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a New Standard

A general-purpose arithmetic standard could give general computation the
kind of reliability and stability that the floating-point standard brought to
scientific computing. The author describes composite arithmetic as a

possible starting point.

their arithmetics have made different kinds of

complex computation possible. Frustrated,
however, by the limitations of integer arithmetic
(originally intended for counting loops and calcu-
lating addresses), scientists and engineers developed
a floating-point number representation.

Floating-point arithmetic, or more properly, arith-
metic using scaled numbers, was variously imple-
mented, first in software and later in hardware.
Scientific computing was greatly enhanced by the
worldwide adoption in 1985 of the ANSI/IEEE stan-
dard for binary floating-point arithmetic.*

Significant growth in general (or popular) com-
puting has led to a widespread use of spreadsheets,
for which floating-point arithmetic is too special-
ized. Programs such as computer graphics, on the
other hand, push floating-point arithmetic too far.?
And programmers have long been bedeviled by the
need to choose, often in ignorance, between fixed-
and floating-point representations for values.®

Although floating-point arithmetic, commonly
used in pocket calculators and electronic diaries,
does not generally yield exact results, ordinary PC
users naturally expect computer calculations to be
exact, and some, like accountants, insist on at least
the appearance of it. However, one very popular cal-
culator gives the answer —0.000000001 to the cal-
culation ((1 +3) O 3) — 1!* Scientists and engineers,
on the other hand, know that their measurements
are approximate in the first place, so expect any
results the computer gives them, based on those
measurements, to be approximate.

These circumstances, coupled with developments
in circuit technology and computation, have
encouraged and made possible a more general arith-
metic that saves the programmer from having to
choose between number representations and gives
the user more informative results. In this article
I propose what | call composite arithmetic. Com-

E ver since their early days, digital computers and
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posite arithmetic combines aspects of traditional
integer and floating-point arithmetics with less
familiar aspects of rational and logarithmic arith-
metics to complement the binary floating-point stan-
dard and satisfy more diverse computational needs.
| describe a formatting scheme for storage and dis-
play of exact and inexact numbers and an extended
arithmetic with a number format as its basis. | also
introduce possibilities for implementing the arith-
metic and discuss the interface between the repre-
sentations and the arithmetic.

NUMBER REPRESENTATION

No matter how varied, computer arithmetics, and
the digital forms of the numbers they use, follow a
traditional pattern. Fixed-point arithmetic, more cor-
rectly called integer arithmetic outside the comput-
ing industry, is meant to represent and compute with
integers exactly. In integer arithmetic, calculation with
fractions is not done directly and must be carried out
via subterfuges, such as scaling, which may deliver
inexact results. Instead, fractions can be handled by
an arithmetic called floating slash, which has been
proposed® but not widely adopted. A similar scheme
is built into the composite arithmetic | propose.

Fixed-point arithmetic can handle a relatively lim-
ited range of numbers. More than one length of rep-
resentation is often provided so that the programmer
can choose a length to cope with the expected range
of numbers. But very soon the numbers become too
large to store, a condition called arithmetic over-
flow, which a program must deal with specially to
prevent wrong results.

Floating-point arithmetic was designed to cir-
cumvent this overflow problem but at the cost of
exactness. Floating-point arithmetic can cope with
a large range of numbers, but it does so only by
approximating. More than one length of represen-
tation lets the programmer choose a length that pro-
duces suitable precision, yet overflow can still occur,
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Figure 1. Proposed
exact storage forms
include (a) primary
exact form (integer),
and (b) secondary
exact form (rational).
In the bit numbering as
shown, n stands for the
number of bits in the
form and can be 32,
64, 128, or 256, while
m numbers the differ-
ent forms in increasing
sizeas0, 1, 2, or 3.

Tag Value
[ 00 | 2scomplementinteger |
n-1 n-3 0
()
Tag Value
| 011| slash : denominator \ numerator |
n-1 n-4 n-m-9 0
(b)

Table 1. Integer storage form sizes.*

Number Magnitude
Bits Bytes Bits Digits Length
32 4 29 (hdi Short
64 8 61 18.4 Normal
128 16 125 37.6 Long
256 32 253 76.2 Extended

"Three bits are needed for the tag and the arithmetic sign.

as can underflow when numbers are too small to rep-
resent. An ideal general-purpose arithmetic would
deal exactly with commonly encountered fractions
like 1/3 and $19.99. It would neither overflow nor
underflow.

To attain this ideal arithmetic, we must first pre-
scribe a storage form for numbers that combines the
advantages of fixed- and floating-point forms and also
better represents fractions and extremely large and
small numbers. The programmer should not have to
choose between fixed- and floating-point forms—the
arithmetic should dynamically determine which is
needed. Moreover, users should not have to key in
numbers in any specific format—the arithmetic
should cope with whatever numbers it gets.

PROPOSED STORAGE FORMS

Composite arithmetic will provide a single binary
form, for storing numbers in programs and files, that
combines several different formats by a method tra-
ditionally known as tagging.®

Formatting numbers compositely in any binary
storage has two main aspects. How many bits to use
bears mainly on the precision with which a number
can be stored. How the bits are used bears mainly
on the kind and the value of the number being
stored.

The number of bits for a storage form is usually
specified in multiples of 16, as in the IEEE standard
for binary floating-point arithmetic that provides 32-
and 64-bit formats. Altogether, | recommend four
lengths: short (32 bits), normal (64 bits), long (128
bits), and extended (256 bits). For composite arith-
metic, 32- and 64-bit storage sizes would allow a
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choice in file and array design that would also provide
adequate precision for most commercial calculations
on exact numbers and for most scientific computa-
tions on inexact numbers. For financial and number
theory calculations where very long exact results can
occur, and for those occasional technical computations
where very precise results can be required beyond the
equivalent of 20 decimal digits, 128- and 256-bit stor-
age sizes should be provided. Such extra precision is
warranted by the proliferation of multiple-precision
subroutine libraries.

EXACT FORMS

To free the programmer from having to choose
between fixed- and floating-point representation, com-
posite arithmetic merges both exact and inexact rep-
resentations through a tag bit that signifies whether
the number is stored exactly or not. If the tag bit is O,
the number is exact; otherwise it is inexact. Generally,
only computation performed entirely with exact num-
bers will produce an exact result. The participation of
only a single inexact number will normally produce
an inexact result.

In composite arithmetic, a single tag bit isn’t enough:
In exact computations both integers and fractional
numbers must be available. A second tag bit is there-
fore needed to signify whether a primary or a sec-
ondary form is being used. For exact values, primary
is integer form, secondary is rational.

Integer storage forms

For integer storage forms, all but the tag bits can be
used for storing the value, as shown in Figure 1a. One
of the value bits is needed to store the arithmetic sign
of the number, but the rest of the bits can store the
magnitude, as shown in Table 1.

In the integer storage form, negative numbers
should be stored as the 2s complement of their mag-
nitude (one plus the bitwise complement of the mag-
nitude) so that a negative zero cannot be stored. Zero
is always exact.

Rational storage forms

Arithmetic with rational numbers is as exact as inte-
ger arithmetic. At least it can be, if appropriate repre-
sentation and arithmetic are provided. In exact
arithmetic, values may change from integer to rational
and back again, depending on the computation.

A rational number typically springs from division
of integers and to be exact must have both its denom-
inator and its numerator stored. Rational numbers
are stored in the secondary exact form, for which the
tag bits are 0 and 1. This form can store both very
large numbers, in which the numerator is much larger
than the denominator, and very small numbers, in
which the numerator is much smaller than the denom-
inator.



Table 2. Approximate ranges of numbers in rational form.

Number Value Range
Bits Bytes Bits Digits Small Large Length
32 4 24 7.2 6x10°8 4x10° Short
64 8 55 16.6 3x10°Y7 9x10%° Normal
128 16 118 35.5 3x107%6 8x1034 Long
256 32 245 73.8 2x1074 1x107 Extended

For efficiency, a rational number’s storage form
must provide for sharing the value bits between
numerator and denominator,® as shown in Figure 1b.
So that the numerator can be normalized, this sharing
must be resolvable to the bit. For a 32-bit number, five
bits are needed to position the floating slash. For a
256-bit number, eight bits are needed. Because O is
given an integer storage form, a normalizing high-
order 1-bit can be implied for numerators. However,
a bit is needed for the arithmetic sign and is shown in
Figure 1b following the tag bits.

If the numerator is 1, then no bits are needed for
the numerator. All value bits are available for the
denominator. A denominator of 1 is not required in
rational storage form, such a value being an integer,
so that the smallest denominator is 2. The largest
numerator is effectively one bit less than the largest
denominator, because the two bits lost to the smallest
denominator are partly compensated for by the
numerator’s normalizing bit.

Table 2 lists the approximate ranges encompassed
by rational numbers. However, the distribution of rep-
resentable numbers in a range is far from uniform.
For example, rational numbers with relatively large
denominators are restricted to having relatively small
numerators.

The rational storage form in composite arithmetic
is extremely versatile, though partly redundant
because factors common to the numerator and
denominator should be eliminated in any final arith-
metic result. Redundancy can be exploited in several
ways to increase the range of representable numbers.
The bit address of the floating slash, which should
point to the denominator’s low-order bit, can range
over the entire length of the rational storage form.
This address, however, may point to bits that cannot
be part of the denominator. Such redundancy can
imply denominators that are powers of 10, which lets
decimal fractions otherwise beyond the range of the
rational storage form be represented exactly.

Infinity and indeterminacy

The denominator of a value in rational storage form
can be 0. What is represented then is not a number,
but infinity: the pseudonumber that is greater than
any proper number.

Infinity is a notional value that needs storing,
because it can result from division by zero. Zero and
infinity are close counterparts. Multiplying them by
any proper number can have no effect, apart from
changing their arithmetic sign. But what should the

Table 3. Representing exceptional values.

Value Numerator Denominator Sign  Tag
Zero 0 None No 00
Infinity Any 0 Yes 01
Indeterminacy Any 1 Yes 01

result be when zero is multiplied by infinity? The rule
that both are unchanged by multiplication can no
longer hold for this case. The answer is usually said to
be indeterminate and if a result can be indeterminate,
then indeterminacy must have a representation. The
denominator of a value in rational storage form can
be 1. Ordinarily this shouldn’t happen, because if the
result of an exact calculation produces 1 as its denom-
inator, then that result is an integer and should be
stored as an integer. Such numbers are redundant to
the scheme of representation and can be used to store
an indeterminate value, as shown in Table 3.

INEXACT STORAGE FORMS

A value must be stored inexactly when its magni-
tude or other aspect of its value prevents it from being
stored exactly. In composite arithmetic, an inexact
number is one that can be stored neither as an integer
nor as a rational number. The exceptional values of
Table 3 are here treated as exact.

Inexact numbers can be represented in two ways.
Double-number forms separate the value into two
arithmetically distinct parts—one multiplicative, the
other exponential—as in traditional floating-point for-
mats. Single-number forms have only one distinct part,
solely exponential, as in the recently developed signed
logarithmic form,” which represents the value by using
its logarithm. (See the “Inexact Forms for Double and
Single Numbers” sidebar for more information.)

Two levels of inexact storage forms are required. A
primary inexact storage form stores the inexact values
most commonly encountered during computation. A
secondary inexact storage form lets values be repre-
sented that fall outside the capabilities of the primary
form. Ideally, providing the secondary form will avoid
the need for exception handling of overflow or under-
flow. Forms such as the traditional floating point are
subject to overflow and underflow.

Double-number forms
Double-number forms are shown in Figures 2a and
2b and discussed in the “Inexact Forms for Double
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Tag Value
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Tag Value
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(©
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(d)

Figure 2. Inexact storage forms include (a) IEEE 754 (for comparison), (b) double-
number form (semilogarithmic), (c) proposed single-number primary form
(logarithmic), and (d) proposed single-number secondary form (antitetrational). In the
bit numbering, n stands for the number of bits in the form and can be 32, 64, 128, or
256, while m numbers the different forms in increasing size as 0, 1, 2, or 3. Exception:
(a), wheren can be 32 or 64 andm can be 0 or 1.

Table 4. Primary inexact storage form sizes.

Number Significand Exponent
Bits Bytes Bits Digits  Bits Largest Length
32 4 21 6.3 8 3x10%8 Short
64 8 52 15.7 9 1x1077 Normal
128 16 115 34.6 10 1x10%%4 Long
256 32 242 72.8 11 2x103%8 Extended

and Single Numbers” sidebar.

Primary inexact. IEEE Std 754, shown in Figure 23,
can readily be adapted for use in composite arithmetic,
although the two tag bits must be provided, and rep-
resentations for special values like infinity and overflow
are not required. Figure 2b shows an appropriate adap-
tation. The IEEE characteristics would be transferred as
far as possible, and the floating-point storage forms
would have the properties listed in Table 4.

The exponent field is lengthened one bit for each
step up in form length just as the slash field of the sec-
ondary exact storage form is lengthened. Thus, the
longer primary inexact forms not only represent all
the values the shorter forms do, but the range of rep-
resentable values is greatly increased.

Secondary inexact. A secondary inexact storage
form is needed in composite arithmetic to deal with
numbers too large or too small to fit within the pri-

mary inexact form.8 One format possibility would
resemble the primary but with, say, double the expo-
nent size. This would greatly enlarge the range of rep-
resentable numbers but not enough to completely
avoid overflows and underflows.

Another possibility is to copy the floating-slash
scheme, using a floating bump field to divide the value
bits between significand and exponent (“‘bump’” mean-
ing a broadish point). Integers of 18 billion decimal
digits could thus be inexactly stored in normal form.
The floating-bump method may provide enough range
for current needs; however, this extended range of stor-
age forms may well lead to new kinds of computation
that are then prone to underflows and overflows.

Ideally, overflow and underflow are to be avoided
altogether. The floating-root method tries for this
using a storage form similar to floating point but with
value subfields of different significance. The sign bit
still conveys the number’s arithmetic sign, but the field
corresponding to the exponent indicates how many
times the square root of the magnitude must be taken
to attain a value below two. The magnitude of a small
number is increased instead by squaring until it
exceeds one half. The field corresponding to the sig-
nificand conveys the final magnitude after squaring or
square rooting.

With the similar, symmetric level indexing scheme,?
in which logarithms rather than roots are repeatedly
taken, the representation system closes at a surpris-
ingly low level for the four basic arithmetic functions,?®
which prevents overflow and underflow.

Single-number forms

The storage forms of composite arithmetic are
intended for representing, as effectively as possible,
numbers kept within programs and data files, and for
holding temporarily intermediate values of complex
calculations. These forms, not intended as the basis
for arithmetic, are relatively compact and must use
their length as efficiently as possible. The values they
store are converted to and from the register form,
explained later as the basis for the arithmetic.

Single-number inexact storage forms are more stor-
age-efficient than double-number forms and less prone
to cumulative loss of precision during conversions to
and from register form. For these reasons | recom-
mend single-number forms for use as the inexact
forms of composite arithmetic. As a primary inexact
form, Figure 2c shows a signed pure logarithmic sys-
tem of representation'® adapted to the composite
arithmetic format for the primary form, which gives
roughly the same characteristics as those shown in
Table 4.

Symmetric level indexing as a secondary inexact
storage form is a double-number form with precision
much more discontinuous than that of floating-point
form. Just as a pure logarithmic single-number form



can avoid discontinuity of precision in a primary inex-
act storage form, so can a pure antitetrational single-
number form avoid it for secondary.

Tetration relates to exponentiation as exponentia-
tion relates to multiplication.'* By analogy, antitetra-
tion bears the same relation to tetration as the logarithm
bears to exponentiation. The base 2 logarithm of 65536
is 16, but the base 2 antitetration of 65536 is 4. The
base 2 logarithm of 26553 is 65536, but its base 2 antite-
tration is only 5, which illustrates the compressive capa-
bility of antitetration that avoids overflow and
underflow even under extreme conditions.

A pure antitetrational system is a practical sec-
ondary inexact storage form, with the same closure
properties as symmetric level indexing, as the two sys-
tems are closely related.

Composite arithmetic would, ideally, apply pure
logarithmic and antitetrational representations for the
inexact storage forms, as shown in Figures 2c and 2d
respectively, with negative logarithms given in 2s com-
plement form, confining the more familiar semiloga-
rithmic representations to the display forms.

PROPOSED DISPLAY FORMS

Storage forms, as described, are for binary digital
computers, not for the users of those computers. The
storage form seeks to formally preserve as much data
as possible about the number being stored, yet it is
pointless to preserve that data unless it informs the
user.

With traditional programming languages, the pro-
grammer must decide both how to store numbers in
the computer and how to display them to users. A gen-
eral-purpose arithmetic standard should therefore
specify both storage and display forms.

Programming languages

Digital computers based on composite arithmetic
instead of floating point will use it for all numeric com-
putation, though not for address calculations and loop
control. Today’s programming languages can simu-
late their usual number forms and their mixture of
fixed- and floating-point arithmetic with composite
arithmetic.

But problems arise with display forms, which tra-
ditional programming languages require the pro-
grammer to specify in intricate detail. Because
numbers are presented to and by the user as charac-
ter strings, their values must be converted from and
to whatever storage form is used. With composite
arithmetic, the present conversions can be simulated,
though not without losing some of the extra data that
the arithmetic keeps for the user.

For users and programmers to appreciate the full
advantages of composite arithmetic, programming
languages must eventually provide composite data
types to make the extra data inherent in the storage

Inexact Forms for Double and Single Numbers

Double-number inexact forms, such as the traditional floating-point
number representations, give their values in two distinct components—
the exponent and the significand. These forms also use an implied base,
popularly 2, 10, or 16. The value represented is recovered from its rep-
resentation by multiplying its significand by its base as many times as
specified by its exponent, which is always an integer. The exponent is the
integer part of the logarithm of the value being represented, where the
logarithm is taken to the implied base.

Single-number inexact forms, such as the signed logarithmic repre-
sentation, give their values in a single distinct numerical component: a
single number, though it has an integer part and a fractional part. The
representation is the logarithm of the value being represented, and the
value is recovered from its representation by raising its implied base to the
power specified by the representation.

Both kinds of inexact forms keep two arithmetic signs. The arithmetic
sign of the value being represented is usually kept explicitly and is the
sign bit shown in Figure 2 of the main text. The other arithmetic sign is
the sign of the exponent or the logarithm, which signifies whether the
magnitude of the value being stored is greater than one or not, and which
is usually implied by the complement representation of the exponent in
floating-point forms.

As a storage form, the main drawback of the double-number forms is
discontinuous precision. Representable values in a floating-point system
are uniformly spaced for any particular exponent value. But across an
exponent boundary, the spacing changes by a factor that is the implied
base or its reciprocal. For an implied base of two, the imprecision dou-
bles or halves when crossing an exponent boundary. The precision of sin-
gle-number forms is continuous, which makes these forms more reliable.

form available to users or programmers. The language
must also provide display forms that clearly and use-
fully convey the storage form information.

With compiled languages, the programmer need
choose only the length of the composite data type for
either storage or display. For interpreted languages
and related utilities such as spreadsheet processors (for
which composite arithmetic is most apt), users will be
primarily concerned with display field length.

The numbers used in composite arithmetic include
rational numbers, as well as the infinities and inde-
terminacies given in this format, plus formally inexact
values with huge ranges. Apart from the need to pre-
sent different kinds of numbers in the same display or
input field, there is also the need to present rational-
ity, neither of which is met by present programming
languages.

Displaying rationality

Display form problems typically result from ASCII
character set deficiencies. This character set generally
has 12 usable characters for displaying exact numbers
decimally—210 decimal digits, a dot, and a hyphen.
The solidus(/) is not available because it serves as a
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A general-
purpose
composite
arithmetic
requires
comprehensive
storage and
display forms
for exact and
inexact
numbers.

division symbol in the absence of = from the ASCII
character set. The dot serves as a decimal point, which
is a shame because it is the second most significant
value signifier in a number yet second only to the blank
in visual insignificance.

Decimal nonintegers are shown with a decimal point
between the fractional part, which forms the numera-
tor of the implied decimal denominator, and the inte-
gral part. The denominator is implied by the number
of digits in the fractional part. Only an explicit denom-
inator need be added to let ordinary fractions be dis-
played. One unambiguous way to do this in composite
arithmetic is to place it to the right of the display form,
separated from the numerator by a second dot called,
say, the fraction point.

With the dot as a fraction point, a number such as
456718 can be shown or entered as 456-7-8 conve-
niently, if unfamiliarly at first. Expressing %z as 0-2-3
is not quite so convenient but more convenient and
accurate than as 0.66667.

The hyphen serves as a prefix to designate negativ-
ity. If it were used as a fraction point, then 456 /s would
more conveniently be shown as 456-7-8 and %3 as 2-3.
But this is ambiguous because the computing indus-
try, encouraged by the world’s arithmeticians, who
were the original sinners here, uses the hyphen to sym-
bolize the subtraction function as well as the property
of negativity.

Using the dot both for the decimal point and the
fraction point in rational numbers therefore seems the
only practical approach. The double-dot convention
is suited to fixed-field formatting for rational num-
bers in commercial applications, because both the
numerator and denominator subfields can be padded
to a fixed length with leading zeroes. It is also suited
to presenting exceptional values, using 0-1-0 for infin-
ity and 0-0-0 for indeterminacy. The dot could be
keyed in as an ordinary period, but the display could
automatically enlarge and raise it when its context
requires this.

Displaying inexactness

By and large, integers and common fractions are
intended to be exact. Numbers in scientific or engi-
neering notation with explicit scaling, as in 2.995 x
10%° or 2.995e10, are intended as measurements and
thus are inexact. A measurement like 7.89 is typically
intended to be exact up to its rightmost digit, which is
soft in the sense that 7.89 usually implies a value in the

Draft Standard

Three documents suggesting wordings for a
draft standard are available at ftp:/ftp.comp. utas.
edu.au/pub/nholmes/ca/{dssf.ps,dsdf.ps,dsrf.ps}. |
will reflect comments in these documents.
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range 7.885 to 7.895. (Decimal fractions might be
exact for accountants but are frequently only approx-
imate measurements for others.)

Since composite arithmetic lets inexactness be
shown in the storage form, this inexactness must be
expressed to and by the user. This means adopting new
display conventions, which should follow existing
conventions insofar as possible and should be the
same whether for storage or display.

For expressing inexact numbers, the present display
form uses the letter e to separate the significand from
the exponent. The exponent uses a scaling base of 10,
but the international standard for Sl (Systéme
Internationale) Metrics specifies a scaling base of
1,000. This base lets us adopt a scheme in composite
arithmetic to show standard measurements in a way
that resembles current practice.

A k-notation (kilo-notation) would be like the e-
notation (engineering-notation) described above, but
would use 1,000 rather than 10 as its scaling base. Thus
100k1 (popularly 100k) would stand for 1e5, and
100k2 would stand for 1e8. The k-notation could be
supported by an m-notation (milli-notation) to avoid
squeezing a negative sign into the exponent. For exam-
ple, while 6.023 x 10% could be written as 602 * 3k7,
0.67 x 10 could be written as 6-7m4. Secondary inex-
actness could be displayed by a second k or m.

Display form usage

Values presented in display form by a program
would be converted from register form and appear
as exact or inexact, primary or secondary, depending
on the properties of the value being displayed and the
length of the field provided for the display. Exact and
inexact displayed values would be distinguished, so
that 0-1-3 and 0-3333 would show different exact
values, while 333-3m would show an inexact value.
An inexact value would never be shown as exact, but
an exact value would be shown as inexact if the dis-
play field were too short to let it be shown exactly.

Users would key in values in display form accord-
ing to the same conventions. All exact values keyed in
would be stored exactly in register form, and all inex-
act values would be stored as inexact in register form.

INTERFACE ISSUES

A general-purpose composite arithmetic requires
comprehensive storage and display forms for exact
and inexact numbers. The arithmetic itself will be car-
ried out by instruction on arithmetic registers, the
design of which will largely determine the detailed
nature of that arithmetic.

Register design must consider the different instruc-
tions required to interface the various storage and dis-
play forms with the registers. Many varied instructions
will be needed to move numbers to and from the reg-
isters and to test register values. This strongly implies



only one kind of register, to minimize the number of
different instructions. Nonetheless, the variety of stor-
age and display forms, and the need to specify different
kinds of rounding, require many different instructions.

One obvious but unsatisfactory approach would
provide a few registers in the 256-bit extended storage
form. The load and store instructions would then con-
vert, if necessary, to and from that form, and the arith-
metic would be carried out on that form. Should the
arithmetic require that the nature of a value be
changed between exact and inexact or between pri-
mary and secondary forms, the execution of the
instruction that caused the change would include the
conversion.

This approach presents several problems, such as
fitting many new instructions into existing machine-
instruction repertoires. Because executing these
instructions would be complex, at least partly because
of their need to convert number forms occasionally,
composite arithmetic instructions would not, without
heavy use of pipelining, fit very well into RISC archi-
tectures, which need to execute instructions in a sin-
gle machine cycle.

A better approach is to logically decouple the com-
posite arithmetic instruction repertoire from that of
the host computer. What | envision here is a new kind
of subprogram engine, a numerical computer with its
own local registers into which storage and display
forms can be loaded without loss of information. All
elementary arithmetic operations defined for the
engine would be executed between and within local
registers using register form.

The subprogram engine could be implemented as
library subroutines, as a physically distinct coproces-
sor, or as an intrinsic processor manipulated by one
or two general main processor instructions. The
operands of these instructions would transmit either
arithmetic instructions to the subprogram engine, or
main storage addresses of storage or display form
numbers to be loaded or stored.

COMPOSITE ARITHMETIC
An as-yet-undefined standard would specify three
aspects of composite arithmetic:

* Number forms.

e Subprogram engine capabilities, regarding
instruction format and repertoire (basic arith-
metic operations first, others added in an evolu-
tionary manner).

< Subprogram engine and the host computer inter-
face. Specified machine instructions for the inter-
facing should not be detailed, as the appropriate
digital computer’s instruction architecture will
do the actual interfacing.

The composite arithmetic itself will depend on reg-
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ister design. For some computations, precision greater
than 256 bits is needed to store intermediate results.
A very large register, elsewhere called a long accumu-
lator (see the “Long Accumulator Design” sidebar),
would provide this precision and could even simplify
calculation by representing primary inexact storage
form values in a fixed-point form.

Register form

The composite arithmetic register would be basi-
cally a fixed-point register large enough to store in
fixed-point form any number representable in
extended primary inexact storage form. Because that
storage form has an effective 10-bit log integer and a
242-bit log fraction, a register form fraction field of at
least 1,266 bits is needed. If the register is to be sym-
metrical between integer and fraction, as shown in
Figure 3a, this means a register size of at least 2,532
bits, or 317 8-bit bytes. To provide spare capacity and
a round binary size, 4,096 bits or 512 bytes makes a
good choice for the register.

The 4,096 bits of main register data must accom-
modate certain auxiliary data. Two tag bits would sig-
nal what kind of value (exact or inexact, primary or
secondary) is being stored. The inexact forms of
Figures 3b and 3c keep their values in 2s complement
with implied arithmetic sign, but the secondary inex-
act form needs an overall arithmetic sign as shown in
Figure 3c alongside the 11 tag bits.

For inexact numbers loaded from secondary inex-
act storage form, or which arise from overflow or
underflow of a primary inexact result, the register
stores the logarithm of the value rather than the value
proper. Arithmetic with logarithms is well understood
and presents no fundamental problems.

For exact numbers, as shown in Figure 3a, the
integer part of the inexact register form could be used

Figure 3. Proposed
register forms include
(a) a single exact form
(rational), (b) a
primary inexact form
(fractional), and (c) a
secondary inexact
form (logarithmic).
The leftmost two bits
show the tags; the
third bit, an arithmetic
sign.
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Long Accumulator Design

Adding and subtracting floating-point values of somewhat different
magnitudes can give strange results when carried out directly. For exam-
ple, (1 +1 x 10%°) — 1 x 10%° may result in zero because the 1 vanishes off
the end of the floating-point representation of 1 x 10° when it is added
before the canceling 1 x 102 is subtracted, while 1+(1 x 102°-1 x 102°) will
yield one because the two 1 x 102 values cancel before the one is added.

To avoid these and similar unwanted effects, Ulrich Kulisch and
Willard Miranker included a long accumulator in their scheme for accu-
rate arithmetic.® The long accumulator is a fixed-point register long
enough to allow any floating-point value to be loaded into it in a fixed-
point representation. There is therefore no loss of digits when values are
added or subtracted into the long accumulator because there is always a
place for them to go. This has been implemented in microprogram on
the IBM 4361 and is cleanly adaptable to serve the composite arithmetic’s
more general purposes.?
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for the numerator, and the fraction part for the
denominator. No distinction need be made between
primary and secondary exact forms when they are
held in the register. Overflow or underflow of an
exact result would cause a transition to primary inex-

act form.

Such a large register may at first seem fated to sig-
nificantly slow down the arithmetic. However, in
hardware at least, data paths could be sufficiently wide
to convey a complete register value entirely in paral-
lel. Other techniques are also possible to speed up the
arithmetic, such as pipelining and balanced ternary

representation.

Intermediate results

When a composite arithmetic register is used as
described, its real nature would be invisible to users,
that nature being evidenced only in the arithmetic
results: for example, yielding exact results when less
straightforward arithmetic would yield inexact
results. Some of these improved results would be
available only when sequences of basic arithmetic
operations could be carried out entirely within the
register set or, for a software implementation, in a

library function.

To consistently achieve improved results, interme-
diate results should be accessible in register form such
that register contents are directly loadable or storable.
To accommaodate these results, a composite arithmetic

should comprise

= aregister form, in which values can be stored and
used repeatedly and exactly, and if exactness is

not possible, with recorded accuracy;

= astorage form, in which values can be stored effi-
ciently for use within programs and files, and for

transmission;

Computer

< adisplay form, in which values can be displayed
distinctively and effectively, as appropriate to the
length of field provided; and

< an arithmetic processor that works on register
form values to produce results exactly if possi-
ble, otherwise as accurately as possible.

outlined is the basis | propose for a new stan-

dard complementing the IEEE binary floating-
point standard. Successful development of a
composite arithmetic standard would be most
timely, given the burgeoning ability to manufacture
complex processors and the interest in extended
forms of arithmetic being shown in the research lit-
erature. It would also be highly beneficial in support
of better electronic calculator arithmetic and stan-
dard operation of generic software packages such
as those including spreadsheet capabilities. Three
areas would be the target of such a standard.

The general-purpose composite arithmetic I've

< Number form. One storage form should address
the needs of all commonly used numbers, com-
mercial and scientific, and one display form
should address the needs of as many users as pos-
sible, private and professional. The aim and
major benefit are that the specific storage and dis-
play forms depend on the value to be stored or
displayed, and that the form is automatically and
consistently determined.

e Arithmetic. Arithmetic should be defined that
gives the best possible result allowed by the val-
ues used as starting points to a calculation.
Arithmetic with a long accumulator will yield
better-than-usual results, and it implies also that
a register form should be specified by a standard
using such arithmetic.

« Interface between the forms and the arithmetic.
Arithmetic must be exploited practically by pro-
grams and operating systems.

The manufacturing technology exists that could
provide cheap processors for a general-purpose arith-
metic. Applications that would be enhanced by a thor-
ough-going general-purpose arithmetic are already
very widely used. Fringe computations proliferate that
need the extra accuracy composite arithmetic would
provide.

Given the need for a new standard of this kind,
work toward its adoption must start from acceptance
of the general approach I've proposed. Details to
define each of the three areas can be negotiated later.
With care, a basic capability could be defined that
could be adopted relatively promptly, allowing func-
tions beyond the most basic and capabilities like accu-
racy control to be added later. O
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