergence of various tropical crop production systems 

from cattle grazing to tropical fruits and sugarcane. These industries are now facing 

unprecedented challenges as the effects of climate change continue to rise — many 

stakeholders within Australia and elsewhere in the tropics are autonomously adjusting to 

climate change (Parry and Carter 1998).  

 

Australia provides a suitable of example of how livestock grazing and cropping cycles have 

benefited from tropical climates, but Australia is also faced with challenging circumstances 
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driven by extremes in the climate within the tropics. The expected impact of climate change 

on the pastoral production system in the savannas of northern Australia include changes in 

weed and increased woody vegetation distribution (Burrows 1995, McHenry et al. 2009; 

O’Rourke et al. 1992), which reduce farm productivity by means of invading and smothering 

crops or poisoning livestock in these areas (Hall et al. 1998; Tothill and Gillies 1992).  

 

To feed the current world population more than 8000km3 yr-1 of freshwater is used in rain fed 

and irrigation agricultural production systems (Rost et al. 2008) which are commonly used in 

arable, mixed, subsistence and commercial farming systems. It is estimated that about 5000km3 

yr-1 more freshwater will be required by the year 2050 (Grubler 2007). There has been an 

increase in cultivated land in tropical to tropical-arid regions based on a rising population 

(Mongi et al. 2010). There are other production systems also affected by a changing climate 

such as rain-fed or irrigation agricultural methods. Rain-fed agriculture suffers more severely 

from the influence of climate change compared to irrigated agriculture (Xie et al. 2011).  About 

80% of total agriculture is carried out using the rain fed production method, and today this 

production system provides about 62% of the world’s staple food (Bhattacharya 2008) and 

therefore current  challenges facing rain fed agriculture is a serious concern in agriculture. 

Ongoing droughts, seasonal shift, increasing temperatures are described by farmers as being 

imminent challenges facing production in rain fed agricultural systems (Mongi et al. 2010).  

 

Agriculture, as compared to other sectors, is the largest in terms of its water consumption and 

accounts for more than 70% of water withdrawn from freshwater storage points (Ashour and 

Al-Najar 2012). Therefore, changes in water availability likely increase the exposure of rainfed 

farming methods to climate change vulnerability in the tropics. Rice requires large volumes of 

water to grow in that it receives about 35-45% of the world’s irrigation water. Although 
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evidence suggests that while rice is water demanding, with good water conservation strategies 

water can be preserved in times of need like drought and can re-enter the hydrological cycle in 

tropical regions (Bouman n.d.). Rain-fed agriculture already struggles to meet agricultural 

demands, particularly in commercial farming systems, producing a lower yield than is needed 

to feed an increasing population largely attributed to a global climate change and a shortage of 

water available for irrigation (Anderson et al. 2016).  

 

However, in the Central Highlands and Southern Delta of Vietnam there is a good example of 

how water conservation strategies in the face of climate change can aid both commercial and 

smallholder farmers in overcoming problems associated with a changing climate, such as 

drought. In recent years this region of Vietnam has been suffering an unprecedented drought 

and the coffee plant has suffered as a result seeing yields drop considerably. Established water 

saving technology providing individual coffee plants with automatically adjusted volumes of 

water in drought conditions has not only conserved water, but has saved considerable coffee 

yields for farmers in these affected tropical regions (World Bank 2016). 

 

Maize production in tropical Mexico as another example where extensive drought conditions 

have resulted in decreased yields in one of the most important rain-fed agricultural production 

systems in Mexico (Conde and Ferrer 2006). Climate change has been identified as a potential 

culprit in the intensification of El Niño events (Cho 2016) and therefore the onset of drought 

conditions in the tropics (Conde and Ferrer 2006). In Indonesia projected delays in monsoons 

of up-to 30 days are resulting in a reduction in the yield of rice varieties (Naylor et al., 2007) 

due to drought. Other issues farmers are facing in the tropics for rice production include 

intrusion of sea water in dry seasons and increased salinity in the soil as a result (United 

Nations, 2014). As an example, farmers in Vietnams’ Mekong Delta have seen hectares of 
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watermelon, peanuts, rice and sweet potatoes become inundated from intruding sea water 

contaminating irrigation canals (United Nations 2014). The intruding saline water has seen 

reductions in yield as much as 50% (United Nations 2014). 

 

<Insert Figure 3 here> 

 

4.2 Impacts and consequences of climate changes on tropical crop production 

systems 

These climatic changes may have several impacts on cropping systems. Taking them into 

account is necessary in order to design relevant public policies and to reach the Sustainable 

Development Goals.  

 

4.2.1 Climate changes and crop productivity 

Climate changes will impact crop productivity, especially in areas of the World like the Sahel 

where agriculture is rainfed and thus depends a lot on rainfall variations. Temperature increase 

plays also a non-negligible role as it increases potential evapotranspiration and can shorten 

crop cycle (Sultan et al. 2013 for cereals in West Africa). Thus, climate impacts on crop 

productivity are expected to be negative in many tropical regions like East or West Africa for 

major crops: maize, sorghum, millet, groundnuts (Challinor et al. 2014; Roudier et al. 2011; 

Schlenker and Lobell 2010; Sultan et al. 2013). The significant yield decrease is mainly due to 

the temperature rise (Challinor et al. 2014); a rainfall decrease would of course aggravate this 

change but an increase could not completely offset this negative effect due to warming (Sultan 

et al. 2013). 

It is fundamental to underline that these results cannot be extended to all crops without in-depth 

analysis. Indeed, another parameter – namely the Carbon fertilization effect - plays a major 



   20 

role for future crop production assessment (Leakey et al. 2009). For C3 crops (like soybean, 

rice, wheat) higher CO2 concentrations in the future could be physiologically beneficial for 

some crops through the stimulation of photosynthesis and reduction of drought stress resulting 

from lower stomatal conductance (Tubiello et al. 2007) and thus offset climate change negative 

effect. This positive CO2 effect is however controversial in the scientific community as some 

researchers underline that it could also be beneficial for weeds. Others show that the projected 

atmospheric ozone increase could also offset this CO2 effect (but ozone is currently not taken 

into account in crop models). Finally, it is necessary for C3 crops assessment to include both 

scenarios: with and without CO2 effect. This unfortunately increases considerably the 

uncertainty of future projections (Muller et al. 2015; Roudier et al. 2011). For example, 

McGrath and Lobell (2013) demonstrate that in Southern Africa the Carbon fertilization effect 

on sweet potatoes yields is over +20% for a 100ppm increase in CO2 concentration. However, 

Challinor et al. (2014) in a meta-analysis covering all tropical areas of the world show that 

there will be a significant yield decrease, even for rice and wheat, after a certain warming 

threshold (close to +2°C of local warming) if there are no adaptation plans.  

 

Concerning tuber crops, some articles highlight that cassava will suffer less from future climate 

change as it is well known to be drought and heatwave –tolerant (Jarvis et al. 2012). However, 

cassava is very sensitive to diseases (cassava brown streak virus, cassava mosaic disease etc.) 

and to excess of water: as emphasized by Hershey et al. (2012), future climate change could 

have a positive effect on both parameters and therefore decrease cassava yields (but losses due 

to diseases and excess of water are more difficult to simulate in crop models used typically for 

climate impact studies).  
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It is important to note that most studies do not explicitly take adaptation into account. It means 

that they make the assumption that farmers will not change their current cropping practices 

with a changing climate (except sometimes changing sowing dates). Nevertheless, Challinor et 

al. (2014) highlight in tropical regions that adaptation could offset the effect of CC for rice (but 

not for maize). These papers also do not give details about the cultivars that are studied: they 

focus generally on “maize” or “rice” while hundreds of cultivars with contrasted characteristics 

do exist. Sultan et al. (2013) show for example that traditional millet and sorghum varieties are 

less impacted by temperature rising than improved ones, because of their photoperiod 

sensitivity. 

There are fewer studies about the impact of future CC on tropical cash crops like cocoa than 

on staple crops. They are indeed more challenging to model and most of the existing crop 

models focus on rice, wheat, millet, etc. Still, some papers on specific tropical areas (e.g. West 

Africa) demonstrate that the overall suitability to grow cocoa in the region will decrease 

because of higher maximum temperature during the dry season (Schroth et al. 2016). 

 

4.2.2 Future climate change and crop quality (nutrients) 

In a global meta-analysis, Myers et al. (2014) considered many different cases (countries, 

crops, years) that focus on the impact of rising CO2 concentration on nutrients (Zn, Fe, Protein, 

Phytate). They show that there is a significant decrease with elevated CO2 for wheat, rice (only 

for Zn, Fe, protein), field peas and soybeans (only for Zn and Fe). For C4 crops like maize and 

sorghum, the results are not statistically significant. In a recent paper combining high CO2 

concentration and increased temperature during FACE experiments, Usui et al. (2016) 

conclude also that this leads to a decrease in rice proteins. These results could have important 

implications for future food security. 
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4.2.3 Other types of impacts 

As described above, several research papers have focused on the impacts of climate change on 

crop yields or productivity. But little is known about the rest of the value chain like post-harvest 

losses or pests and diseases: this is an interesting way for future research. Moreover, indirect 

impacts such as sea-level rise (loss of land availability and soil salinization) are difficult to 

include even if their effects are already visible in some coastal areas like the Niayes in Senegal 

(Fare et al. 2017). Finally, weather shocks (at different scales) can also impact commodities 

prices, and therefore, farming systems. 

 

5 ADAPTATION AND MITIGATION MEASURES FOR CURBING NEGATIVE 

IMPACTS OF CLIMATE CHANGE ON TROPICAL AGRICULTURE SYSTEMS  

The 21st century is marked by an unprecedented human demographic explosion and climate 

changes. Therefore, this is resulting in the acceleration in demand for food, pressures on the 

land in tropical regions as well as other regions. As described in other chapters, these climatic 

changes are having different negative impacts on soils, crops, and agrosystems.  

 

In order to reduce risks of climate change to tropical crop production, land management 

strategies must include capability to resist impacts of disease, explore new varieties, and reduce 

dependency on water. Though strategies to combat climate change impacts in agriculture are 

often viewed through the separate lenses of adaptation and mitigation, the more often that both 

strategies are combined, the less likely that agricultural systems and the humans who depend 

on them, will be vulnerable. 

 

Options to adapt span a wide variety of approaches designed to reduce system vulnerabilities 

and enhance the adaptive capacity of these systems to a changing climate (Harvey et al. 2014a). 
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Sophisticated solutions are still quite expensive to implement and are largely restricted to 

developed and rapidly industrialising nations and include modified agro-engineering practices 

for irrigation and soil integrity, breeding for different environmental stresses, developing early 

warning systems, and establishing crop insurance systems. More broadly, all nations in the 

tropics may realise substantial production security via soil and water conservation practices, 

crop diversification, and improved tillage practices (Howden et al. 2007). 

 

One of the issues of foremost importance in rain-fed agriculture is reduced soil moisture and 

therefore low soil fertility in agricultural soils, the result of poor rainfall distribution and 

prolonged drought periods (Barron et al. 2003; Gowing et al. 2003; Mongi et al. 2010). Poor 

soil moisture and increased temperature have been linked to increased soil salinity, another 

factor reducing crop yield and increasing irrigated water demand (Ashour and Al-Najar 2012). 

Coping strategies employed by farmers using rain-fed methods include varying planting dates, 

planting more resistant maize varieties, changing cultivars and applying agrochemicals (Conde 

and Ferrer 2006).  

 

Innovation in rice is necessary to ensure ongoing security one of the most important cereal 

crops in the tropics. Shifts to salt tolerant or drought tolerant varieties are becoming common, 

alongside deep-water rice varieties to advance global rice production in regions to affected by 

sea level rise. The Three Tier Rice Production System is an example of such an adaptation 

strategy. Tier 1 facilitates a more sustainable farming system whereby minimal tillage and 

cover cropping is used to promote crop rotation techniques (Nath and Lal 2017). Tier I of this 

production system also utilises the littoral zone of the wetland system where agroforestry 

techniques to grow other species such as bamboo are used to create diversity in cash flow and 

product — this technique also allows farmers to make the most of available moisture in soils 
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to promote higher yield. Tier II utilises the sub-littoral zone of the wetland where there has 

been a notable increase in the ability to better manage and control weeds, and Tier III is where 

deep water species are adopted in this production system. This system provides a prolonged 

tolerance to flood waters, a common issue associated with climate change, and this system 

provides an option for seedling transplantation without the need for tillage. This Tier III system 

commonly used in Cambodia, Thailand and India also providers opportunity for a conjunction 

with an aquaculture based production system (Nath and Lal 2017).  

 

Rising seawaters have been particularly destructive to rice crops, and  some government 

agencies and private groups have responded by planting mangroves to prevent seawater 

inundating costal crops  (Nguyen, 2014). Investments from the Vietnamese Government also 

aim to improve irrigation canals and dykes. As temperatures continue to increase and relative 

sea level continues to rise, farmers producing crops in coastal or low-lying regions may need 

to transition to more salt-tolerant species.  Aquaculture has even been suggested as a  viable  

alternative for farmers currently subject to intrusion of saline waters resulting from sea level 

rise (United Nations 2014). 

 

Mitigation options in tropical agriculture focus on actions, including those that increase carbon 

stocks above and below ground, reduce greenhouse gas emissions and/or actively avoid the 

deforestation and degradation of high‐carbon natural systems for agricultural production 

(Smith et al. 2007; Wollenberg et al. 2012b). 

 

Although tropical agrosystems were less investigated compared to temperate systems, often 

these agrosystems are misunderstood and therefore, not as well managed as the temperate 

agrosystems (Janzen 1973). Different approaches have been reported to curb negative impacts 
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of climate changes on the tropical agrosystems. As these systems have higher levels of 

biodiversity conservation, this trait might mitigate changes in temperature and precipitation 

when combined with environmentally friendly and sustainable land use agroforestry systems 

which have potential to enhance biodiversity conservation (Perfecto et al. 2007a, 2007b). The 

conversion of agriculture to crop-pasture rotation (CPR) showed that the implementation of 

this model (CPR) proved to be a good strategy to mitigate soil GHG (global greenhouse gas) 

emissions in the tropics (Carvalho et al. 2013). For example, erosion caused by high rainfall 

has been mitigated by implementing sound practices of soil and vegetation management such 

as contour planting, no-till farming and use of vegetative buffer strips and these practices can 

reduce erosion by up to 99% (Labriere et al. 2015) and reduce CO2 soil emission (La Scala et 

al. 2005). In some tropical areas, negative impacts of climate change on tropical agrosystems 

might also be mitigated by reforestation, planting fruit trees or expanding small plantations, 

however, more research is needed to determine the advantages of agrosystems that combine 

trees with crops, and crops with animals, because these systems are increasingly recognized 

and promoted to improve sustainable use of tropical lands (Labriere et al. 2015; Locatelli et al. 

2015; Nicholas 1988).  

 

Moreover, appropriate management strategies of tropical agroforestry systems might also 

mitigate climate change by adopting climate-smart approaches, especially when going in 

parallel with a comprehensive system rehabilitation plans, and also if these systems are 

designed in a larger landscape context and appropriately managed (Harvey et al. 2014b; 

Ramakrishnan 1998). 

 

There are many definitions of resilience to climate change. In this chapter, we use the following 

one, as suggested by the IPCC:  the “ability of a system and its component parts to anticipate, 
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absorb, accommodate, or recover from the effects of a hazardous event in a timely and efficient 

manner”. Furthermore, and as detailed by Douxchamps et al. (2017), resilience is generally 

defined by its three capacities: absorptive (for a cropping system, for example its capacity to 

absorb a rainfall deficit without changing its fundamental structure), adaptive (capacity to 

adapt the cropping practices to the changing climate based on experience, observations) and 

transformative (capacity to change the cropping system to something different because the 

initial system cannot work anymore). In Sahelian farming systems, there are a diverse local 

practices and innovations that are increasing their resilience to CC. We list below three 

examples illustrating the three types of capacities: 

 

- Water harvesting techniques (WHT) (absorptive capacity). In many areas where 

agriculture is rainfed and dry spells are frequent, farmers have designed in-field WHT 

in order to mitigate droughts effects (see e.g. Biazin et al. 2012) for a review). One 

well-known WHT is Zai pits, initially used in Burkina Faso, that collect on-field runoff 

water. Generally, these WHT can increase the root zone soil water content by up to 

30% (Biazin et al. 2012) as well as the soil organic matter content (Olaleye et al. 2006)1. 

These practices lead therefore to improved yields and lower risks of bad harvest (or 

crop failure) in case of dry spell. 

 

- Cultivars diversity (adaptive capacity) 

As already detailed before, for a specific type of crop (e.g. millet), there are many 

different cultivars with specific characteristics: drought and diseases resistance, cycle 

length, sensitivity to photoperiod…etc. Farmers have generally many cultivars 

available and choose the relevant one (or a mix of different types) in order to lower the 
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risk of crop failure. For example, in the historical peanut basin of Senegal, Muller et al. 

(2015) report that long-term millet cultivars (Sanio) that disappeared after the 70s and 

80s droughts started to be grown again by farmers in order to benefit from wetter 

conditions occurring during the last years. The cultivar choice is also based on 

traditional seasonal forecasts systems that focus on the observation of natural 

phenomenon or on scientific forecasts when they are available (Roudier et al., 2014). 

 

- Crops & income diversification (transformative capacity) 

Another option close to cultivars choice but that implies more structural changes is crop 

diversification. Indeed, farmers may grow new types of crops. For instance, in the 

former example in Senegal, some of them decided to start growing rainfed rice to 

benefit from the more humid years; in Côte d’Ivoire and Ghana, farmers growing cocoa 

can start planting trees in order to provide shade (beneficial for cocoa under warming 

conditions) and to provide another source of income. Generally, crop diversification is 

beneficial because it creates many co-benefits: climate risks mitigation, pests and 

diseases management, increased nutrient storage, increased yield stability…etc. (Lin 

2011). In a recent analysis focusing on Zimbabwe, Makate et al. (2016) demonstrate 

that (i) 82% of the surveyed farmers practice crop diversification and (ii) increasing 

crop diversification has a positive significant impact on crop productivity and income. 

More broadly, income diversification (including non-agricultural work) is another well-

known risk management strategy for farmers. Still in Zimbabwe, Ersado (2003) 

highlights that income diversification is particularly high in rural areas and are essential 

tools to mitigate price and weather shocks on the agricultural sector. 
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Many of the previous practices (as well as others like the use of meteorological and seasonal 

forecasts) are grouped under the terminology of agroecological practices (Altieri et al. 2015) 

that is recognized (i) to increase farming system resilience to climate change but also (ii) to 

reduce GHG emissions coming from agriculture (close to 25% of global CO2 emissions). 

Agroecological practices are however often put in place at a very small scale and could be 

difficult to promote in areas where intensive agriculture is the dominant model. It is therefore 

necessary to (i) go on demonstrating what the benefits of agroecology are in terms of income, 

food security, environmental externalities, (ii) broadcast evidence of such practices usefulness 

(workshops, education) and (iii) design appropriate regional and national policies in order to 

scale up local good practices (Parmentier 2014). 

 

6 CONCLUSIONS AND PERSPECTIVES 

In conclusion, evidence shows that the climate is significantly changing on a global scale and 

this will, if not already started, have significant impacts on tropical agrosystems and 

consequently affect food supply in the tropics, and this will make some tropical countries in 

the tropics more vulnerable in particular. Unless measures and decision are taken to mitigate 

the negative effects of climate change on these vulnerable agrosystems, food production in the 

tropics will be under threat, as well. In the tropics, the temperature is going to rise significantly 

because of GHG emissions and rainfall changes are expected if many regions of the World 

(e.g. decrease in Southern Africa) even if the uncertainty is high for some areas (West Africa). 

These changes will impact crop production and crop nutrients concentration. Some crops are 

expected to be significantly negatively impacted like maize. For C4 crops like rice situation is 

more uncertain but their nutrients concentration will probably decrease because of elevated 

CO2. Therefore, and beside mitigating actions, resilience of the systems that could be 
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strengthened by agroecological practices, and agroecology which is often localized at the 

project scale and must be scaled-up through appropriate public policies. 

 

The future prospective is focus on (i) studying more largely the impacts of future climate 

change on the whole value chain (not only production), (ii) assess the impacts of agroecological 

practices on income, food security, GHG emissions, (iii) focus on inequalities (especially 

gender inequalities), and (iv) design relevant policies to scale up agroecology, including 

education. Furthermore, we also need to adopt of specific strategies to not only mitigate the 

negative impacts of climate changes on the tropical agrosystems, but also these strategies 

should also partly reverse the negative impacts and the degradation process caused by the 

climate change factors. 
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Table 1 

Global mean temperature increases projected for the 2090s compared to years 1986-2005 for 

4 RCPs, according to CMIP5 results (Stocker at al. 2013) 

 

Representative Concentration 

Pathway 

Global Mean 

Temperature Increase 

RCP2.6 +1°C 

RCP4.5 +1.8C 

RCP6.0 +2.2°C 

RCP8.5 +3.7°C 
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Table 2 

Summary of the risks to rice production experienced by smallholder farmers and the impacts of these risks on rice yields and household income 

(as reported by farmers). Numbers represent the per cent of farmers experiencing this problem or the means (± SE). Redrawn from Chakraborty 

and Newton 2013. 

agricultural 

risk 
n 

% of 

farmers 

affected 

frequency of risks 

(mean number of 

occurrences in last 5 

years) 

% of crop yields lost due to risks 
% reduction in household income 

due to risk 

<25% 25–50% 50–75% >75% <25% 25–50% 50–75% >75% 

significant 

disease 

outbreak 539 47 1.6 (± 0.08) 56a 29a 15a — 10a 32a 41a 15a 

severe pest 

damage 539 81 3.1 (± 0.09) — — — — — — — — 

loss of crops 

during storage 539 36 1.3 (± 0.09) 88 10 2b — — — — — 

cyclones 524 51 1.2 (± 0.1) 30 29 30 26 39 30 21 10 

severe 

flooding 524 44 1.2 (± 0.1) 40 35 20 5 40 34 17 8 

severe drought 524 68 1.8 (± 0.1) 23 42 27 9 35 35 22 8 

• aImpacts of pests and diseases on crop yields and income levels were assessed jointly, owing to difficulties of attributing impacts to one or the other. 

• bThese numbers (for crop storage) refer to losses of more than 50%. 
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Legends to Figures 

 

 

Figure 1. Distribution and variation in global tropical climates. Savannah lands have distinct 

wet-dry cycles and can be subject to drought conditions, whereas Monsoon and Rainforest 

tropics may get wetter and rain, more sporadic, with climate change.  

 

Figure 2. Hierarchical framework depicting the interaction between the farming and 

production systems in the tropics.  

 

Figure 3. Different tropical crop production systems are more resilient than others, whereas 

conversely, production systems also show different vulnerabilities to a changing climate.  
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