
VECTOR Vol.XX No.Y

1

J is for JPEG: Windows bitmap to
JPEG baseline compression

by Richard Dazeley (rdazeley@postoffice.utas.edu.au)

Abstract
JPEG baseline is one of the world’s most used compression algorithms. This is
because it is fast, offers good compression with little noticeable image
degradation and allows the user to specify the level of image quality. The
algorithm uses a number compression techniques such as difference, run-length
and Huffman coding. It also does a number of image manipulation functions such
as colour space conversion and changing from the spatial to the frequency
domain. This paper explains the algorithm in detail as well as giving code for a J
implementation. The implementation given compresses 24-bit Windows bitmap
images. Also provided is a brief explanation and code implementation of JFIF
(JPEG File Interchange Format). The result is an implementation that runs in a
similar time as implementations in compiler based languages.

Introduction
In a world with limited data storage and bandwidth our ability to store and
transfer information cheaply has become a major field of research and
development. The ability to compress data significantly helps to reduce this
expense making information more readily available to everyone. Digital images
are one of the most costly information sources and have been the focus of a num-
ber of techniques. There are two major advantages to image compression over
other sources such as text and speech. The first is that their “multi-dimensional
characteristic implies that image data has more redundancies than one
dimensional data such as speech” (Kou 1995, p6). Secondly an image is capable of
losing a great deal of its information before the human viewer is capable of
observing any degradation. However this is not possible at all in sources like text.

With the advent of the World Wide Web the number of transfers of photographic
images has exploded and one of the most popular compression techniques for this
type of image is JPEG. The JPEG (Joint Photographic Experts Group) standard
specification (ISO/IEC IS 10918, or ITU-T T.81) defines four operation modes:
sequential DCT based mode, sequential lossless mode, progressive DCT based
mode, and hierarchical mode. The first mode is the simplest and is referred to as
JPEG baseline and is what most people mean when they refer to JPEG.

VECTOR Vol.XX No.Y

2

This simpler but by no means trivial algorithm will be the focus of this paper. The
algorithm will be applied to a standard 24-bit Windows bitmap file using the
functional language J. While a compiled language such as C or Java may be better
suited in some ways to an algorithm like this, an array based language such as J
offers an interesting alternative as it provides a number of tools well suited to the
matrix manipulation required.

Setting up the image data
There are four initial task that need to be performed prior to compression. The
first is obviously to load the bitmap but then excess bytes need to be removed, the
colour space converted and a suitable data structure built that allows the
algorithm to operate smoothly. This process is controlled by the setUp function.

SetUp =: blocks@fillImage@shape@components@colourSpace@
 removeZeros

Load Bitmap

The process of loading the bitmap involves reading in the data, converting it,
extracting some important information from the header and setting up our initial
data structure. The following function and its subsidiaries performs these tasks.

loadBitmap =: boxElements@interpret@read@usage

There are two pieces of information that are important for this algorithm. The first
is the path and file name of the bitmap to be compressed and the second is the
quality level to perform the compression. The function usage allows the user the
option of giving a value or using the default quality setting. The output of the
function is two boxes the first is the quality setting followed by the path and file
name.

usage =: ({:,{.)`(quality&;) @. (#>2:)
quality =: 80

The loadBitmap function then reads in the file data and converts it from
characters to integers with the following functions:

read =: >@{.;1!:1@{:
interpret =: {.,charToInt&.>@{:
charToInt =: a.&i.

The last stage is to extract the width, height and start of image information that is
contained in the bitmap header. All of these pieces of information are 4 bytes in

VECTOR Vol.XX No.Y

3

size and start at the 18th, 22nd and 10th elements respectively. This is done with the
following code.

boxElements =: {.,(imageWidth;imageHeight;image)@>@{:
image =: fileStart}.|
imageHeight =: (22+i.4)&group
imageWidth =: (18+i.4)&group
fileStart =: (10+i.4)&group
group =: 256&#.@|.@:{

This information is collated into an array of four boxes in the format below.

Quality Image Width Image Height Image Data

Removing Zeros

The Windows bitmap file can contain extra zeros at the end of each row of pixel
data. This is because Windows allocates memory in DWORD (4 bytes) sized
blocks. The number of extra zeros at the end of each row is the amount needed to
fill out the row of bytes to a multiple of four. For instance, an image of one pixel
width has three bytes to represent blue, green, and red (Windows bitmaps are the
reverse of the more common RGB format) plus one zero to fill out the four bytes
required. Therefore, a width of two pixels would have two zeros, three pixels
would have three zeros and four pixels would have no zeros. In the following set
of functions the stencil function builds an array of 1’s based on the width of the
image and appends to the tail a number of zeros. The removeZeros function
duplicates the stencil for each row and performs a copy over the array of pixels.
This copies only the elements we need and removes the excess zeros.

removeZeros =: }:,<@(pixels #~ ($@pixels $ stencil))
stencil =: >:@(0&*)@(i.@(3&*@width)),(0&*)@i.@numZeros
numZeros =: (4&|)@(4&-)@(4&|)@(3&*@width)
width =: >@(1&{)
pixels =: >@(3&{)

Colour Space Conversion

Windows bitmaps store each pixels data using three colour channels: blue, green
and red (BGR). JPEG, however, requires that an image uses the YUV or YCbCr
colour space. This colour model uses luminance and chrominance to define an
image. The luminance component (Y) is proportional to the image’s brightness,
while the Cb and Cr (U and V) components, called chroma, represent the colour
of the image in terms of the presence or absence of blue (Cb) and red (Cr) for the
given luminance. This model is used because the human eye is much more
sensitive to variances in luminance than those in chrominance and therefore, by
separating them allows significantly more compression (Taylor, 1999).

VECTOR Vol.XX No.Y

4

Colour space conversion can be done by calculating the following equations:

Y = 0.299 R + 0.587 G + 0.114 B
Cb = -0.1687 R – 0.3313 G + 0.5 B + 128
Cr = 0.5 R – 0.4187 G – 0.813 B + 128

In J this was easily done by multiplying the reverse of BGR by the matrix YCbCr at
rank 1. The rows of the resulting 3x3 matrix are then added together along with
the array inc. The reshape function takes a number on the left and makes a
matrix with that number of columns out of the array to the right.

YCbCr =: 3 3 $ 0.299, 0.587, 0.114,
 0.1687, 0.3313, 0.5,
 0.5, 0.4187, 0.0813
inc =: 0 128 128
colourSpace =: }:,<@,@(convert"1@|."1@(3&reshape)@pixels)
convert =: (inc&+)@:(+/"1)@(YCbCr&(*"1~))
reshape =: (>.@($@]%[),[)$]

Components and Blocks

The JPEG algorithm requires that an image is compressed within its component
parts. In this script the source file is always regarded as having three components
Y, Cb and Cr (A grey scale image would normally only have the luminance
component). Therefore, our next step is to extract each component’s data into
separate arrays. The following code does this calling three functions which in turn
call the selector function passing it an additional three element array. This array
gives which byte we are interested in for that component. This array is duplicated
to the length of the number of pixels in the image. J’s copy function is then used to
select only the elements required for that component.

components =: }:,<@(Y;Cb;Cr)
selector =: pixels@](#~)([($~)(3&*@numPixels@]))
Y =: (1 0 0)&selector
Cb =: (0 1 0)&selector
Cr =: (0 0 1)&selector
numPixels =: width * height

The end result of the components function is three boxes, each containing an
array representing a component extracted from each of the pixels. These three
boxes are all contained within the image data box of our main data structure.

VECTOR Vol.XX No.Y

5

Within these components the JPEG compression operates on individual 8x8
blocks of data. Therefore, we need to cut each component into blocks of this size.
To do this we first need to convert each component array of data into a matrix
with the same width and height as the original image.

shape =: }:,<@(dim (<@|.@$"1 >) pixels)
dim =: height , width

You may notice here that after the array has been shaped into the same size as the
original image it then flips the order of the rows. This is done because Windows
bitmaps start at the bottom and scan upwards (Lamothe, 1998). Secondly, before
we cut out our blocks we need to consider the case where the images’ width or
height is not divisible by 8, which would result in some non-standard size blocks.
This is corrected by filling out the width and height of each component with
zeros. The fillImage function does this by building a template matrix that is the
desired minimum size. The desired minimum size is the same size or bigger than
the source image and it is also divisible by 8 in both dimensions. This template is
then laminated onto each component. J then fills out the component matrix with
zeros to the same size as the template. The template matrix is then removed
leaving the component with the correct dimensions.

fillImage =: }:,<@(template fillComp (>@pixels))
fillComp =: (;/)@{:@([,:])
template =: i.@(newHeight,newWidth)
newWidth =: blockWidth&ceiling@width
newHeight =: blockHeight&ceiling@height
ceiling =: ((|-)|)+]

We are now ready to cut the blocks which is done by repeatedly cutting the
component into lots of 8 rows. Then by transposing the resulting matrix,
repeating the cutting process and transposing it back, we have effectively been
cutting in lots of 8 columns giving us our 8x8 blocks.

blocks =: }:,<@(<@(<@trans@cut@trans@cut@>)@pixels)
cut =: _8&(<\)
trans =: |:@>

VECTOR Vol.XX No.Y

6

JPEG Baseline Compression
Now that the image data is structured appropriately we can perform the JPEG
compression algorithm. The baseline algorithm is DCT (Discrete Cosine
Transform) based and the basic system is shown in Figure 1. The encoder diagram
contains three stages: an 8x8 FDCT (Forward DCT), a quantiser and a Huffman
encoder. The FDCT converts the 64 samples that are in the spatial domain to a set
of 64 values that are in the frequency domain. The first frequency is called the DC
coefficient (zero frequency coefficient) and the rest are the AC coefficients (non-
zero frequency coefficients). These values are reordered and quantised according
to the quality specified by the user. Lastly, the quantised values are Huffman
coded, which is an optimal method of coding a message that consists of a finite
number of members in a minimum-redundancy code (see Huffman, 1952). Both
the quantisation and Huffman coding is accomplished through the use of look-up
tables. The Decoder is the inverse of the encoding process using a Huffman
decoder, a dequantiser, and an 8x8 IDCT (Inverse DCT). The decoding process is
not implemented here.

Figure 1: JPEG Baseline System Diagram (Kou, 1995)

Discrete Cosine Transform

The Discrete Cosine Transform convert the set of 64 samples from a block into a
set of frequency coefficients. This is done through the application of the following
equation. However, few JPEG encoders are actually implemented using this
definition as it is very computational intensive and any accuracy gained is lost
during quantisation. Instead they use one of a number of fast DCT algorithms.
This application is based on the Arai, Agui, and Nakajima’s (AAN) algorithm for
scaled DCT as implemented in the IJG JPEG-6a library. The original paper (Trans.
IEICE E-71(11):1095-1097) is in Japanese but has also been described in the book
Jpeg: Still Image Data Compression Standard by William B. Pennebaker and Joan L.
Mitchell. With this method it is possible to arrange the computation to reduce the
number of multiplications (Intel 1997).

VECTOR Vol.XX No.Y

7

The FDCT given a block of samples: Syx (y,x = 0,1,…,7) is defined by:

Also, included below is the IDCT, should the reader feel inclined to implement a
JPEG decoder.

where

To perform the FDCT using the AAN method we first need to subtract 128 from
all the samples in each block.

FDCT =: }:,<@(FDCTblock&.>@pixels)
FDCTblock =: (DCT@sub)&.>
sub =: 128&(-/~)

The next step is to apply the transform’s set of calculations by column and then by
rows. In the graph below is a set of values needed to generate the fast transform.

Figure 2: Fast DCT Multiplication Factors.

? ? ? ?? ?
? ?

??
?

7

0

7

0 16
12

cos
16

12
cos

4
1

x y
yxvuvu

vyux
SCCS

??

? ? ? ?? ?
? ?

??
?

7

0

7

0 16
12

cos
16

12
cos

4
1

x y
vuvuyx

vyux
SCCS

??

?
?
? ?

?
otherwise1

0mfor 21
mC

VECTOR Vol.XX No.Y

8

Basically 8 samples are entered (1 row or column) and 8 coefficient are generated.
Each output element is a result of multiplying each of the input elements by its
corresponding graph values and adding the results. The J implementation,
though, has altered this slightly to minimise the amount of multiplications but
still provides the same results.

DCT =: (DCTcalc"1)&.|:@:(DCTcalc"1)
DCTcalc =: output @ step4 @ step3 @ step2 @ step1
step1 =: 4&{. (+,-&|.) |.@(_4&{.)
step2 =: [, step2a ,step2b
step2a =: (2&{. (+,-&|.) |.@(_2&{.))@(4&{.)
step2b =: +/@>@(2&(<\))@(_4&{.)
step3 =: [, t1, t2, t3
 t1 =: (0.707106781)&*@+/@((10 11)&{)
 t2 =: (0.382683433)&*@-/@((12 14)&{)
 t3 =: (0.707106781)&*@(13&{)
step4 =: [,t4,t5, +/@p1, -/@p1
 t4 =: ((0.541196100)&*@(12&{))+(16&{)
 t5 =: ((1.306562965)&*@(14&{))+(16&{)
output =: +/@p2, +/@p3, +/@p4, -/@p5,
 -/@p2, +/@p5, -/@p4, -/@p3
 p1 =: 7 17 &{
 p2 =: 8 9 &{
 p3 =: 20 19 &{
 p4 =: 11 15 &{
 p5 =: 21 18 &{

Quantisation

The quantisation phase of the algorithm is now performed on the result of the
FDCT and is the lossy part of the JPEG algorithm. This stage involves first
building a Quantisation Matrix or QM. There are two QMs (luminance and
chrominance) in this implementation, comprising 64 quantiser step-size
parameters each based on the specified quality.

divisorsLuminance =: divisors@quantumLuminance
divisorsChrominance=:divisors@quantumChrominance
divisors =: %@(((64$AANscaleFactor)*(8#AANscaleFactor)
 8)&)
quantumLuminance =: quantumLConst&quantum
quantumChrominance=: quantumCConst&quantum
qualityFactor =: (200&-)@(2&*)`(5000&%)@.(50&(<~))
quantum =: (mnQm, mxQm)&interval@<.@(100&(%~))@(50&+)
 @([*qualityFactor@((min,max)&interval)@])
interval =: ({.@[>.])(+.>.])({:@[<.])
max =: 100
min =: 1
mxQm =: 255
mnQm =: 1

VECTOR Vol.XX No.Y

9

The quantumLConst, quantumCConst and AANscaleFactor are arrays and are
given in Appendix A. The quality factor calculates a factor between 0 and 5000
according to the quality level specified at the start. The quantum function first
calls interval then calculates the quantiser steps. The interval function is
dyadic and forces any elements outside the interval specified by min and max to
be in the interval. The result is fed into the function divisors which uses the
AANscaleFactor to calculate the two QMs.

The resulting array of 64 coefficients from the FDCT are then divided by the
relevant QM and rounded to the nearest integer. In the above code the QMs were
also inverted so in the qCalc function below the result from the FDCT and the
QMs are actually multiplied.

quantise=: }:,<@(<@(divisorsLuminance@>@{.qCalc >@{.@pixels)
 ,<@(divisorsChrominance@>@{. qCalc >@(1&{)@pixels)
 ,<@(divisorsChrominance@>@{. qCalc >@{:@pixels))
qCalc =: <@zigzag"1@round@([(*"1)(,/)@>@])
round =: <.@(0.5&+)

Zig-Zag Reordering

The next stage, entropy coding, would be a waste of time if performed on the data
received from the quantiser. This is because the AC encoding uses run-length
coding which relies on long streams of
identical values and our matrix of
coefficients will not provide this if read
left to right and top to bottom as it
currently would be. Therefore, the data is
reordered using what is called zigzag
reordering. This ordering places the
coefficients that are most likely to have
the highest values first. The elements with
these high values tend to be the low
frequencies. This is because the human
eye is less sensitive to high frequencies so
the quantiser cuts a lot of them out. The
diagram to the right shows the zig-zag
ordering of an 8x8 block of frequencies.

This reordering was implemented simply by having an array with the order of the
elements’ indices and by using the from function. The array jpegNaturalOrder
is provided in appendix A.

zigzag =: jpegNaturalOrder&{

VECTOR Vol.XX No.Y

10

Entropy Coding

In JPEG the Quantised DCT coefficients are entropy coded using difference and
run-length coding combined with Huffman coding. The DC component is coded
separately from the AC part. The entropy encoder is able to use up to two DC and
two AC Huffman tables as has been used in this implementation. The following
function calls the appropriate DC and AC encoders for each component.

entropy =: }:,<"2@((DCY ,. >@ACY)@{., (DCC ,. >@ACC)@(1&{)
 ,: (DCC ,. >@ACC)@{:)@:>@pixels

Encoding DC Coefficient

There is a lot of locale correlation between blocks in photographic images. This is
taken advantage of in JPEG by employing difference coding between the DC
components called Differential Pulse Code Modulation (DPCM). To do this, first
all the DC components are extracted from the blocks within a component. Then
the difference between them is calculated. This value is then binary coded in a
two step process. The first step is to assign a category to the DPCM and which is
Huffman coded. Then if the difference is not zero, the second step is to assign
additional bits to indicate the specific value and sign. The amount of extra bits is
the same as the category number. Below is a table that gives the category
classifications in relation to the DC difference.

Categor
y

(SSSS)

DPCM Difference
(DIFF Values)

0
1
2
3
4
5
6
7
8
9
10
11

0
–1,1

–3,-2,2,3
–7…-4, 4…7

–15…-8, 8…15
–31…-16, 16…31
–63…-32, 32…63

–127…-64, 64…127
–255…-128,128…255
–511…-256, 256…511

–1023…-512,512…1023
–2047…-1024,1024…2047

Table 1: Difference magnitude categories for DC coefficients (Kou, 1995)

VECTOR Vol.XX No.Y

11

There are three additional rules that apply to the coding process here. The first is
that the Huffman code words must be generated in such a way that no codeword
has all its bits set to ‘1’ or it will conflict with JFIF marker prefixes. The second is
that the most significant bit of the appended difference magnitude is set to ‘0’ for
a negative DPCM and ‘1’ for a positive difference (Kou, 1995).

The following code does this by finding the DPCM array and feeding it into a fork
which calculates the Huffman coded category bitstream, as well as the specific
difference value bitstream and joins the two.

DCY =: <@(SSSSY,DIFF)"0@difference
DCC =: <@(SSSSC,DIFF)"0@difference

The DPCM array is calculated using the difference function which works by
extracting the DC elements (the first element from each box), appending a zero at
the start, finding the difference between pairs and negating the result.

difference =: -@(2:-/\])@(0&,)@({.@>@,)

The SSSS functions generates the bitstream for the category.

SSSSY =: (DCbitsY&code) (|.@{.)
 (|.@,@#:@(512&+)@(DCvalsY&code))
SSSSC =: (DCbitsC&code) (|.@{.)
 (|.@,@#:@(2048&+)@(DCvalsC&code))

The right prong of its fork first calls the code function and passes in a look-up
table for the Huffman code. The code function picks out the relevant Huffman
code by using the value generated by the category function. However, the value
returned when converted to binary will be missing any preceding zeros. This is
corrected by filling the value out with extra zeros and using the code function
again to look-up the number of required bits for the category to select that many
elements.

On inspection of table 1 it can be observed that the category for a given value is
actually the number of bits it takes to represent it. The category function uses
this characteristic by converting the value to binary and taking the shape of the
binary number. There is one small problem with this though and that is that a DC
value of zero is a special case. Due to the binary representation zero being ‘0’ it,
therefore, has the shape of 1 but it should be in category 0. To correct this we test
the DC coefficient to see if its not equal to zero. If it is not then we use the
calculated value, otherwise we use the value 0.

VECTOR Vol.XX No.Y

12

code =: ({~) category
category =: ({.{])@((~:0:),(;/@$@#:))"0

The DIFF function represents the specific DPCM value as a binary bitstream by
simply using the antibase2 function if the value is positive. If negative it first
decrements the value and then finds the antibase2. There are some cases, though,
where it may have an extra one at the head e.g. _7 would generate 1 0 0 0 instead
of the intended 0 0 0. Therefore, DIFF also tests for this case and removes the head
element if it occurs.

DIFF =: (]`}.@.((#.@}.)=0:))@#:@<:` #: @. (]>0:)

Encoding AC Coefficient

Due to zig-zag ordering the high frequencies tend to be zero. This is utilised by
using run-length coding on the AC part of the block. The code for the AC part is
generated by repeatedly counting the number of zero coefficients until a non-zero
one is encountered. This is then represented using the RS byte which is Huffman
coded. The first four bits store the run-length of zeros and the last four hold the
category value of the non-zero coefficient encountered after the run.

RS = binary ‘R R R R S S S S’

There are two special cases which are handled through the use of two predefined
bytes. The first is if the run-length has sixteen or more zeros. In this case a special
byte called the ZRL (zero run length) is inserted. The second is if there are only
zeros left until the end of the block. In this situations the byte called the EOB (end
of block) is added.

ZRL = ‘1 1 1 1 0 0 0 0’
EOB = ‘0 0 0 0 0 0 0 0’

The precise value of the AC coefficient (called ZZ) is then added after the RS byte
using the number of bits specified by the SSSS portion of the byte.

In the J implementation the DC component of a block is replaced by a zero and
passed into the function data which builds a two row matrix. The first row gives
the run-length of zeros the second gives the corresponding coefficient
encountered after that run length. This is then passed into the RS and ZZ functions
which generate the Huffman coded RS byte and the specific coefficient bit streams
respectively. These are then joined into a single bit stream for each non zero
coefficient.

VECTOR Vol.XX No.Y

13

ACY =:(<@((>@hufCodeY@RS)(<@(>@{.,>@{:)"1@,.)>@ZZ)@data)"1@prep
ACC =:(<@((>@hufCodeC@RS)(<@(>@{.,>@{:)"1@,.)>@ZZ)@data)"1@prep
prep=:(0&,)@}."1@>@,

The data function uses a function fixIndices to build an array of the index
locations of non-zero coefficients. For the top row it takes this array of indices and
calculates the difference between them minus one to give the run-length. The
second row is built by using the from ({) function to select the non-zero
coefficients. Both rows then call the EOB function which adds the EOB special byte
if the last coefficient is zero. The fixIndices function uses the function indices
to build the initial array. It then finds the difference between them and inserts the
ZRL special byte should any runs be 16 elements or longer by using the split
function.

data =: <@((EOB run@fixIndices),:(EOB fixIndices{]))
fixIndices =: (+/\)@(16&split)@:-@(2:-/\])@(0&,)@indices
indices =: ((i.64)&(#~))@(0&~:)
split =: ;@:(<@g"0)
g =: f^:(<{:)^:_
f =: (,}:) , -~&{:
EOB =:]`(],0:)@. (({:@[)=0:)
run =: ,@((]`0:@.({.=_1:),}.)@<:@-@(2:-/\])@(0:,]))

The ZZ function takes the matrix generated by data and, using only the second
row, generates the bit streams using the DIFF function used in the DC coding.

ZZ =: <@DIFF&.>@<"0@{:@>

The RS function takes the run-length element from the first row, left-shifts it 4
places by multiplying it by sixteen and then adds a category value using the
category function defined earlier.

RS =: <@(((16&*)@{.)+(category@{:))@>

The hufcode functions look-up the appropriate Huffman code and the number of
bits required to represent that code and the trim function removes the excess
elements.

hufCodeY =: <@trim"1@|:@(ACnumBitsY , |:@:(|."1)@ACvalueY)@>
hufCodeC =: <@trim"1@|:@(ACnumBitsC , |:@:(|."1)@ACvalueC)@>
ACvalueY =: (#:@(65536&+))@(ACvalsY&({~))
ACvalueC =: (#:@(65536&+))@(ACvalsC&({~))
ACnumBitsY =: ACbitsY&({~)
ACnumBitsC =: ACbitsC&({~)
trim =: <@|.@({.{.}.)

VECTOR Vol.XX No.Y

14

JPEG File Interchange Format
The JFIF (JPEG File Interchange Format)is a minimal file format that allows the
exchange of JPEG bitstreams between a variety of platforms and applications. The
JFIF format is an extension to the older format JIF (JPEG Interchange Format) and
allows for extra extensions. A JFIF format must have the JFIF APP0 marker
directly after the SOI (Start of Image) marker (Hamilton, 1992).

While there are around 30 markers that specify coding information the most
common and the ones used in this implementation are listed in table 2.

Description Marker
Symbol

Code Assignment
(Hex)

Start Of Image SOI FFD8
Application-Specific JFIF APP0 FFE0
Comment COM FFFE
Start Of Frame for Baseline SOF FFC0
Define Huffman Table(s) DHT FFC4
Define Quantisation
Table(s)

DQT FFDB

Start Of Scan SOS FFDA
End Of Image EOI FFD9

Table 2: Typical Markers for JPEG Baseline (Kou, 1995)

The implementation of the JFIF section basically involves appending header
information to the beginning of the file and an EOI marker at the end of the file.
The main function that does this is the appendHeader function. Its first operation
is to call the function bitStream which takes all of the bitstream pieces from all
the separate blocks and components and joins them into a single stream. It then
uses the reshape function defined earlier to convert it into a matrix with rows of
8 bits and each row is then converted into a byte. It also inserts an extra byte with
the value 0 after every byte that has a value of 255. This is done because the value
255 is reserved for markers. The appendHeader function then attaches the various
header information which can be found in appendix A.

appendHeader =: (({.header1)&,)@
 (DQT,SOF,(({.header2)&,)@(;@bitStream))
bitStream =: b@(254&a)@#.@(8&reshape)@
 ;@(pixels,.>@(4&{),.>@(5&{))
a =: <@g"0
b =: <@(]`(>:@{.,<:@{:) @. (#>1:))@>
header1 =: (SOI,"1 JFIF,"1 COM)
header2 =: (DHT,"1 SOS)
appendFooter =: EOI&(,~)

VECTOR Vol.XX No.Y

15

Saving the File
The process of writing the compressed JPEG image to file is performed by the
saveJpeg function. The compressed data is passed in as the right argument and
the path and file name entered by the user as the left argument. The function
outFile takes the image data and appends the header and footer to the
beginning and end of the data and then calls the function intToChar to convert it
all to characters ready for the write function to save the file.

saveJpeg =: write~ outFile
outFile =: intToChar@appendFooter@appendHeader
write =: 1!:2<
intToChar =: a.&({~)

Bringing it all together
The various stages of the compression algorithm have been written and now just
need to be brought together. The compress function below takes the loaded
bitmap, sets up the data structure and calls the FDCT, quantise and entropy
functions defined above.

compress =: entropy@quantise@FDCT@setUp

This is called in the main function JPGcompress which loads the bitmap before it
calls compress using what is entered on the right parameter and passes the
compressed data to the saveJpeg function.

JPGcompress =: saveJpeg (compress@loadBitmap)

Running JPGcompress
The JPEG compression implementation above when entered works in almost the
same time as other compression algorithms written in other languages. During
testing, a number of images were compressed and opened in third party
programs such as Internet browsers and image editing tools to ensure they
displayed the image correctly.

To run the compression algorithm use the JPGcompress function using the
following rule.

<path\filename.jpg> JPGcompress <path\filename.bmp>[;<quality>]

VECTOR Vol.XX No.Y

16

The first path and file name is for the file you wish to write to and will overwrite
any existing file or create a new file if one does not already exist. The second path
and file name is for the bitmap file you wish to compress. The last part in brackets
is optional. If not included the compression quality level will be 80, which gives a
good quality image and decent compression. If you want a different level of
compression then add the semicolon and integer representing the quality level.
The value 100 will not lose any information (and may be larger than the original
image, depending on the images’ detail) while the value 1 will give a very high
level of compression but may result in an unrecognisable image.

Below are six copies of a photo of my son Uisce: the first is the original bitmap
and the other five are example of different quality levels.

Original Bitmap.

Size: 97.1 KB

Compressed at quality

100
Size: 75.7 KB

Compressed at quality 80

Size: 16.6 KB

Compressed at quality 50

Size: 10.0 KB

Compressed at quality 25

Size: 6.77 KB

Compressed at quality 1

Size: 2.39 KB

VECTOR Vol.XX No.Y

17

Conclusion
JPEG baseline is one of the world’s most used compression algorithms. This is
because it is fast, offers good compression with little noticeable image
degradation and allows the user to specify the level of image quality. The purpose
of this paper was to show one possible implementation for the algorithm in J. By
using a language such as J a number of areas of the implementation were
simplified. The quantity of code was also reduced significantly. For instance, a
Java implementation by James Weeks in 1998 took approximately 1500 lines of
code.

References
• Hamilton, Eric., “JPEG File Interchange Format” Version 1.02, C-Cube

Microsystems, September 1, 1992, http://www.jpeg.org/public/jfif.pdf.

• Huffman, David A., “A Method for the Construction of Minimum-Redundancy
Codes”, Data Compression: Benchmark Papers in Electrical Engineering and computer
science, volume 14, 1952.

• Intel Corporation., “JPEG Inverse DCT and Dequantization Optimized for
Pentium® II Processor”, Intel Corporation, 1997.

• Kou, Weidong,. “Digital Image Compression: Algorithms and Standards”, Kluwer
Academic Publishers, Boston, 1995.

• Lamothe, Andre.,“Windows® Game Programming For Dummies”, IDG Books
Worldwide February 1998.

• Taylor, Nathan., “The inner workings of two key multimedia compression
systems: MPEG and JPEG”, Australian Personal Computer, Australian Consolidated
Press, July 1999.

• Weeks, James R., “JpegEncoder”, Version 1.0a, Java program, BioElectroMech,
1998, http://www.obrador.com.

VECTOR Vol.XX No.Y

18

Appendix A

Header Information and Functions

Following is the header information that is appended to the start and end of the
compressed image.

word =: (256 256)&#:
SOI =: 255 216
JFIF =: 255 224 0 16 74 70 73 70 0 1 0 0 0 1 0 1 0 0
comment =: 'JPEG Encoder programmed in J. Copyright 2000,
 Richard Dazeley and the University of Tasmania.'
COMlength =: word@(2&+)@$comment
COMheader =: 255 254
COM =: COMheader,"1 COMlength,"1 charToInt comment
DQT =:(DQTheader&,)@(DQTtableY@>@{., 1:, DQTtableC@>@{.)
DQTheader =: 255 219 0 132 0
DQTtableY =: jpegNaturalOrder&{@quantumLuminance
DQTtableC =: jpegNaturalOrder&{@quantumChrominance
SOF =: (SOFheader&,)@SOFinfo
SOFheader =: 255 192 0 17
SOFinfo =: (precision&,)@(word@height, word@width,
 numComponents, 1:, sampleFactor, 0:, 2:,
 sampleFactor, 1:, 3:, sampleFactor, 1:)
DHTtable =: bitsDCluminance, valDCluminance,
 bitsACluminance, valACluminance,
 bitsDCchrominance, valDCchrominance,
 bitsACchrominance, valACchrominance
DHTdata =: (word@(2&+)@$,"1]) DHTtable
DHTheader =: 255 196
DHT =: (DHTheader,"1 DHTdata)
SOS =: 255 218 0 12 3 1 0 2 17 3 17 0 63 0

VECTOR Vol.XX No.Y

19

Tables and General Data

Following is a listing of the look-up tables an general data that has been used
through the JPEG implementation.

precision =: 8
blockWidth =: 8
blockHeight =: 8
numComponents =: 3:
sampleFactor =: 9:+8:
AANscaleFactor =: 1.0 1.387039845 1.306562965 1.175875602
 1.0 0.785694958 0.541196100 0.275899379
quantumLConst =: 16 11 10 16 24 40 51 61 12 12 14 19 26 58
 60 55 14 13 16 24 40 57 69 56 14 17 22 29
 51 87 80 62 18 22 37 56 68 109 103 77 24
 35 55 64 81 104 113 92 49 64 78 87 103 121
 120 101 72 92 95 98 112 100 103 99

quantumCConst =: 17 18 24 47 99 99 99 99 18 21 26 66 99 99
 99 99 24 26 56 99 99 99 99 99 47 66 99 99
 99 99 99 99 99 99 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99

bitsDCluminance =: 0 0 1 5 1 1 1 1 1 1 0 0 0 0 0 0 0
valDCluminance =: 0 1 2 3 4 5 6 7 8 9 10 11
bitsDCchrominance =: 1 0 3 1 1 1 1 1 1 1 1 1 0 0 0 0 0
valDCchrominance =: 0 1 2 3 4 5 6 7 8 9 10 11
bitsACluminance =: 16 0 2 1 3 3 2 4 3 5 5 4 4 0 0 1 125

valACluminance =: 1 2 3 0 4 17 5 18 33 49 65 6 19 81 97 7 34
 113 20 50 129 145 161 8 35 66 177 193 21
 82 209 240 36 51 98 114 130 9 10 22 23 24
 25 26 37 38 39 40 41 42 52 53 54 55 56 57
 58 67 68 69 70 71 72 73 74 83 84 85 86 87
 88 89 90 99 100 101 102 103 104 105 106
 115 116 117 118 119 120 121 122 131 132
 133 134 135 136 137 138 146 147 148 149
 150 151 152 153 154 162 163 164 165 166
 167 168 169 170 178 179 180 181 182 183
 184 185 186 194 195 196 197 198 199 200
 201 202 210 211 212 213 214 215 216 217
 218 225 226 227 228 229 230 231 232 233
 234 241 242 243 244 245 246 247 248 249
 250

bitsACchrominance =: 17 0 2 1 2 4 4 3 4 7 5 4 4 0 1 2 119

VECTOR Vol.XX No.Y

20

valACchrominance =: 0 1 2 3 17 4 5 33 49 6 18 65 81 7 97 113
 19 34 50 129 8 20 66 145 161 177 193 9 35
 51 82 240 21 98 114 209 10 22 36 52 225 37
 241 23 24 25 26 38 39 40 41 42 53 54 55 56
 57 58 67 68 69 70 71 72 73 74 83 84 85 86
 87 88 89 90 99 100 101 102 103 104 105 106
 115 116 117 118 119 120 121 122 130 131
 132 133 134 135 136 137 138 146 147 148
 149 150 151 152 153 154 162 163 164 165
 166 167 168 169 170 178 179 180 181 182
 183 184 185 186 194 195 196 197 198 199
 200 201 202 210 211 212 213 214 215 216
 217 218 226 227 228 229 230 231 232 233
 234 242 243 244 245 246 247 248 249 250

DCvalsY =: 0 2 3 4 5 6 14 30 62 126 254 510
DCbitsY =: 2 3 3 3 3 3 4 5 6 7 8 9
DCvalsC =: 0 1 2 6 14 30 62 126 254 510 1022 2046
DCbitsC =: 2 2 2 3 4 5 6 7 8 9 10 11

ACvalsY =: 10 0 1 4 11 26 120 248 1014 65410 65411 0 0 0 0 0 0
 12 27 121 502 2038 65412 65413 65414 65415 65416 0 0
 0 0 0 0 28 249 1015 4084 65417 65418 65419 65420
 65421 65422 0 0 0 0 0 0 58 503 4085 65423 65424
 65425 65426 65427 65428 65429 0 0 0 0 0 0 59 1016
 65430 65431 65432 65433 65434 65435 65436 65437 0 0
 0 0 0 0 122 2039 65438 65439 65440 65441 65442 65443
 65444 65445 0 0 0 0 0 0 123 4086 65446 65447 65448
 65449 65450 65451 65452 65453 0 0 0 0 0 0 250 4087
 65454 65455 65456 65457 65458 65459 65460 65461 0 0
 0 0 0 0 504 32704 65462 65463 65464 65465 65466
 65467 65468 65469 0 0 0 0 0 0 505 65470 65471 65472
 65473 65474 65475 65476 65477 65478 0 0 0 0 0 0 506
 65479 65480 65481 65482 65483 65484 65485 65486
 65487 0 0 0 0 0 0 1017 65488 65489 65490 65491 65492
 65493 65494 65495 65496 0 0 0 0 0 0 1018 65497 65498
 65499 65500 65501 65502 65503 65504 65505 0 0 0 0 0
 0 2040 65506 65507 65508 65509 65510 65511 65512
 65513 65514 0 0 0 0 0 0 65515 65516 65517 65518
 65519 65520 65521 65522 65523 65524 0 0 0 0 0 2041
 65525 65526 65527 65528 65529 65530 65531 65532
 65533 65534 0 0 0 0

ACbitsY =: 4 2 2 3 4 5 7 8 10 16 16 0 0 0 0 0 0 4 5 7 9 11 16
 16 16 16 16 0 0 0 0 0 0 5 8 10 12 16 16 16 16 16 16
 0 0 0 0 0 0 6 9 12 16 16 16 16 16 16 16 0 0 0 0 0 0
 6 10 16 16 16 16 16 16 16 16 0 0 0 0 0 0 7 11 16 16
 16 16 16 16 16 16 0 0 0 0 0 0 7 12 16 16 16 16 16 16
 16 16 0 0 0 0 0 0 8 12 16 16 16 16 16 16 16 16 0 0 0
 0 0 0 9 15 16 16 16 16 16 16 16 16 0 0 0 0 0 0 9 16
 16 16 16 16 16 16 16 16 0 0 0 0 0 0 9 16 16 16 16 16
 16 16 16 16 0 0 0 0 0 0 10 16 16 16 16 16 16 16 16

VECTOR Vol.XX No.Y

21

 16 0 0 0 0 0 0 10 16 16 16 16 16 16 16 16 16 0 0 0 0
 0 0 11 16 16 16 16 16 16 16 16 16 0 0 0 0 0 0 16 16
 16 16 16 16 16 16 16 16 0 0 0 0 0 11 16 16 16 16 16
 16 16 16 16 16 0 0 0 0

ACvalsC =: 0 1 4 10 24 25 56 120 500 1014 4084 0 0 0 0 0 0 11
 57 246 501 2038 4085 65416 65417 65418 65419 0 0 0 0
 0 0 26 247 1015 4086 32706 65420 65421 65422 65423
 65424 0 0 0 0 0 0 27 248 1016 4087 65425 65426 65427
 65428 65429 65430 0 0 0 0 0 0 58 502 65431 65432
 65433 65434 65435 65436 65437 65438 0 0 0 0 0 0 59
 1017 65439 65440 65441 65442 65443 65444 65445 65446
 0 0 0 0 0 0 121 2039 65447 65448 65449 65450 65451
 65452 65453 65454 0 0 0 0 0 0 122 2040 65455 65456
 65457 65458 65459 65460 65461 65462 0 0 0 0 0 0 249
 65463 65464 65465 65466 65467 65468 65469 65470
 65471 0 0 0 0 0 0 503 65472 65473 65474 65475 65476
 65477 65478 65479 65480 0 0 0 0 0 0 504 65481 65482
 65483 65484 65485 65486 65487 65488 65489 0 0 0 0 0
 0 505 65490 65491 65492 65493 65494 65495 65496
 65497 65498 0 0 0 0 0 0 506 65499 65500 65501 65502
 65503 65504 65505 65506 65507 0 0 0 0 0 0 2041 65508
 65509 65510 65511 65512 65513 65514 65515 65516 0 0
 0 0 0 0 16352 65517 65518 65519 65520 65521 65522
 65523 65524 65525 0 0 0 0 0 1018 32707 65526 65527
 65528 65529 65530 65531 65532 65533 65534 0 0 0 0

ACbitsC =: 2 2 3 4 5 5 6 7 9 10 12 0 0 0 0 0 0 4 6 8 9 11 12 16
 16 16 16 0 0 0 0 0 0 5 8 10 12 15 16 16 16 16 16 0 0
 0 0 0 0 5 8 10 12 16 16 16 16 16 16 0 0 0 0 0 0 6 9
 16 16 16 16 16 16 16 16 0 0 0 0 0 0 6 10 16 16 16 16
 16 16 16 16 0 0 0 0 0 0 7 11 16 16 16 16 16 16 16 16
 0 0 0 0 0 0 7 11 16 16 16 16 16 16 16 16 0 0 0 0 0 0
 8 16 16 16 16 16 16 16 16 16 0 0 0 0 0 0 9 16 16 16
 16 16 16 16 16 16 0 0 0 0 0 0 9 16 16 16 16 16 16 16
 16 16 0 0 0 0 0 0 9 16 16 16 16 16 16 16 16 16 0 0 0
 0 0 0 9 16 16 16 16 16 16 16 16 16 0 0 0 0 0 0 11 16
 16 16 16 16 16 16 16 16 0 0 0 0 0 0 14 16 16 16 16
 16 16 16 16 16 0 0 0 0 0 10 15 16 16 16 16 16 16 16
 16 16 0 0 0 0

jpegNaturalOrder =: 0 1 8 16 9 2 3 10 17 24 32 25 18 11 4 5 12
 19 26 33 40 48 41 34 27 20 13 6 7 14 21 28
 35 42 49 56 57 50 43 36 29 22 15 23 30 37
 44 51 58 59 52 45 38 31 39 46 53 60 61 54
 47 55 62 63

