
 1 

Detection of abrupt baseline length changes using cumulative sums 
 
 

Volker Janssen 
School of Geography and Environmental Studies, University of Tasmania, Hobart, Australia 

Volker.Janssen@utas.edu.au 
 
 
Abstract 
 
Dynamic processes are usually monitored by collecting a time series of observations, which is then analysed in 
order to detect any motion or non-standard behaviour. Geodetic examples include the monitoring of dams, 
bridges, high-rise buildings, landslides, volcanoes and tectonic motion. The cumulative sum (CUSUM) test is 
recognised as a popular means to detect changes in the mean and/or the standard deviation of a time series and 
has been applied to various monitoring tasks. This paper briefly describes the CUSUM technique and how it can 
be utilised for the detection of small baseline length changes by differencing two perpendicular baselines sharing 
a common site. A simulation is carried out in order to investigate the expected behaviour of the resulting 
CUSUM charts for a variety of typical deformation monitoring scenarios. This simulation shows that using first 
differences (between successive epochs) as input, rather than the original baseline lengths, produces clear peaks 
or jumps in the differenced CUSUM time series when a sudden change in baseline length occurs. These findings 
are validated by analysing several GPS baseline pairs of a network deployed to monitor the propagation of an 
active ice shelf rift on the Amery Ice Shelf, East Antarctica. 
 
Keywords. Cumulative sum (CUSUM), GPS, baseline length changes, deformation monitoring, Amery Ice 
Shelf. 
 
1.  Introduction 
 
The geodetic monitoring of dynamic processes is usually undertaken by acquiring a time series of measurements, 
which is then analysed in order to determine any motion or “abnormal” behaviour. Examples include the 
monitoring of dams, bridges, high-rise buildings, landslides, volcanoes and tectonic motion, and numerous 
geodetic networks have been established for these purposes. Depending on the task at hand and the risk involved 
in a potential “failure” of the structure being monitored, continuous monitoring and detection of changes in real 
time are often required to enable a fast response, e.g. initiating warning and/or evacuation procedures in case of 
an imminent volcanic eruption. 
 
A popular technique for the detection of changes in the mean and/or the standard deviation of a time series is the 
cumulative sum (CUSUM) test, which was proposed by Page (1954) and has since been modified and extended 
to accommodate various conditions (e.g. Page 1957, Hinkley 1970, 1971, Lorden 1971, Lucas and Crosier 1982, 
Moustakides 2004). 
 
Essentially, the accumulation of the difference between a sample and an established mean over time makes it 
possible to reveal trends in the time series, as well as being able to detect both abrupt and slight changes in these 
trends. Hence, it is the slope of the resulting CUSUM chart that requires interpretation rather than the departure 
from a mean value. Changes in slope will indicate jumps in the control chart and can show how a process 
changes over time. Accumulating deviations from the mean value makes the CUSUM technique well suited for 
prompt detection of non-standard conditions. In addition, the onset of changes can be located with respect to 
time and the change magnitude can be measured. The more complex adaptations of CUSUM charts include 
decision rules (e.g. when does the dynamic behaviour of a structure become “abnormal”), consideration of an 
appropriate mean value as well as detection and measurement of trends or drifts. For a detailed introduction to 
cumulative sums the reader is referred to the standard change detection literature (e.g. Van Dobben de Bruyn 
1968, Basseville and Nikiforov 1993). 
 
The application of the CUSUM technique to geodetic observations was investigated by Mertikas and Rizos 
(1997), Mertikas (2001) and Mertikas and Damianidis (2007). CUSUM analyses have been successfully 
employed for many different tasks, including GPS cycle slip detection and identification (Lee et al. 2003), 
ionospheric studies (Xie et al. 2003), structural monitoring (Ogaja 2001), earthquake and tsunami studies 
(Mohanty et al. 2007), and volcano monitoring (Aspinall et al. 2006). 
 
This paper presents a study aimed at detecting small changes in GPS baseline length time series based on the 
analysis of CUSUM charts as proposed by Iz (2006). First, the theory of the CUSUM technique will be briefly 
described. A simulation of representative deformation monitoring situations will then be carried out to 
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investigate the expected behaviour of the resulting CUSUM charts, leading to a slight modification of the 
technique. Findings will be validated using GPS data collected at a propagating ice shelf rift. 
 
2.  How do cumulative sums work? 
 
CUSUM algorithms are generally classified into two types. The one-sided CUSUM is applicable when both the 
means before and after a change are known, while the two-sided CUSUM is to be used when the change 
magnitude is unknown (generally the case in deformation monitoring applications). 
 
2.1.  One-sided CUSUM 
 
Considering a time series of n independent and normally distributed observations, a cumulative function can be 
defined as (Basseville and Nikiforov 1993): 
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where σ2 is the variance of the observations (here assumed constant). Hence, the cumulative sum for the nth 
sampling point can be expressed as: 
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where δ = µ1–µ0 is the magnitude of the change between the mean values before and after the shift, and b = (µ1–
µ0)/σ is the signal-to-noise ratio. In the case of a positive shift in the mean, the above function typically shows a 
negative drift before and a positive drift after the jump occurs. The situation is reversed when a negative shift in 
the mean is present. 
 
The underlying assumption of the one-sided CUSUM test is that either a positive or a negative shift of known 
magnitude has occurred. In the case of a positive shift of the mean, the relevant information for change detection 
lies in the difference between the value of the log-likelihood ratio and its current minimum value. At each time 
instant k, this difference is compared to an appropriately chosen threshold λ. An alarm will then be issued if this 
threshold has been reached or exceeded (Basseville and Nikiforov 1993): 
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where gk

+ is known as the decision function for a positive shift. In essence, the cumulative sum is compared to an 
adaptive threshold which is continuously updated based on the minimum obtained using the previous 
observations. Figure 1 depicts the typical behaviour of the cumulative sum and the decision function in response 
to a positive shift in the mean. 
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Figure 1: Typical behaviour of the cumulative sum S + and decision function g + corresponding to a positive shift 
in the mean (adapted from Ogaja 2002). 

 
2.2.  Two-sided CUSUM 
 
If the magnitude δ of a change in the mean value is known but it is not known whether a positive or negative 
shift occurred, it is intuitive to apply the CUSUM test simultaneously in two directions. This implies that the 
mean value after the shift has either increased to µ1

+ = µ0 + | δ | or decreased to µ1
– = µ0 – | δ |. An alarm will 

then be issued either according to equation (4) or if: 
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This corresponds to the well-known cumulative sum charts widely used for continuous monitoring or inspection 
schemes. In practice, however, the magnitude of the shift is generally unknown. Three possible a priori choices 
can be made with respect to this parameter (e.g. Basseville and Nikiforov 1993): 
 
1) Choose δ as a minimum possible jump magnitude with | δ | > 0. 
2) Choose δ as the most likely jump magnitude. 
3) Choose δ as a worst-case value with regards to the impact or cost of an undetected jump. 
 
In this context it should be noted that in most practical cases, particularly for real time applications, the time 
delay between the detection of a jump and the issuing of an alarm on the one side and the number of false alarms 
on the other need to be kept to a minimum. This obviously has implications on the CUSUM algorithm design for 
a given application but will not be discussed in this paper. 
 
3.  Differencing to detect baseline length changes 
 
Recently a technique to reveal subtle changes in baseline length time series based on the analysis of CUSUM 
charts was proposed by Iz (2006), which is briefly described in this section. Forming the difference of two 
baselines that share a common site reduces common systematic errors and thereby allows the detection of small 
changes with better signal-to-noise ratios. If the two baselines run approximately parallel and perpendicular to 
the expected deformation, any hidden changes in the time series can be detected, although these changes will be 
reduced in magnitude as any common signal is removed in the difference. 
 
In practice, after removing any linear trends and periodic variations from the baseline length time series, the 
resulting residuals are used as quasi-observations for further analysis. Any sudden change in the slope of the 
CUSUM indicates a shift in the mean, i.e. a jump in the baseline length. 
 
For example, for a time series of observations x1, x2, …, xn (assumed random) the cumulative sums S0, S1, …, Sn 
can be calculated by (Iz 2006): 
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The CUSUM charts are then generated by plotting Si against i. In general, the CUSUM charts will display a flat 
line if the data are random, while a positive slope indicates a period where values are above the mean and a 



 4 

negative slope is an indication of values being below the mean. A sudden shift in the mean of the time series 
causes a sudden change in the slope sdiff. The magnitude of this sudden change, | sdiff |, can be estimated from (Iz 
2006): 
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In order to reduce the influence of common systematic errors, the CUSUMs of two baselines sharing a common 
site are then differenced. If these baselines are located approximately parallel and perpendicular to the expected 
deformation, the subtle baseline changes remain in the differenced residuals, although their magnitude will be 
reduced, and thus can be detected. Iz (2006) successfully applied this technique to GPS and VLBI time series for 
crustal motion studies in the Tokyo area, Japan. The detected baseline length changes were associated with an 
earthquake swarm and volcanic activity on Miyakejima Island. 
 
It should be noted that not all change points representing a sudden change of slope can be attributed to 
deformation due to the remaining unmodelled errors present in the time series. Depending on the source and 
length of the time series, these errors may include solid earth tides, ocean loading, atmospheric pressure 
variations and baseline processing errors (e.g. GPS orbit errors, residual ionospheric and tropospheric delays). 
However, if a change point is identified in multiple baseline pairs, its presence can safely be assumed. 
 
4.  CUSUM simulation 
 
Several anticipated scenarios in a deformation monitoring situation were investigated by simulation of baseline 
time series in order to examine the expected behaviour of the resulting CUSUM charts. Cases considered 
included a uniform linear trend in baseline length, a change of the linear trend in a particular epoch, a change of 
the linear trend including a jump in baseline length, a linear trend changing to a constant baseline length, a linear 
increase-then-decrease situation, and a jump with constant baseline lengths on either side. For each of the two 
baselines, slightly different trends were chosen (Figure 2). 
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Figure 2: Cases investigated in the CUSUM simulation (vertical line indicates epoch in which a change was 

introduced). 
 
In this simulation, a change was introduced between epochs 13 and 14, indicated by a vertical line at epoch 13 in 
the figures. If the original baseline lengths are used as input, as proposed by Iz (2006), sudden changes in the 
time series generally appear as change points of sinusoidal-like curves in the resulting CUSUM charts, making 
identification not obvious (Figure 3). It should be noted that these sinusoidal-like curves are not caused by any 
periodic variations in the original time series. Only in three cases a clear peak is visible, while a combination of 
two uninterrupted linear trends naturally results in a flat straight line.  
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Figure 3: CUSUM simulation results using baseline lengths as input. 

 
If the technique is modified in order to use first differences (between successive epochs) as input rather than the 
original baseline lengths, any sudden change in slope of the CUSUM (here between epochs 13 and 14) can easily 
be detected (Figure 4). All cases investigated exhibit a clear peak or jump in the CUSUM chart corresponding to 
the introduced change, with the obvious exception of combining two uninterrupted linear trends which results in 
a flat straight line.  
 
The effect of a change in trend occurring in both baselines of the pair but in different epochs (say, two epochs 
apart) was also investigated and resulted in the peaks or jumps being disguised to an extent. In some cases both 
changes could be detected rather clearly, while in others the second change point was completely masked by the 
first and not detectable. 
 
Based on this simulation, the slightly modified technique is found to be able to detect baseline length changes in 
the most common deformation monitoring situations. Simulation shows that using first differences (between 
successive epochs) as input, rather than the original baseline lengths, produces clear peaks or jumps in the 
differenced CUSUM time series when a sudden change in baseline length occurs. 
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Figure 4: CUSUM simulation results using first differences as input. 

 
5.  Case study: Ice shelf rift propagation 
 
GPS data collected in a network deployed over three weeks during the 2004/05 Antarctic summer period in order 
to monitor the propagation of an active ice shelf rift system on the Amery Ice Shelf, East Antarctica were used to 
validate the findings from the simulation above. As opposed to crevasses, rifts are defined as fractures that 
penetrate through the entire ice shelf thickness (~400 m in this case). Located at the front of the Amery Ice Shelf, 
this active rift system, known as the Loose Tooth, encompasses an area of about 30 km by 30 km that will likely 
break off and produce a relatively large iceberg in the near future. It consists of two longitudinal-to-flow rifts 
(denoted L1 and L2) which originated around 20 years ago and two transverse-to-flow rifts (denoted T1 and T2) 
which formed in 1995 (Figure 5). Evidence has been presented that rift propagation occurs in episodic bursts and 
is primarily driven by the internal glaciological stress of the ice shelf, rather than initiated by winds or ocean 
tides (Bassis et al. 2005, Janssen et al. 2009). 
 
 

    
 

Figure  5: (a) Amery Ice Shelf (image courtesy of Australian Antarctic Data Centre), (b) Landsat-7 ETM+ image 
of the Loose Tooth rift system acquired on 2 March 2003, and (c) location of GPS stations around the tip of T2 

overlaid on a Landsat-7 image acquired on 9 January 2005. 
 
Part of this GPS network, situated around the tip of the T2 rift, is depicted in Figure 5c, showing the 8 sites used 
in this study. The regular pattern of black lines visible represents data gaps caused by the failure of the SLC 

(a)  (b) (c) 
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(Scan Line Corrector) module in the ETM+ sensor on the Landsat-7 satellite, which occurred on 31 May 2003. 
The SLC function was necessary to compensate for the forward motion of the satellite during data acquisition – 
its failure causes individual image scans to overlap and results in the loss of about 22% of the data in each image 
(USGS 2009). 
 
The dual-frequency GPS receivers, powered by batteries and solar panels, operated at a sampling rate of 30 
seconds, and daily (24-hr) sessions were processed to generate baseline length time series, using IGS precise 
ephemerides and full antenna phase centre variation models. The Saastamoinen model was applied to account for 
the tropospheric delay, while an ionosphere model was computed from the reference station data of each 
baseline. 
 
Figure 6 shows the baseline length time series obtained, relative to the first day of data collection. On first 
inspection, typical deformational behaviour can be recognised including relatively uniform linear trends, 
increasing linear trends, and linear trends converting to a constant or decreasing baseline length. However, in 
order to detect subtle baseline length changes in this dynamic environment, a more detailed analysis is required. 
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Figure 6: Baseline length time series in the Loose Tooth GPS network. 

 
Several baseline pairs of the Loose Tooth GPS network were analysed using the CUSUM technique described 
above. The baseline pairs were chosen to include one across-rift tip baseline located normal to the rift (either 
T2S5-T2N1 or T2N5-T2S1) and one baseline aligned approximately parallel to the propagating rift (see Figure 
5c). A known jump of ~1 cm in baseline length across the rift tip on day 9, inferred from seismic data collected 
at the sites and attributed to the episodic nature of rift propagation (Bassis et al. 2007), can be reliably detected 
as a peak on day 8 in most pairs (Figure 7). As evident in the rightmost panels of the figure, the jump is masked 
by other activity or increased noise present in some baseline pairs. This example emphasises the importance of 
analysing a number of baseline pairs. 
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Figure 7: CUSUM results in the Loose Tooth GPS network (vertical line indicates epoch of known jump). 

 
These results show that the CUSUM technique is an effective method to detect small baseline length changes. A 
known event of subtle but sudden rift opening that was not obvious on first inspection has been reliably 
identified. Other peaks are visible, particularly on day 17 in three baseline pairs, possibly attributable to 
fractional movements in longitudinal flow lines and across-rift jumps. As seen in Figure 5, the Loose Tooth is a 
complex rift system with several longitudinal-to-flow crevasses crossing the T2 rift within the network. 
Naturally, each of these crevasses exhibits a dynamic behaviour in response to changes in the glaciological stress 
of the ice shelf as it flows seaward at approximately 3 m/day (1.1 km/year) in a north-easterly direction (Bassis 
et al. 2005). However, at this stage no conclusive statement can be made in regards to the additional peaks 
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evident due to the limited number of baselines available. In order for a jump to be reliably determined, it is 
required to be present in multiple baseline pairs. 
 
6.  Concluding remarks 
 
Analysis of a GPS network using a cumulative sum (CUSUM) approach, obtained by differencing a pair of 
residual baseline time series situated approximately normal and parallel to the direction of expected deformation, 
is found to be an effective method to detect small baseline length changes. Simulation shows that using first 
differences (between successive epochs) as input, rather than the original baseline lengths, produces clear peaks 
or jumps in the CUSUM charts when a sudden change in baseline length occurs. This is confirmed by the results 
obtained from GPS data collected in close proximity to a propagating ice shelf rift, reliably identifying a jump in 
the across-rift tip baseline length time series that can be attributed to rift opening. This technique is well suited 
for a variety of deformation monitoring applications and can, with a few modifications, be used to detect 
baseline length changes in real time. 
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