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Abstract

A sofiware development methodology is defined that integrates
saftware specifleation and walidation efforts. The integration helps
in achieving the twin goals of correct software with well-defined
specifications that document it. The major focus of the paper is on
dynamic life-cycle modals. We indicate how languags analysis of the
problem description can be ectonded to derive not only a static class
model for the gvstemn but also an initial dynamic fife-cycle model.
Consisgtency and completeness checks are peovided that further drive
the requirements elicitation. A case study is presented Lhat cleardy
demonstrates the methodology.
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1. Introduction

The waterfall model [1] and its subsequent evolution into
the spiral model {2] encapsulate the traditional wisdom
in software development. The underlying principle in the
two models is to divide the software development process
into stages, each of which produces a deliverable. A
deliverable not only defines the conclusion of the stage but
also provides the natural focus for ensuring the correctness,
s0 that the project continues to be on course to deliver
the end product that the user wants. This assurance
effort is called validation and verification. The verification
efforts aim at ensuring that the end result of the stage is
as per the input specifications. Validation ensures that
the result is what the user needs. The correctness of
the initial requirements definitions in setting the stage for
an end product that satisfies the wser needs cannot be
overemphasized .

The gulf between application users and computer pro-
fessionals, caused by differences in their expertise, empha-
gis, termimologies, and notations, makes the process error
prone and time consurning. Many tomes have been written
describing how computer professionals can aid commumni-
cation between themselves and users, [n addition, software
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development methodologies are emerging that shift the
effort towards application users,

Ohject-oriented analysis and design has received a lot
of attention as a methodology that bridges the gap between
the world of application domain users and that of com-
puter professionals. Application domain experts gain an
understanding of their problems by forming abstractions
in terms of objects and their interactions. Object-oriented
methodelogies focus on these objects to construct informa-
tion models of the applications. The direct modelling of
a problem domain into a computerized application elimi-
nates errors that result from translation between models,
and also enhances maintainability, as a small change to the
problem will only result in a small change to the model [3].

Given the background in entity-relationship diagrams,
the (static) information medels encompassing classes, as-
sociations, and attributes are well defined and understood.
However, in egpite of the success and popualarity of the
ohject-oriented methodologies they continue to prove diffi-
cult for both users and computer experts untrained in thess
methodologies. The static model captured by a typical ob-
ject oriented analysis is abstract. Users prefer to describe
how the objects interact with one another rather than
model them as forming relationships whose dynamism is
to be implemented later by the member functions. Object-
criented methodologies recognize the importance of dy-
namic models and suggest the use of various finite-state
machine models [4-6].

However, most methodologies fall short in deseribing
how these models are derived and how they combine with
the static model to complete the picture. Nor do they
describe how these lifecyveles are converted into methods
during the design phase. There are some notable excep-
tions, such as the Shlaer-Mellor methodology [6]. This
methodology relies on a specialized software development
tool that is not always available to execute the model, We
believe that for a methodalogy to have wider acceptability
and usage it musi lead to designs thal can be implemented
in widely available languages, such as C++.

For ohject-oriented languages to support the lifecy-
cle models of the objects, they must provide mechanisms
through which an object can traverse its lifecycle concur-
rently with the other objects in the system. Multithreaded
execution is thus essential. A naive approach is fo as
sociate a thread of execution with each object, but this
raises nontrivial problems relating to the synchronization



and communication required by the concurrent progres-
sion over the lifecycles of different but cooperating objects.
This article proposes a solution to this problem.

We describe a methodology thal retains and imple-
ments lifecycles as it moves from analysis to design and
finally to the programming stage. The methodology uses
an event-based scheduling paradigm to enable concurrent
execution of ohjects in a safe way in O+, a sequential
language. The main contributions of this work can be
summarized ns follows:

1. It provides a methodology for extracting & life-cycle
model Logether with a elass model of the system from
the textual description.

2, It provides a methodology for analyzing and developing
the system specifications thal leads to a complete
and consistent specification. The methodology guides
the developer towards those aspects that need to be
addreased in achieving completeness and consistency.

1. It provides o method for translating specifications into
programs in standard object-oriented languages, such
as C++.

4. The complete methodology is illustrated with the help
of a nontrivial case study.

The article is organized as follows. A nomtrivial case
study is described in Bection 2. The fundamentals of
the methodology are first raised in Section 3, and the
methodology is applied to the cese study in Section 4.
This includes a technique for eonstructing object lifecycles
from the problem deseription. Implementation-specific
isgues are discussed in Section 5. Having deseribed our
methodology, we compare it in more detall with the other
established object-oriented methodologies in Section 6.

2. Case Study Problem

The purpose of this section is to deseribe a nontrivial
problem that illustrates the methodology introduced in this
work. The case study involves a system af lifis in a building.
The versions of this problem have a long history of use in
software engineering and formal specification studies for
the reason that Schach |7] describes: “the problem is by no
Means As simple as it looks.”

A building is serviced by several identical lifts. These
lifts travel between the floors of the building and are
controlled by a common controller. Each foor, with the
exception of the ground and the top fleor, has two call
buttons, one for each direction of travel. For obvious
reasons, the ground and the top floor have only one button,

Passengers artiving at & floor press the call button
appropriate to their direction of travel. They wait in a first-
in-firat-out (fifo) queue for their turn Lo enter a lift. When
a lift arrives and the doors open, the current passengers
destined for this floor get out, and then as many waiting
passengers as possible get in. These embarking passengers
press appropriate buttons for their destinations. When the
lift arrives at their destination, they get oul.

Each call for a lift is registered by the controller. For
each call of & lift, the controller datermines if an idle lift is
better placed than the currently active lifts to service the
call. If this is the case, the idle lift is dispatched towards

the ecalling floor. If several idle lifts are equally placed to
service the call, one is chosen at random. Otherwise, an
active lift will eventually arrive at the calling floor and will
be able to service the call.

An idle lift continues to be inactive and stationary
at a floor, with the door closed, until it is activated by
the controller in response to a call from a newly arrived
passenger. An idle lift, when activated, beging to travel
townrds the calling floor and serves the other passengers
like other active lifts. An active lift continues to move
upwards and downwards serving the waiting passengers
until it finds no further remaining work. At this stage it
becomes idle. A lift going upwards halts at various floors
to drop passengers and to pick up new passengers. [t does
not change its direction of travel until it reaches a floor
where it is no longer carrying a passenger, and where there
are no waiting passengers on any floor abowe. The lift may
change direction in order to service the passengers waiting
to travel in the other direction. If this also yields no further
work for the lift, the lift enters its idle state. An analogous
behaviour is shown by a lift travelling downwards,

We assume that timing is significant for the problem
salution. Thus, each lift travels at a fived rate and needs
some fixed delay to open and elose its door. Likewise, the
passengers take a fixved delay to enter and exit a lift. Each
lift has as many destination buttons as there are floors in
the building.

Our aim in modelling the system will be to model the
problem as closely 85 possible to retain ils association with
the physical system.

3. The Fundamentals of the Methodology

An effective analysis and design methodology is distin-
guished by its ability to partition the problem into in-
dependent components. A measure of this independence
is the high cohesion within the components and a weak
coupling between them. In the absence of & methodology,
the level of detail even in the above case study could be
daunting. An object-oriented methodology partitions the
problem by identifying the object classes in the problem
domain, These classes exhibit a level of independence that
places the object-oriented methodologies at the forefront
of the system-structuring methods.

In the following presentation, we consider the funda-
mental issues concerning an object-oriented methodology.
The identification of classes, associations, and attributes is
assumed to follow one of the major methodologies. The
dynamic issues, including the nature of lifecycles, is exam-
ined in more detail. The components of these lifecycles
states, events, and transitions — are considered in order,
together with related issues such as state folding and the
processing of events by functions. The methodology as a
whole is considered in the following section.

3.1 Object Classes
The first step in the methodology is the identification of

object classes. Objects that the problem domain experts
identify or perceive define the classes of interest. A class



specifies the attributes, which are represented by a sst of
data members (in C++ terminology). In each object, the
appropriate data member holds the value of the associated
attribuie.

Each object has a distinct identity but shares a com-
mon behaviour with other objects of its class. The be-
havigur is eaptured by & set of member functions (in C++
terminology) defined by the class. Diriven by the twin goals
of reuss and encapsulation, many methodologies have been
reported for ohject-oriemted analysis, design, and program-
ming (see, e.g., [4, 7, B]). Howewver, these methodologies
fail Lo view objects as active entities executing their own
lifecycles.

We shall adopt the convention of declaring all data
members of & class to be private (or protected) and only ac-
cessing them through specially defined function members.
This means that all of an object's behaviour is caplured by
ita function members, and that the implementation of the
classes iz separated from their external interface. For our
purposes, the class histarchy of Fig. 1 captures the classes
of interest to us in the lift system described in the case
study. It uses the OMT notation of Rumbangh et al. [8].
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Figure 1. Clasees and their relationships for the Lift case
study.

A building is modelled as an aggregate of floors, lifts,
and a lift controller. A breeder class has also been imtro-
duced to generate the passenger instances. Rather than
associate passengers directly with floors and lifts, we have
chosen to sssociate them indirectly with the buttons and
their associated gqueues.

3.2 Lifecycles

As plready noted, the attributes of classes capture only one
facet of the problem domain objects, another important
one heing their behaviour. Most available methodologies
rely on the function members of a class to provide this be-
haviour, which iz exchibited by an object in itz intoraction

with other objects in the system. The functions modelling
the hehaviour nead o eapture or encode this interaction.
Without a disciplined methodology, this leads to an escala-
tion of concerns and reduces the independence among the
object classes. For example, in the case study, an object
of class Lift meeds to interface with an object of class
Passenger. The two classes should have functions that
implement the interactions in & consistent way. Further,
each lift should be able to interface with any object of
class Pasasnger. Likewise, each object of class Paseenger
should be able to interact with any one of the lifts in the
system. Yet this interaction must be state dependent — &
real lift interacts with a passenger only when it has stopped
at & floor and its door is open. A simulated lift does so
when ite member function ig called. The difference must
be resolved by the designer.

T]J.emninpu:nhhmlwithﬂbeuhmunppruaﬂ:l {whii.‘.h. is
encouraged by the Ct+ style function members) is that it
focuses on atomic interactions rather than on the lifecycle
of the object. Instead, we advocate that an object-oriented
methodology start with the lifecycles and then derive the
appropriate function members. Fortunately, it is poasible
to capture the lifecycle model of each class of objects
with relative ease. Some guidelines on this are given in
Section 4. We therefore exploit Lthis ease to produee a lueid
implementation of object behaviour.

The lifecyele of an object comsists of two kinds of
components: states and transitions, which we now consider
in turn.

3.3 States

Objects tend to differ in the way they behave during their
lifetimes. Some (simple) objects exhibit uniform behaviour
and others have behaviour that changes markedly.

For objects of the former type, their lifecyeles are un-
interesting or trivial. In this case, we need only define a
suitable set of function members that implement the ob-
Ject’s interface to other objects. These objects are typically
passive and serve as the repository of some information
that is accessed and changed by other objects, through
calls to appropriate function memhbers. The model created
for these objects can be verified by testing an isolated ob-
ject. The exact sequence in which the functions are called
is unimportant.

For objects of the latter type, their behaviour is deter-
mined by the state the object is in. The sequence in which
the ecalls are made is usually important — the sequence of
calls may have some bearing on the current state of the
object. The models for such objects can only be verified
by testing each objeet against plausible sequences of calls,

The external behaviour of an object is not the onky
determinant of the state of an object. Two objects of the
same class may show identical behaviour in their current
states but may have the potential of exhibiting different
behaviour in the states thet can be reached from their
present states. For example, two lifts carrying passengers
may behave identically,. However, a damaged lift has
potential of behaving in an unsafe way in a state where it
iz loaded to ite full capacity. Shiser et ol [6] suggest that




the identification of states must be based on the internal

details of the real-world objects. States based solely on the

currant behaviour of the ohject are usually not adequate.
A state can be represented in many ways:

» Explicitly using a data member of a suitahle emumer-
ation type. This representation is especially useful if
the state also abstracts the behavioural history of the
ohject.

» Implicitly, through a well-established protocol of inter-
actions among objects. In other words, the state of this
{or another) object is known by virtue of the preceding
sequence of messages that have been exchanged.
Implicitly as a set of values of its data members. This
representation uses the current values of the object's
data members for determining the state. Typically, the
particular state s determined by an expression that
depends on some combination of the attributes of the
object.

These approaches can be combined with one another,
a8 noted in the following subsection.

3.8.1 State Folding

If every poesible combination of values of an object’s data
members were [reated as & separale state, then the number
of states would be unmanageable, az wonld the lifecycle
of the ohject. Harel suggests the use of statecharts [9] to
belter organize the states of an object. However, a lifecycle
description of an object can be made concise by retaining
only the significant states of the ohject. This serves
to partition the possible combinations of data member
values. Alternatively, it can be considersd to be achieved
by folding a number of states onto one state. Consequently,
there will be some data members that contribute to the
differentiation of states, and other date members that will
not.

qudmph,nﬁﬂmqheinmidlenatentmyni
the floors of a building. The floor at which the lift is idle
may be of only decondary intereat (as far as the lifeeycle is
concerned). The fact that it is in an idle state is of primary
importance in modelling the lifts, and hence all idle states
can be folded into the one idle state that appears as a single
node in the lifecycle graph. Thus, the complexity and
axtent of the lifecyele graph can be redueed by eoalescing
all idle states. The current foor is still accessible through
A data member.

Where some value of an object's data member only
results in & differant response in some situstions, it is pos
sible for Lhe states to be further folded and for them to
e differentiated in the appropriate context using a condi-
tional expression. The above approach to state folding is
founded on the folding that s fundamental to the Coloured
Petri Net formalism for dynamic systems [10].

3.4 Events

An object progresses through its lifecycle in responss to
the reception of events. An event is a message received by
the object, either from another object or originating within
the current object. For example, when an embarking
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passenger presses a button for the destination foor, this
will constitute an externally generated event for the lift.
On the other hand, the evenl to signal arrival of the lift
at a floor will have been originated by the lift (for itself)
when leaving the previous foor.

Events therefore provide the mechanism by which ob-
jects are made aware of the asynchronous activities of other
objects in the system. Events are identified by the object
to which they are directed, an indication of the kind of
event, and additional data, which may be considered to
SATVE A8 DATAMEters.

The respemse of an ohject to the reception of an event
may be conditional on the current state of the object. In
this way, an object can be guarded against unexpected
events. An event may be handled immediately, or may be
deferred for later response. We adopt the convention that
only the object itself can defer or schedule an event for later
response. This convention encourages better encapsulation
of the classes,

To enable the objects to schedule and cancel event
delivery we assume that the cbject-criented language pro-
vides a suitsble mechanism for this purpose. We will
discuss an implementation in Section 5.

5.4.1 Punctions and Event Handlers

From the above diseussion, it will become apparent that
an object will have two kinds of function members. One
kind will respond to requests independent of the current
state, These function members are used to access the data
members of the object. We will refer te these function
members simply as funclions. Note that where a (gimple)
object has no state-dependent behaviour, all of its function
members are functions (in this sense).

Another kind of funetion member will respond to
events in a state-dependent way. We will refer to these
function members a8 event handlers. Event handlers are
distinguished (though not exclusively) by the fact that they
do not return a result [or, in C++ terminology, return a
result of type void).

Thus, an event delivered to an object causes a specified
event handler to be called. There is one event handler for
each type of event (rather than having one event handler
for each type of event in each state). The event handler
will thus have activity that is conditional on the state of
the object when the event handler was activated. This
poses little difficulty, as the state of the object before the
delivery of the event can easily be found.

3.5 Transitions

A transition is the respomse of an object in a particular
state to & given event. Every event delivered to an object
causes it to perform a state transition. The performance
of a transition causes the object to progress from one state
to the next. The next state after firing a transition may
roineide with the starting state of the transition. A state
represents a period of time in the life of an cbject over
which it interacts with the other objecia in the system
exelusively through function calls. On the other hand, a




transition represents & point in time at which the object
changes its state and interacts with other objects in a
significant way as far as ita lifecycle graph iz concerned. A
transition may:

» alter the values assigned to the current object's data
members

e call functions of other objects in the system (to ex-
change data with them by accessing their data mem-
hers)

» schedule or cancel the delivery of future events

» cause synchronous and for asynchronous transitions in
other objects (by passing events to Lhem)

A transition is specified by a 5-tuple <current_state,
event, guard, actions, next_state>. The operatiomal
semantics for the transition is described as follows: the
transition is activated on receiving notification of the spec-
ified event evenmt, provided that the object was in state
current_state and the expression guard holds. The
guard may be an expression based on the state of the
object executing as well as the other objects in the system.
The stipulated actions In actions are executed, and finally
the object enters the new state next_state.

For example, a passenger object in the case study may
undergo the transition of entering a 1ift if it is initially in
the state of waiting for a lift, and if it receives the event
{or Invitation) from the lift to enter. The next state s Lhat
of entering the lift, and an action would be to schedule the
completed entry event for some future time.

As mmst be clear, transitions represent threads of
execution. The ohjects in the system can progress through
their lifecycles concurrently by a suitable discipline of
thread scheduling.

Naote that a single event may be associated with a num-
ber of transitions in the lifecycle graph of the object. This
requires that the actions assoctated with these transitions
be implemented by the event- handling function.

4. The Methodology at Work

The software development process that we aim for is de-
picted in Fig. 2. The process begins with analysis. The aim
of this phase is to collect data about the problem domain.
The design phase organizes the data in a form that fits the
needs of the software system to be developed. As a design
emerges, completeness and consistency checks can be per-
formed to identify the specific information that is lacking
in the analysis document. These two phases repeat a num-
ber af times until the design can be completed, whereupon
the implementation phease can begin. A utopian view is
that a good design ensures that the earlier phases are not
repeated after the implementation begins.
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Figure 2. A software development process.

In what follows we give some guidelines to initiate the
analysis-design cycle from the informal prose description
of the problem.

4.1 Guidelines

A variely of techniques have been proposed for selecting
the components of an information model — the classes,
aseociations, attributes, and so on. Some have suggested
that the identification of classes is straightforward [11];
some have suggested the use of certain categories such
as tangible things, roles, and events interactions [6; and
others have suggested analysis of the problem description
[8]. A significant advantage of the latter approach is that
it forces the developer to work in the vocabulary of the
problem space. It is also claimed that the approach has
significant disadvantages — it is not a rigorous approach
(given the imprecision of natural language}, and it does not
scale up well to larger systems. However, in the context of
teaching students how to get started with object-oriented
analysis, we have found the language analysis approach
ideal. In this section, we exlend the proposals of Rumbaugh
et al. [B] to encompass the derivation of the lifecycle model
as well.

At a fairly simple level, seniences are made up of
nouns (which represent things), verbs (which represent
actions), and qualifications of the above. In Rumbaugh's
proposal, the nouns of the problem description are the
prime candidates for classes, objects, and attributes. The
analyst will need to exercise discretion in deciding whether
a given noun falls into one of these categories or should
be ignored. Rumbaugh uses the nouns as an initial list of
classes and then provides a checklist Lhat helps to identify
those that are redundant, irrelevant or vague, and those
that are attributes, operations, implementation constricts,
and the like. Qualifications of nouns, such as adjectives,



phrases, and clauses, may help to identify sttributes or
attribute values. Again, Rumbaugh provides a checklist in
order to identify inappropriate clasifications,

Although the above guldelines seem to be reasonably
complete, and students seem to pick them up easily, the
same is not true of the identification of associations and
operations. We believe this is due to the inadequate atten-
tion given to the identification of operations in the context
of lifecyeles — Cheir states, events, and transitions. Rum-
baugh advecates the identification of stative verbs or verb
phrases in the problem deseription as a guide to the asso-
clations, Again, a helpful checklist is provided to narrow
down the list and exclude irrelevant or implementation as-
sociations, actions, derived associations, and so on. How-
ever, this approach is not continued for actions, let alone
for lifecycles.

We recommend that the language analysis approach
be extended to encompass some (at least) of the dynamics
of a system. Verbe can indicate a continuous or an in-
stantanecus action. Lanpuage textbooks variously refer to
this distinetion as linear versus punctiliar, or stative ver-
sus instantanecus, As with Rumbaugh, we recognize that
stative verbs may indicate an association betwesn classes.
However, it is more precise to say that they indicate an
associalion over a period of time. If that period of time is
the lifetime of the system, or at least the lifetimes of the
participating objects, then we simply have an assoclation.
If, however, the pericd of time is less than the lifelimes
of the participating objects, then we have identified three
states — the state before the association is estahblished,
the state while the association is in force, and the state
after the association is dismantled, The analyst should
then identify the events that cause the associalion to be
estahlished and dismantled, where they originate, and so
on.

Where a verb is instantaneous, it suggests the presence
of two states: before the action oceurs, and after. 1t is quite
likely that the action will be associated with an event, in
which case the analyst should identify the kind ol event,
together with the sending and receiving objects.

4.2 Application to the Case Study

The choice of classes and associations is well known, so
we do not pursue this aspect of the analysis in detsil. An
information model for the lift problem has alresdy been
given in Fig. 1.

We now turn to the dynamics of the system and the
lifecyele model. We first consider the Passenger lifecycle
at & Jevel of detail that is possible given its simplicity.
Later, we consider the more involved Lift lifecycle in less
detail, We use the verbs to identify the associations, states,
events, and actions. The states are numbered as in Fig. 3
and Table 1, and the events are related to the transitions
in the same figures.
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syEhem El lift
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4| lifi to reach 3| Enteringalift
destination
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| 5 Leaving the lifi

Figure 3. Lifecycle for Passenger objects. The transition
details area available in Table 1.

The description states that & passenger arrives at &
floor and presses the eall button. If arrival is considered
an instantaneous action, then it separates two states —
that prior to arrival (when the passenger has boen created)
{state 1}, and that following arrival {when the passenger
is waiting for a lift) {state 2}. The event thal causes
this change of state is the arrival (according to some
predetermined probability distribution) (transition P1}.

° An event scheduler, described in Section 5, is responsible
for the orderly delivery of such events. On receiving this
event, the passenger will initiate the action of pressing the
call button. Note that following this event, the passenger
will be in an association with the floor, namely wailing at
the floor for a lift.

The problem description goes on to say that the pas-
senger can gei inio the lift ones the LA has arrived, the
doors have opened, and the passengers wishing to elight
here have done so. The action of getting into the Lif
requires some time duration, and thus implies the need
for three states — prior to boarding {state 2}, in the pro-
cess of boarding {state 3}, and having hoarded {state 4}
— and two events — start boarding {transition P2} and
stop boarding {transition P3}. The event to trigeer start
boarding will be sent to the passenger by the lift, and the
event to stop boarding will be scheduled by the passenger
for the appropriate time. The passenger will also initiate
the pressing of the destination floor button in synchrony
with the completion of boarding. IU is interesting to note
that while hoarding, the passenger will have an association
both with the arrival Acor and with the lift — the start
boarding event introduces the assoclation with the lift, and
the stop boarding event terminates the association with
the Aoor.

Finally, the description states thal the passenger will
get out when the lift reaches the destination and its doors
have opened. Agam, the act of alighting requires some
time duration and hence will identify three states — prior
to alighting {state 4}, in the process of alighting {state 5},
and having alighted {state 6} — and two events — start




Transition Descriptions for the Lifecycle Passenger Shown in Fig, 3

Table 1

Transition | Start State | Event Guard | Actions Next State
P1 Enters the | Passenger |True |Presses the call button Whaiting
system appropriate for Lhe for & lift
intended direction of travel
P2 Waiting for | EnterLift |True |Schedule EnteredLift event Entering
a lift to be delivered a life
after necessary delay
P3 Entering | EnteredLift [ True |Press the destination button Whiting for
a lift of the lift and send Passengerisin | the lift
event to the lift to reach
destination
P4 Waiting for | Destination | True | Schedule LeftLift event | Leaving
the Lift _ Reached to be delivered the lift
to reach after necessary delay
destination
Pi Leaving | LeftLift True |Send PassengerGone event Leaves the
the lift to the 1ift and aystem
Passenger
alighting {transition P4} and stop alighting {transition
1| Mdling P5}. Again, the start alighting event will be sent to tha
11z passenger by the lift, and the stop alighting event will be
scheduled by the passenger. The first event introduces the
I1 association of the passenger with the destination floor, and
= the second event terminates the association with the lift.
Travedling 10 The above lifecycle was simple and linear, with the
the next floar result that next to no effort was required to decide whether
- - each identified state was a new one or a repetition of an
- earlier eme, The lifeeyele for Lift, which we now consider,
is not that simple. For the sake of brevity, we simply
~ annotate the original problem description, with extended
. comments to indicate contentious issues. The labelling of
. states and transitions corresponds with those of Fig. 4 and
—-‘\\ Table 2.
H y A building is serviced by {association ]| several identi-
L | S cal lifts. These lifts travel {explains previous association}
between the floors of the building and are controlled by
{association} & common controller. Each floor, with the
ezceplion of the ground and the top floor, has {assock-
12 = ation} two call buttons — one for ench direction of Lhe
s i travel. For obvious reasons, the ground and the lop
= floor have only one button.
o X0 17 g | . Passengers arviving ot a floor press the eall button
— —— appropriate {o their direclion of travel They wait ;n
JE—

Figure 4. An initial version af lifecyele for Lift objects
The transition details are avmilable in Table 2.

a first-in-firsi-out {fifa) queue for their turn fo enter
a lift. When a lifi errives {transition I2 and state
3} and the doors open {state 4 and transition 15}, the
current passengers destined for this floor get out {state




Table 2

Transition Descriptions for the Lifecycle Lift (Initial Version) Shown in Fig. 4

Transition | Start State | Event Guard Actions Next State
n ldling CallReceived | Call from a floor Dietermine the direction of Travelling to
other than where the travel and schedule the next foor
the lift is idling AtNextFloor event to be
delivered after relevant delay
I2 Travelling to | AtNextFloor | True Schedule ServiceFloor At floar
the next loor immediately
13 At floor ServiceFloor | No passenger to Schedule AtNextFloor Travelling to
put down or pick up event alter relevant delay the next floor
&t this Aoor, or farther to go
14 At floor ServiceFloor | True Schedule DoorlsOpen Opening door
after relevant delay
15 Opening DoorlsOpen | True Send the passenger Dropping
door a DestinationHeached event pHSSETnEers
16 Dropping PassengerGone | There 18 another passenger Send the passenger a Drapping
passEngers for this destination DiestinationMeached event PASSENTEra
I7 Diropping PasgenpgerCGone | There are no more Send the passenger Picking
passengers passengers for this destination | an EnterLift event passengers
and there is a passenger
to get in at this floor
I8 Picking Passengerlsln | There is another Send the passenger Picking
pﬁﬁngm‘s passenger to gel in an EnterLift event passengers
and Uil is not full
19 Picking Passengerlsln | There are no more Schedule DoorlsClosed event Closing
PASSCLEETs passengers to get in after appropriate delay door
110 Closing DoorlsClosed | True Schedule ServiceFloor At Boor
door immediately
I At floor ServieeFloor | Neo more work in current Dietermine the direction of Travelling to
direction, but there is work | the travel and schedule AtNextFloor | next Hoor
in the other direction event to be delivared
after relevant delay
1z At Aoor ServiceFloor | No more work Empty Idling

in either direction




5 and transitions [6 and [7}, and then as many waiting
passengers as possible gel in {state G and transitions I8
and 19}. These embarking passengers press {the same
transition I8 as we have already assumed that pressing
the destination button is in synchrony with completion
of boarding} appropriate buttons for their destinations.
When the lift arrives {transition 12 as above} at their
destination, they get out {state 5§ and transitions [6 and
IT as above}.

Each call for a lift {event} is registered by {action}
the controller. For each call, the coniroller delermines
{calculation action} if an didle Hfi is betler pluced to
service the call than the currently active lifts. If this
is the case, the idle lift is dispatched [transition I1 from
state 1 to state 2} towards the calling floor. [f several
idle lifis are equally placed to service the call, one is
chosen {calculation action} al randem. Otherwise, an
active lift will eventually arrive {transition 12 from state
2 tomtate 3} ai the calling floor and will be able o service
the call.

An idle lift continues o be {state 1} inactive and
stationary at a floor, with the door closed {state 1}
until it 18 aetivated {transition 11 and states 1 and 2 as
above)} by the controller in response to a cell from a
newly arrived passenger. An idle lift when asctivated
begins to travel {state 2 as above} towards the calling
floor and serves {multiple states and events} the other
passengers like other active lifts. {The servicing of other
passengers Is decidedly vague and would require the analyst
to investigate further. We assume that it implies that the
lift wisits one Aoor at a time on the way to the destination,
and on arriving at each floor it makes & decision whether
or not to gtop. This yields transition 12 for arriving at
a floor, transition 13 for moving immediately to the next
floor because there is no-one to serve, and transition [4 to
start opening the doors to service a passenger } An active
lift continues o move {state 2 as above} wpwards and
downwards serving {states and transitions as above} the
uaiting passengers until it finds {suggests an event} no
further remaining work. {The previous sentence is again
vague. We interpret it to mean that the lift determines
it has no further work on arriving at a floor, not while
it is in tramsit. Thie suggests state 3 for being st a foor
and transitions I3 and [12 in response to the decision on
whether it has or has not any further work.} At this stage
it becomes ddle {transition [12}. A Lft going wpwards
{fold states for travellng up and travelling down into
the one state 2} halts {transition [2 and 14} atf various
floors to drop {state 5 and transitions 16, IT} passengers
and to pick up {state 6 and transitions I8, 19} mew
passengers. Ji does mot change {transition [3, also fore-
shadows transition 111} its direction of travel {attribute
not. reflected in distinct states} wntil if reaches {transition
12} a foor where it 45 {euggests a state but it is folded into
staie 3} neo longer carrying a passenger, and where there
are no waiting pessengers on any floor above. The lift
may change direction {transition [11} in order to service
the passengers waiting in the other direction. If this
also yields no further work for the lift, the lift enters
{transition 12} its idle state. Anelogous behaviour is
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shown by a lifi travelling downwards {sugpests a folding
of the state space}.

We assume that timing is significant for the problem
solution. Thus, esch Wit travels of a fired rate and
needs some fived delay Lo open {state 4} and close {state
7} its door. Likewise, the passengers foke a fived delay
to enter {state 6 and transition I8} and eril {state 5 and
transition 16} a lift. Each lift has {associstion} as many
destination butions as there are floors in the building.

There is some unstated common knowledge that goes
with the above statement. This knowledge helps in relating
gtates with ome another, The lift needs to open its doar
for the passengers to enter or exit a lift. The passengers
enter the lift one at & time. Likewise, they leave the lift
one at a time. A lifi must close its door before it can start
traveling, A lift has a maxdmum capacity that determines
the number of passengers it can carry.

The above analysis into states and events can be
coalesced intn lifecycle diagrams for Passenger and Lift
respectively. It requires only a litile more effort to identify
the transitions in response to events and Lheir associated
guard conditioms. This yields the complete Passenger
lifecycle of Fig. 3 and the associated transition descriptions
of Table 1.

The lifecycle for the lift, shown in Fig. 4 and Table 2,
in gtill sparse and incomplete. Before procesding further,
we simplify the lifecycle by merging states 2 (Traveling to
the next floor) and state 3 (At £loor) into a single state.
The simplification is justifed by the fact that state 3 is a
transitory state that waits for no external event — state 3
is mainly a computational convenience. The merged state
will be called M'n bransit.

4.3 Analyzing the Lifecyecle Models

The tabular arrangement that we have used for specifying
transition is motivated by our desire to be able to analyze
the lifecycles. The analysis may reveal a gap in information
or possible inconsistency. The analyst is thus puided to
seek specific information to correct the situation. In the
reat of this seetion we describe three checks that we have
found useful in developing the complete lifecyele model for
the lift: target identification, completeness analysia, and
consistency analysis.

4.9.1 Target Identification

An event is posted to an object. Tt is therefore imperative
that the guards clearly and uniquely identify the target
ohjects for the events posted in Lthe action part of the tran-
sition. The ambiguous nature of the textual descriptions
and desire to avoid rare cases lead to the initial versions
of lifecycles that fail to identify the target objects ade-
quately in their Lransitions. For example, consider the
transition I5 in Table 2. The lift is expected to send a
DeatinationReached event to the passenpgers destined for
the current floor. Clearly, & guard for the transition is
needed to ensure thal a passenger who will be receiving
this event exists. The need for further data gathering is
obvious. A likely outcome of this data-gethering exercise




will be the creation of more specific transitions to cater for
the two cases where a waiting passenger exists and where
no such passenger exists.

4.8.2 Compleleness Analysis

The completeness check requires that for each triple of state
8, event E, and system-wide predicate P, either it should
be established that the triple cannot ocour or there should
be one or more transitions, Ty =< 8, E, Gy, —, — > where
i € I for some index set I, such that P logically implies
G 1. The check ensurea that, within the constraints of
the system (given by predicate P), every event can be
processed whenever it ia delivered to the object. In Fig. 4,
which is an incomplete lifecycle graph for a lift, we notice
that it is not possible to identify & transition out of the
state 1 (Tdling) on event CallReceived if the call is from
the floor at which the lift is idling. The case study clearly
is incomplete and the analyst needs to seek the necessary
information in the application domain,

Another example concerns transitions I6 and IT out of
atate § (Dropping passengers) that do not cover the case
where all passengers for the floor have departed but there
is no passenger waiting to enter the lift. On the other hand,
it is not possihle to process the openboor event in state 2,
hut this is acceptable by virtue of a system conatraint that
states that a lift door cannot be opened while the lift is in
motion.

It is worth noting that a nontrivial guard may arise
from & number of sources, Such a guard may be used to
differentiate the states of an object, whether in general
or just in a parlicular lifecycle context. In this case, it
would be possible, by unfolding the states, to remove the
necessity for a guard (whether or not this style of definition
suited the analyst). However, the guard can also be used
io specify transitions that are conditional on the states of
other objects. In this case, the same approach cannot (im
general) be used to eliminate the nontrivial guards.

4.5.3 Consistency Analysis

Consistency analysis requires that the transitions be mu-
tually exclusive. Thal is, at no stage should it be possible
to take more than one transition in response to an arriving
event. For example, B harmless case of inconsistency exists
between transitions [3 and I4. An unambiguous lifecy-
che description requires that the two guards exclude each
other:

A repeated application of these checks interspersed
with acquisition of more data from the problem domain
enables us to complete the lift lifecycle shown in Fig. 5 and
Table 3.

h |

Figure 5. A complete lifecycle for Lift objects. The
transition details are available in Table 1.

5. An Implementation Framework

The methodology we have proposed relies on an imple-
mentation framework that the commonly available pro-
gramming langnages do not directly provide. Fortunately,
the flexibility of object-oriented programming (O0OF) does
provide ways te overcome this limitation, albeit at some
eost to the elegance of the solution. The acceptance of
the paradigm introduced in this work may provide some
impetus for improvement in this direction.

A Ct++ implementation of the case study may be
abtamed from the authors, on an as-is basis,

5.1 Punction Calls, Message Passing, and Deferred
Calls

A function call i3 the mechanism for initiating execution
of computation abstracted as a function. Ohject-oriented
languages provide message passing as the mechanism for
calling methods [12]. The object receiving the message
determines the function to be executed. However, this
mechanism, like that of the function call, is & synchronous
operation. The eomputation is completed before control
returns to the caller.

There are operational difficulties with the implementa-
tion of threads using function calls — the last-in, first-out
(lifo) nature of this mechanism makes it awkward to enable
concurrent progression over the threads in & number of ob-
jects. An unnecessary burden is placed on the designer and




Table 3

Transition Descriptions of a Complete Lifecycle for Lifts Shown in Fig. §

Transition | Start State | Event Guard Actions Mext State
™ Idling CallReceived | Call from a floor Determine the direction of In transit
other than where the travel and schedule
the lift is idling AtNextFloor event to be
delivered after necessary delay
T2 ldling CallReceived | Call from the floor Schedule DoorlsOpen event Opening
where the lift is to be delivered door
idling after necessary delay
— Any state |CallHeceived | True Empty | No change
other than
Tdling
T3 Opening  |DoorlsOpen | Someone in the Lift Send Destinationfeached event | Dropping
door wants to get out to a passenger in the passengers
on Lthis Aoor lift for this destination
T4 Opening | DoorleOpen | No one in the Lift Send EnterLift event Picking
door wants to go oul here to a waiting passenger going pASSmEeTs
and the lift is not full and in the current direction of the
there is a waiting passenger | lift’s travel
on this floor to go in the
current direction of lift"s travel
TS Opening | DoorlsOpen | No one left in the lift Reverse the direction of Picking
door and no pending call requires | travel and send EnterLift event | passengers
lift to continue to travel to a walting passenger going in
in its current direction; the new direction of the
there is, however, a passenger | lift's travel
on this floor waiting to
travel in the other direction
T6 Opening  |DoorlsOpen | None of the guards in Schedule DoorlsClosed event | Closing
door T3, T4, and TS is true to be delivered door
after necessary delay
T7 Dropping | PassengerCGone | Someone in the lift wants Send DestinationReached event | Dropping
passengers to get out on this foor to & passenger In the lift passengers
for this destination

a7




T% |Dropping | PassengerGone | No one in the lift wants Send EnterLift event to Picking
PASSENEETE to get out here and the a waiting passenger going in DASSCTLEETS
lift is mot full and there the current direction of
is a walting passenger the lift's travel
on this floor to go in
the current direction of
lift"s travel
_T;i_ Dropping | PassengerGone | No one Left in the lift Reverse the direction of Picking
passengers and no pending eall requires travel and send EnterLift event | passengers
lift to continue to travel to & waiting passenger
in its current direction; going in the new direction
there is, however, & passenger of the lift's travel
on this floor waiting to travel
in the other direction
T10 | Drapping | PassengerGone | None of the guards in Schedule DoorlsClosed event Closing |
passengers T7, T&, and TY is trua to be delivered door
after necessary delay
T11|Picking | Passengerlaln |The Lifi is not full and Send EnterLift event Pleking
PasseTigeETs there is 8 waiting passenger to & waiting passenger paSECTEETS
on this floor to go in the
current direction of the lift’s travel
T12 |Picking | Passemgerlsln |The lift is full or there Schedule DoorlsClosed event Closing
passengera is no waiting passenger on to be delivered door
this floor to go in the current after necessary delay
direction of the Lift"s travel
T13 | Closing | DoorlaClosed | The lift is not empty or Determine the direction of the  [In t.rn.nait._'
door there s call from a travel and schedule AtNextFloor
passenger that the lift event to be deliverad
should attend after necessary delay
T14 |Cleaing | DoorlaClosed | The lift is empty and Empty Tdling
door there is no call that
the lift need attend
T156 | In transit | AtNextFloor |Someone on this floor is Schedule DoorlsCpen event Opening
waiting to travel in the to be deliverad door
direction of lift's travel after necessary delay
T16 | In transit | AtNextFloor | Someone in the lift wants Sehedule DoorlsOpen event Opening
to get out on this foor ko be delivered door
after necessary delay
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T17| In transit | AtNextFloor | The lift is not empty and Schedule AtNextFloor event In transit
no one in the lift wants to to be delivered
get out here and there is after necessary delay
no waiting passenger on this
floor to go in the current
direction of lift's travel
T18 | In transit | AtNextFloor | No one in the lifl. wants Schedule AtNextFloor event In transit
to get out here and there to be delivered
is no waiting passenger on after necessary delay
this loor Lo go in the current
direction of lift's travel and
there are waiting passengers
on the floors in the current
direction of lift's travel
T18| In transit | AtNextFloor | Guards for T15, T16, T17, and | Heverse the direction of the Opening
T18 are all false and travel and schedule DoorlsOpen | door
there is & waiting passenger event to be delivered
on this floor to go in the after neceasary delay
direction opposite to the
current direction of lift’s travel
T20 | In transit | AtNexiFloor | Guards for T15, T16, T1T, Reverse the direction of the In transit
T18, and T19 are all false travel and schedule AtNextFloor
and there are waiting passengers | event to be deliverad
on the floors in the direction after necessary delay
opposite to the current
direction of lift’s travel
T21 | In transit | AtNextFloor | Guards for T15, T16, TIT, Empty Idling

T18, T19, and T20 are all alse




programmer to track these threads, and it requires spe-
cialized data structures as well s code that transfers the
control among the threads in an equitable fashion. Con-
current execution of the threads using specialized libraries,
such aa lightweight processes (LWP) or system calls (sce,
eg. [13]), presents its own difficulties,

There are also conceptual difficulties for the program-
mer, in identifying appropriate assertions, if threads are
implemented using function calls. A long chain of calls,
threading through virtually every object, would result if we
ware to use the function calls as & mechanism for progress-
ing computation concurrently among the objects. Pumne-
tional abstractions of the computation are predicated on
eertain stipulated preconditions holding before a function
call. Method invocation by message-passing also requires
the receiving object to satisfy an integrity constraint de-
noted by its invariant assertion. An object in the midst
of executing a function does nol guarantee to satisfy its
invariant [11]. As a consequence, it is hazardous to send
a message to an object when another function has not yet
exited, This makes it impractical to use function calls to
run concurrent objects.

In this article, we suggest the use of deferred function
calls as a way to achieve concurrent progression along
the multiple threads while at the same time avoiding the
hazards that infect the other approaches. A deferred
function ecall may be described as a cell that returns
immadiately, leaving the execution of the function or the
method pending. A pending call is selected for execution
after the current thread has finished. Clearly, at this stage
(prior to sending the deferred call) all functions have exited
and, as a consequence, the stipulated invariants hold for
every object. In this scheme, a program executes through
a sequence of dynamically created threads — one for each
deferred call. A thread, typically short, runs like the
conventional object-oriented program by calling functions
and sending messages. 1t should be noted that in this
approach, hhePtnt conditions of certain functions may
need to be weakened to indicate that the action has either
been performed or been schedulad to be performed.

5.2 Deferred Calls as Events

Moat commonly available lanpuages do not provide a mech-
anism for deferred calls. However, they can be imple-
mented in an ohject-oriented language by defining a set
of classes for scheduling and delivering events. A deferred
call is recorded by posting an event. The event is delivered
after the completion of the current thread by the scheduler.
The delivered event starts Lhe execution of the intended
function coded as an event handler.

The mechanism for posting and delivering events can
be built in C++ in & number of ways. We describe two
implementations.

In the first implementation, we use an abstract
class PSM (Finite State Maching) with a virtual funetion
diepateh() to receive the avents and 1o call the associated
event-handler functions for execution, A class containing
event handlers uses the class FSM as its base class. In
addition, the class nesds to define an enumeration type

EventKind listing all the events together with the definition
for the Function dispatch(). A lypical dispatch() will
be a switch selecting cases based on the events enumerated
in type EventKind. To handle events with parameters,
and also to improve encapsulation, Lhe elasses may provide
specific member functions Lo post {Edi&ilﬂe:l events.

A second implementation consists of the base class
FS5M with & dummy set of virtual functions that the de-
rived classes can populate with suitable funetion defini-
tions. The scheduler accepts the events together with their
parameters. The events are delivered by the scheduler by
making a fmetion call to the appropriate event handler
funetion with parameters. We prefer this method, for it
opens up an opportunity for inclusion among the language
constructs. A library-based implementation is described in
greater detail below.

5.2.1 Simulated Time

Simulated time can be handled using standard discrete-
event simulation techniquea [14]. The delayed calls can
easily be extended to provide a simulated clock. Each
event is posted with a scheduled time for its delivery. To be
meaningful, the scheduled time cannot be earlier than the
current. time on the simulated clock., Events are delivered
on nearest future event basis; on each delivery of an event
the simulated clock is set forward to the delivery time of
the event,

We have also found it necessary Lo make provision for
cancelling scheduled events. In particular, it is desired
to cancel the scheduled future events of an object as it is
removed from the system.

5.2.8 Synchronous end Asynehronous Transilions

A transition in sn object may be asynchronous — it
does not requite some other transitions to be happening
simultaneously. Such transitions are easily implemented
by posting new events. Alternatively, transitions may be
gynchronous — a Lransition may require thal one or more
other transitions ocour simultaneously with the current
transition. A practical model for these transitions is based
on fanction call or message passing. The procedures
implementing the synchronized transitions are oecuted
prior to the procedure implementing the current transition
being mm]ﬂet.ﬁi

5.3 An Event Scheduler

The preceding discussions place an event scheduler at the
heart of the object-oriented methodology introduced in this
work, A suite of C++4 classes has been developed to fill
this role. The suite & modelled around the implementation
of softclock() routine in 4.3 BSD Unix [15]. The balance
of this section provides a brief description of the suite.
Class FSM i a base class that enables the derived
classes to implement the state-specific behaviours. The
class defines virtual event handlers that are overridden in
the derived classes to implement the class-specific event
handlers. All classes derived from the class FSM can use an



ohject EventSchedular to schedule delivery of events to
themselves. The cbject EventSchedular is a single object
of class Scheduler. The objects in the derived classes
of FSM post new events to themselves and cancel posted
events by sending messages to EventSchedular.

An event is scheduled (posted) by calling the method
schedula() with suitable arpuments. The arguments in-
clude a pointer to (or address of) the object, the simulated
time of the sccurrence of the event, a pointer to the event
handler function, and a pointer to a structure containing
its parameters. The event deseriptor returned by the call
can be used to cancel Lhe event before it has been delivered.

The other classes in the suite are Time, Event,
and EvemtArgs. In addition to the singular object
EventScheduler, described earlier, the suite has two
other singular objects. These are now, giving the current
simulated time, and endDfWorld, the final time on the
simulation borizon. The class Event is exclusively used by
EventScheduler to record events for future delivery.

4/ Scheduler.n : Takes posted eveats and delivers chem
Fifndef SCHEDOLERM
pdetine BCHEDOLERA

Hinclude sclasslib\dllstimp. hs
Hinclwde “Eveat.h®

Ainclwde *F5M.H°

Finclede "TSimblg.R"

class Schedular |
Erivace:
TIEDBoublaLi sk [mp<ivant > Rananbar;
publiar
woid EmicEvects [TEimulationDialog* displayl
Bvent* achedule {FEM*, long, FEM::Mocica,
EventArga® = nohrgl;
wiaid cancel [Bvent®) g
i
sxtare Schaduley EventScheduler;
Fendif

#f FEA.I0

J4) Bame class for encicies that wish to recelve for svents
Wiincdaf FIHRE

Edeling FIHH

#define nodrg 0

claze EventArgs [|:
chaws Scheduler;
class MyEvents;

claws FEM (friend Scheduler;:
procestad;
Mylwanta MyEventList

LiEs
cypedal wvold (P8M: :*Hoticel [Eventdrge *arg=nchrgl ;
Jf Wievwal event bandlers
wirtual woid Actionl (Eveatirgs *arg=noArg)
wvirtual wold Ackionl iEvenchrgs *angmoolrgh
virtual vaid Acclond{EvencArgs *argenoiTg) ;
virtual vold Acciood (EventArgs *argenohrg)
wireual vold Actions (Eventhrgs *argencArg)
JF Consbrusters and Destructors
FEM (vatid) ;
virtual -F8Mivold};
A Punctlon
void CancelAllBvents {woddis

Pendis

Figure 6. Header files for Classes Scheduler, FEM and

EventArgs.

The class EventArgs is a memberless class that is
included in the suite to serve as the base class for arguments
of the event handlers, The derived classes of FSM need
to accompany a suitable set of the classes derived from
the elass EventArgs. The general prototype of an event
handler in a class is: void event_handler (EventArgs =

T1

noArg). [t is frequently the case Lhat certain events can
be easily passed from the sender to the receiver object.
These events nesd not be delivered through the (ohject)
EventScheduler. The other may require the events to
be posted. We prefer o encapsulate the functions to
post events in the destination object's class. The program
segments in Fig. 6 depict the header files for classes
Scheduler, F8M, and EventArgs classes. The class Braad
that follows provides an example of their use. The object
receives an event hatch. In response to the delivered
event, the object constructs a new passenger and schedules
the next evemt after an appropriate random delay for
constructing the following passenger. Note that the class
has two hatch functions; one function provides an interface
to other objects enabling them to post events, and the
other function is the event handler.

/! Bresder h: Breed passengers

#ifndef BREEDH
#define BREEDH

#define hateh hccloml

#include “F5M_h*

class Hatchhrgs: private Eventhrgs |
public:

long identifier;
long averageDelay;

¥
class Breed: public FaMm |

public:

{4 Event posting Functicns

int hatch(long, long);

f4 Event handler functions
} wvoid hatch{Bventhrge ‘arg-nehryg);
extern Breed Breeder;
Hendif

// Breed.cpp: Oensrates passsngers

#include "Bread.h®
finclude "Pasaenger . h®
finclude "Schedulr.h®

Breed Breader;

imt Breed::hatchilong id, long interArrivalbelay) |
f// Poete a hatch ewvent
HatchArgs *arg = new Hatchirgs;
II‘g*bid-nt!.fi.-r = id;
arg- raverageDelay = interhrrivalDelay;
EventScheduler . schedule{this, Computelbelay[arg),
&FSM: :hatch, (EventRrge*) argly
return 1; /) Posted successfully

wvoid Bresd::hatch(EventArgs* BEventhrgs®e] |
ff Bvent handler for event hatch
HatchArge® arg = [(Hetchhrgs *) EventArgsP;
new Pasaesnger [arg-»identifiers++};
Event8cheduler .schedule(this, CosputeDelaylargl.,
&FSM: hatch, EventArgaP);

Figure 7. Header and code files for class Breed, which is
used Lo generate new Passenger instances,




6. Discussion

Object-oriented analysis and design methodologies gener-
ally give careful attention to static modelling: the identi-
fication of classes, associations, and sttributes. With few
exceptions, they give only passing attention to dymamic
modelling, the identification of states, transitions, and life-
cyclea, In the following discussion, we use the term dy-
namic modelling in the more general sense of capturing
the dynamic behaviour of the system, and the term object
lifecyele in the limited sense of identifying the dymamic
hehaviour of an object in a clasa.

Neither Henderson-Sellers nor Wirfs-Brock et al. ad-
dress the structure or development, of dynamic models [16,
17]. Some of the terminology of Wirls-Brock el al. may
suggest otherwise. For example, they talk about “con-
tracts," by which they mean the list of requirements that
a client obhject makes of a server object. The term “collab-
oretions” is usad for associations and “protocols” refers to
signatures rather than any interaction pattern.

Rumbaugh ¢t al. include a dynamic model in their
methodology, based on Harel's statecharts [8, 4). However,
unlike the derivation of the static model, little in the way of
guidelines is given for Lhe derivation of the dynamic model,
The dynamic model consists of multiple state diagrams,
one state diagram for each class with important dynamic
behaviour, and shows the pattern of activity for an entire
system [8]. Scenarics and event traces are used to highlight
the passing of eventa between objects. States determine
the respomse to events and ignore attributes that do not
affect behaviour. A (contimaous or repetitive) action can
be asgociated with a state (in line with Harel's approach).
State transitions can be conditional, but it is not clear
what those conditions may depend on: state components
of the current object or other objects as wall.

Rumbaugh el al. also provide for a functional model
that indicates the transformation of data using dataflow
disgrams. Such diagrams are not related to the object
model and do Aot show the organization of values inte
objects. The leafl processes should be the operations on
objects, and often there is a correspondence between the
nesting of objects and processes. The approach of having
a static model, a dynamic model, and a functional medel
does not result in a tightly integrated methodology; instead
it provides three views of a system Lhal later need to
be integrated. Although some guidelines are given for
achieving that integration, we believe that it is simpler and
more effective to derive an integrated model from the start.

Booch gives an account of the dynamic model similar
to that of Rumbaugh et al., and in fact states that his
notation is that of Harel with Rumbaugh's extensions
[4]. Again, the attention given to the dynamic model is
significantly less than that given to the derivation of the
static model.

Jacobson et al. [18] suggest a use case model to capture
interaction among the objeets. Given a specific scenario,
all events and messages passed between the objects are
captured in a gingle diagram. The focus is thus shifted
from the objects to their uses in various cases. This is a
big-picture view of the system rather than the nitty-gritty

details of an object.

Woaldén and Nerson take a rather different approach to
ohject-oriented analysis and design [19). For them, a key
issne is the consistent use of object orientation in analysis,
degipgn, and implementation. Consequently, their BON
method strives for a seamless and reversible approach:
only efficiently implementable constructs are included in
the notation, and the various models can be easily updated
to match changes in the code. Another key aspect of
the BON method is its thorough integration of the notion
of software contracting (as criginally proposed by Meyer
[11]} in order to produce quality sofiware products. It also
carefully considers the importance of scalability in building
large systems and therefore introduces the notion of class
clusters and relationships between them.

With its emphasis on the seamlessmess of a consis-
tently object-oriented approach, the BON method avoids
anything that may compromise this seamlessness and re-
versibility, Thus, the authors consider that functional
modelling with data flow analysis should not be used at all
in an object-oriented method, as the impedance mismatch
and model confusion it introduces far outweigh any ben-
efits gained. Similarly, the BON method avoids detailed
consideration of dynamic models, because here too, they
claim there is an impedance mismatch between FSM maod-
elling and its state transition graphs, on the one hand, and
the eventual implementation, on the other. They are eriti-
cal of the use of event trace diagrams as they believe that
these do not scale up for use with larger systems. They do
allow the use of Harel statecharts Lo clarify the dynamie
behaviour of selected classes, but consider that this should
not be done in general for all classes. Such a loose recom-
mendation indicates that the use of such statecharts is not
integrated into the method. The BON method captures the
dynamic behaviour of & system using event charis (which
list the possible external events and the objects involved
in responding to those events), scenario charts (which list
poseible interaction sequences), and object ereation charis
(which list which classes create instances of other classes).
Then, for each scenario, dynamic diagrams specify the se-
quence of associated messages, and the objects connected
by arcs labelled with those messages. In other words, the
BON dynamic diagrams are like the object communication
model of Shlaer-Mellor [6], except that they concentrate on
one scenario at & time and also indicate the order in which
the messages are sent.

In contrast to the above, we belleve that the Shlaer-
Mellor approach is unique in its detailed examination of
the development of dynamic models in general and object
lifecycles in particular, as evidenced by their producing an
entire book on the subject |6, which carefully considers
what constitutes a state, an event, and an action. Their
work makes clear that states are differentiated by their
effect on internal behaviour rather than on externally ob-
servahle states; in other words, their view of states relates
to white-box behaviour rather than black-box behaviour.
Unlike Rumbaugh et al. and Booch, Shlaer and Mellor re-
strict their attention to simple state machine models, and
not the hierarchical diagrams of Harel. (It might be argued
that the segmentation of a system into classes makes the




hierarchy constructs of Harel's statecharts superfluous.)
The Shlaer-Mellor state machine diagrams are also simpler
in including only unconditional state transitions — each
state transition depends only on the current state and the
received event, not on any condition that depends on other
attribute values of the abject or other objects. Given the
demands of encapsulation, this effectively means that state
transitions cannot be conditional on the current attribute
wvalues of other objects,

The Shlaer-Mellor approach continually emphasizes
that the lifecycles are class based. Not only is each life-
cycle a lifecycle for a particular class, but the object com-
munication model (and the object access model) give the
asynchronous (and synchronous) eommunication between
the classes. This approach is aleo unigue in addressing the
issue of the dynamics of relationships. It recognizes that
relationships may evolve over the lifetime of the system
and that this evolution ought to be modelled. This could
be considered as the transformation of a relationship into
a class, but there are additional issues such as the handling
of competitive relationship.

We believe that there are a few rough edges or loose
ends in the Shlaer-Mellor approach. For example, the cre-
ation and destruction of objects is not handled explicitly; it
is assumed that creation and destruction events are some-
how handled by the runtime environment, The approach
attaches actions as part of the state. The actions associ-
ated with a state are executed as the state is entered. This
places some irritating restrictions on the mymber of param-
eters that a transition can carry into a state. Similarly, the
issues of inheritance between lifecycles and the migration
between the lifacyeles of different subtypes have been hotly
debated in the Shlmer-Mellor user group. These isswes
are atill not resolvid in the Specification af the Unified
Modelling Language |20, 21]. However, they are relatively
minor matters compared to the detailed consideration that
iz given to the whole matter of deriving dynamic models
ps part of the analysis process, and the integration of this
with the static models.

Our approach to modelling the dynamie behaviour of
an ohject system and the derivation of object lifecycles has
been significantly influenced by the Shlaer-Mellor approach
[6]. We have extended it in three significant directions.
First, we have given guidelines (in line with the Rumbaugh
approach) for using the language of the problem descrip-
tion to derive a first cut &b the states, events, and actions
of the dynamic model. Second, we have allowed condi-
tional state transitions (which may be conditional on the
attributes of both the ohject and other objects), but have
given guidelines on how to decide whether these transitions
are complete and consistent. Third, we have earefully eon-
sidered bow these lifecycle models can be mapped into ex-
isting object-oriented languages and how those languages
should be modified to expedite the process even more.

7. Conelusion

In this article, we have developed a methodology that
integrates software specification and validation. We have
shown how the text of the problem description can be
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analyzed to produce a first cul at a dynamie model of the
system. We have also presented puidelines that help to
guide the developer to producing complete and consistent
models.

We have argued that the function members of classes
do not naturally capture all aspects of an object’s be-
haviour. Instead, an object's lifecycle is often the more
appropriate model, and this is the model derived by our
methodology. Such object lifecycles can be implemented
through the use of delayed function calla. This mechanism
is in addition to the function call and message-passing
mechanisms provided by current object-oriented languages,
Although we belleve that only a native implementation of
the mechanism will provide a elean and elegant program-
ming environment, we have suggested and implemented an
event-hased mechanism to emulate such an environment.

A case study of a lift simulator has been used to
illustrate the complete methodology. We showed how Lhe
natural language textual descriptions could be analyzed to
construct initial deseriptions of the object classes. These
classes were then analyzed to identify the nature of the
missing and conflicting information. The resulting class
definitions consist of data members, function members,
and lifecycle graphs. The class definitions could then ba
coded into programs in a natural fashion.

Future work planned for this project includes the de-
velopment of analysis tools for the completeness and eon-
sistency checks used in the problem analysis. Clearly, this
requires & language for the formal statement of guards and
actions in the transition deseriptions. Amother area of in-
terest focuses on a preprocessor Lo olate the programmer
from the implementation details of delayed function calls
pending their incorporation as standard object-oriented
lanpuage extensions.
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