The classification of FORTRAN statements

A. H. J. Sale

Basser Computing Department, University of Sydney, Sydney, Australia

This paper discusses the problem of classifying ANSI FORTRAN statements into types, for
example: assignment statements, DO statements, etc. The various problems that arise are ex-
plained, with suggested solutions. An algorithm is presented which can type ANSI FORTRAN

statements into 36 classes.
(Received June 1969)

The classification of FORTRAN source statements from
the lines presented to it is usually one of the first tasks of a
FORTRAN compiler, or other FORTRAN source-
language processors. The determination of the type of a
statement is not completely trivial, although the structure of
FORTRAN lends itself to a line-by-line classification, and
it is surprising to find that so few algorithms for this purpose
have been published.

The classification scheme presented here is built around
three phases. Most FORTRAN statements can be identified
by an initial keyword, the recognition of which is attempted
in the second phase. The purpose of the first phase is to
remove those statement types not characterised by keywords
and which may therefore confuse the second phase. Examples
are comments and assignment statements. The third phase
is to make finer distinctions, for example between a logical
IF and an arithmetic TF. By the ad hoc nature of FORTRAN,
this phase consists of very specific tests. This structure has
proved capable of accepting wide variations in dialects.

The discussion to follow will assume that syntactically
correct ANSI FORTRAN statements are presented to the
classifier routine in the form of a 72 character array, which
represent cotumns 1 to 72 of a FORTRAN line. Treatment
of one line only means that there are restrictions on state-
ments that may be successfully classified, but is desirable to
eliminate fruitless scans over long statements.

Tt is obvious that comment statements must be isolated
first, for columns 2 to 72 of a comment line may contain
any FORTRAN characters, and even syntactically correct
FORTRAN statements. This is very easy to do: the C in
column 1 identifies them.

Secondly, continuation lines must be isolated, for their
type is in general indeterminable, being at least partially
determined by the initial line that precedes them. According
to the American National standard either the character
blank or the character zero in column 6 of a line signifies
an initial line, all other characters signify a continuation
line.

The third type that should be separated is the assignment
statement, for there are no FORTRAN reserved words, and
it is legal to use variable names such as READ, GOTO2,
DO3J, etc. There are several difficulties here which confuse

the basic recognition rule of scanning the statement for an

equals sign not enclosed in parentheses. .
The DO statement poses the first. problem, for it too has

10

an equals sign not within any parentheses, and the recogni-
tion rules must distinguish between:

DO2J=1,5
and
DO2T=1.5

A scan for a comma not in parentheses allows DO state-
ments to be differentiated from assignment statements.

The logical IF also gives rise to problems, for it is really
two statements in one: the IF test and an executable
statement. Since most of the executable statements are
permitted in a logical IF, they should not be permitted to
confuse the recognition rule. The natural way therefore to
treat this problem is to ensure that the scan is terminated
at most one non-blank character after encountering a right
parenthesis at level 0. This cnsures that the equals sign of
an assignment statement is always found, while the state-
ment following a logical IF expression will never be
scanned past its first character. A DO statement cannot
contain any parentheses.

Hollerith constants, which in ANSI FORTRAN can
appear in FORMAT statements, in DATA statements, and
in CALL statements (as actual parameters of subroutine
calls), also create problems. Hollerith constants may
contain any characters acceptable to the system, and
consequently may wreck any scan scheme that ignores their
existence. The only way to avoid this problem is to recognise
a Hollerith constant on meeting it, and then either to skip
over the constant, or to terminate the scan. Since Hollerith
constants may only follow a left parenthesis (FORMAT and
CALL), or a comma (FORMAT, DATA, and CALL), or a
slash (FORMAT and DATA), or an asterisk (DATA),
occurrences of these characters should initiate a special
sequence which looks for the unsigned integer constant
followed by an H which characterises such a constant.

There is one insoluble problem on a line-by-line classifica-
tion basis: statement function definitions, arithmetic
assignments, and logical assignments are not distinguished
by syntax alone. While some occurrences can possibly be
classified, there are cases which cannot be classified without
a knowledge of the variable and array declarations, for
example:

MOD(LJ) = I — (I/N)*J
BOOL = IJK

The Computer Journal

”
—

-r

&

All three types are therefore assigned the same type code.

Practically all statements must pass through the assign-
ment scan, and it should therefore be as efficient as possible.
Any conditions which indicate that there is no need to
continue the scan further might well be noted and used,
thus reducing the scan length. The algorithm suggested is
therefore to scan for upper-level equals signs and commas
(to identify assignment statements and DO statements, and
incidentally assigned GO TOs), while watching for Hollerith
constants. The scan may be terminated under the following
conditions:

1. On meeting an upper-level comma.

2. On finding a Hollerith constant.

3. On meeting an equals sign in parentheses.

4. One non-blank character after the parenthesis level
drops to zero.

S. On reaching the end of a line.

Nearly all other statements, after the comments, con-
tinuations, assignments and statement function definitions,
and DOs have been removed, can be classified by their
initial keywords. The DO can also be classified this way,
but the assignment scan produces it as a by-product. This
scan should of course be efficient, for there is a fairly large
number of keywords to be tested. Probably the fastest and
most flexible way to organise this scan is around a linked
binary tree. The arrangement of links can be chosen to
make common statements fast to classify, and to optimise
the overall scan time. Statements which are not classified
after this scan are either in error, or do not comply with the
recognition rules, and they should be given a ‘rogue’ type
code.

There remain three more problems. The first is that
simple GO TOs and assigned GO TOs are not differentiated
by their keywords. Separation is most easily done by
checking to see if a comma was found in the earlier scan,
which identifies an assigned GO TO.

Secondly, it is desirable to give arithmetic and logical IF
statements different type codes. This is done by checking the
first non-blank character after the closing parenthesis of
the IF test, which must be a numeric digit in an arithmetic
IF, and cannot be numeric in a logical IF:

The third problem concerns typed functions such as:

REAL FUNCTION RANDOM (A,B)

It is probably better that such statements be classified as
FUNCTION statements and not as INTEGER, REAL, etc.
All type statements (INTEGER, REAL, DOUBLE
PRECISION, COMPLEX and LOGICAL) should therefore
be checked for the occurrence of the 8-character word
‘FUNCTION’, which cannot be confused with any 6-
character name.

A statement, to be recognisable from its initial line, must
therefore satisfy the following conditions:

1. Comments, continuations and END statements are
always recognisable.

2. An assignment statement must have up to and includ-
ing the equals sign on the initial line.

3. DO statements and assigned GOTOs must have up
to and including the first comma on the initial line.

4. Arithmetic IFs must have the first digit of the first
statement label on the initial line.

5. All other statcments must have the minimum key
characters as shown in Table 1 on the initial line,
except for typed function declarations which must
have up to and including the word ‘FUNCTION’ on
the initial line. It can be seen that these requirements
are far from restrictive, and very seldom will they be
the cause of classification failure.

Volume 14 Number 1

A FORTRAN subroutine is presented which classifies
ANSI FORTRAN lines. It has been written almost
entirely to comply with the rcquirements of Basic FOR-
TRAN; the exceptions being the DATA statement and the
implication of an Al format type. Table 1 shows the in-
teger type-codes assigned to the various statement types,
which have been grouped into a reasonable order.

Table 1 Statement type codes
CODE DESCRIPTION KEY REMARKS
CHARACTERS
1 | comment —_ Cincolumn 1
continuation — not blank or 0
in column 6
3 | assignment — special rules
4 | ASSIGN A
5 | GOTO GOTO see 6
6 | assigned GO TO GOTO separated from
5 by special
rules
7 | computed GO TO | GOTO(
8 | arithmetic IF IF see 9
9 | logical IF 1F separated from
8 by special
rules
10 | DO — special rules
11 CONTINUE CON
12 | CALL CA
13 | RETURN RET
14 | STOP ST
15 | PAUSE P
16 | READ READ
17 | WRITE w
18 | REWIND REW

"19 | BACKSPACE BA

20 | ENDFILE ENDF
21 | FORMAT FO
22 | INTEGER IN need to be
23 | REAL REAL further
24 | DOUBLE checked
PRECISION DOU l for
25 | COMPLEX COMP | FUNCTION
26 | LOGICAL L J type
27 | EXTERNAL EX
28 | DIMENSION DI
29 | COMMON COMM
30 | EQUIVALENCE | EQ
31 | DATA DA
32 | BLOCK DATA BL
33 | FUNCTION FU
34 | SUBROUTINE SU
35 | END END
unclassified
36 | rogue type —_ statements

"

The algorithm

Casvee¥O CLASSIFY 'USAS FORTRAN RECOROS INTD 36 CLASSES
SUBROUTINE CLASS{K,LTYP)
anane
SPECIFICATION
DIMENSION k(721

it L L L LT T TP T T P,

T T

C» USAS HURTRAN RECORD CLASSIFIER =CLASS- .
ce »
Ce LANGUAGE e o .
= USAS FORTRAN {BUT NEARLY ALL USAS EASIC FORTRAN) .
Ce [£11:V) I -
C K = ANCINFEGER AR<AY CONTAIMING Teal CAARACTERS (4T ALTELEDS®
Ce OUTPUT... , . .
(A3 ITYP = AN INTEGER TYPL CODE £RI™ | 1@ 36 -
Ce ERROR EXITS - .
Ce NUNE L
L SUBRNDUTINES REQUIRED... . . »
ce KCOMP - A MACIHINE UEPEVDENT INTESER FURITION IHAT ACCEPTS .
Ce AS ARGUMENTS A% Al CHITALTLR AND & ~0LLERITM LGNSTANT, aND o
o RCTURNS 3 IF &Y <EPSISENT TF Saws CANIACTEQ, QIHERWISE 1.
Ce TYPE CODES.e. & . .
Ce L COMMENT 2 TUNDINUATION 3 AS51GNEENT 4 ASSIGN ot
Ce PRV] © ASS.. S YL 7 _iMPL 63 12 5 A3IIH, [F -
(s 3 LOLICAL JF bl g2 1L _LaTINUE 12 AL -
(3 13 RETURN 16 ,T0R 15 PAUSE 16 READ .
Ce 1T W&ITE 18 -éwl L3 dL.KSPALF 2L ENDFILE .
Ce 2, Frival 22 INTHLER 23 Aea 24 DOUB. PREC, =
Ce 25 ZiwrLEx 25 LGloaL ST catesvAL < DIMENSTUN

Ce &1 Zywedy 33 LJUIAALENCE Y1 DATA 32 BLOCK DATA =
ce 35 SURSGUTINE 34 FuMlTlM 35 £v0 36 *ROGUE= .
Connsosuvranessensna Tterenaonnnanrarararas

OECLARRT] ms
OTMENSTIN &ALP ALY (KSIZI451 ,RFALT4ED \KDEC {100 JKF8)
weoLENGTH UF tARAY «
DATA S 24
Covns s ALPHAYLIL LONSTAMIS AND MATCH FARLES
»THE UELI®AL OIGITS FUR INTLGER RECOGMITION
Dara KSELIR).KDEC(Z[.SUEC(‘).KUEC(Q).KDEE(S].

ANU L noECT6) yKDECITY)KUECTIBY (KDEC [T} JKDEC (10)
AND 2 FUS LHLe LH2 5 1H3 4 LHS s 1HG y 1HGy LHT ¢ 1HB , LHG/
CesoeuTHE WOAD =FUNCTION- FIOR MATCHING

DATA AFIl).KFIZ);KFIZI.KF(%),KF15);KF(&).KF(7]yKFlB)
AHD 1 ZLIHF g 1HU THN, THC 4 LHT 4 1HE y LHO, LHN/
«CHARACTERS FOR RECUGNLTION TESTS
- WHICH ARE... CBLANK {) = H / » 6,
OATA KCiKBLNKsKLPARYKRPAR KEG /1MC, 1M L[g 1H), 1ri=s
DATA KH KSLSHeXASTKeKLILRULKEMA R LV UL UM P
»CHARACTER ARRAY FOR THIE STAN
DATA KALPU 1),KALP(2),KALN{ 3} ,KALPL &) JLHL,LHF o 1HN, LHG 7
DATA KALPL 5),KALP[&),KALPL 7),KALP[B) ZLHOGLHTy 1HO, 1H(/
DATA KALPE 9),KALP [15),KALP(L1) ,KALPL12) Z1HC, 1HA, 1HO, LHN/
DATA KALP(13),KALP(14),KALP{15] ,KALP{16) /LHHM, THM, LHP , 1HR/
DATA KALPIL7)yKALP (181, KALAELDY KALP{23) /1HE ¢ IHA, 1HD, IHL/
OATA KALPL21),KALP (22),KALPI23),KALP(24) Z1MT 4+ LHW, L HF, 1HO/
OATA KALP{25),KALPI26),KALPI2T),KALP{20} ZLHU«LHO W 1114 LHAZ
DATA KALP(29),KALP (220, RALP {315 4KALP{32) /140, LHU, 1HW, THS/
OATA KALP(33},KALP (361, KALP(35),KALP(36) ZIHT) LHU ¢ LHE y LHN/
O4TA KALPI371,KALPI38),KALP(39) ,KALP(42) /1HD+ 1HF y 1HX, 1HQ/
DATA KALPU4L),KALP (421, RALZ (53] \KALP{44) ZLHBy 1HA THL, 10A/
DATA KALP{45) kAL (45) F1HL, LHPY
++SUCCEED LINK F3R TREE SCa
ATA KEUCE 1hav3a1 2),k5.

31.KSUCL 4} /2, =8,-22, 5/

UATA hSUCL 51495000 61,&SUZE 7),K54C(8) 7y 8, -7/
DATA ASUCE 9)oxSA1L21,KSUCELT},KSUCILI2} 12, 12,-117
bara ASJCUII) WSO heT,XSUCHLS),KSUCT e} 29,~25, 17/

OATA 6L ZdiT1ynSUIB)uKSITUIR)WKSUC(29) / 18, 19,-15,-237
OATA N3.Zi210303000220,KS0C(23) ,K50E 1243 /~13,-18, 244-217
(251.€5U0 1280 KSUZ(27],KSUCI28) /=34y 27,-28,-31/
R LdDULTR 5001330 .KSUC (310 ,K5UCT32) £ 30,-244-17, 33/
ZE330, e S0 1360, KSUC IS, KSUCT36) /-14,-33, 36, 37/
SUITIRSRI38) KSUCEID) L KSUC4L) / 38,23,-27,~30¢
PEIONSI(82),KSULI43),KSUC(44) / 62,-19,-32, ~47
SIS Taehalse] F#-264-157

i iR taie s
CrALL LI, REALL 20 KFALT 3),KFALL 4) 2 by 34-36, 9/
SPALE 5100FaLt 1 KEALL T14KFALG 81 /-36,-36,~36, -5/
CRALL 9VLMFALELL)KFAL(IL) ,KFAL(L2) /7 16, 11,-36, 13/
CrALLINREALLLA) KFALI1S)) KFALEL6) /~36, 15,~36, 23/
CPALELTH CEALULIBI G KFALCI9),KFALI2G) /=36, 21, 2G,-36f
SEALLZL)GKFALI22) KFALI23) \KFALIZS) /7 22,-36, 26, 257
FALV2S) MFALI261,KFALI2T) JKFAL L2} /=364 315 28, 29/
PrALLIIN nFALIZST KFALE3L) (KEALU3Z) /=36,-36, 324 357
SETR PR3 FALI34) KEALIZY) JKFALI3G) / 344-36, 41, 357
FTR P AL RFALE3BY o KFALIZ9) JKFAL(4C] /-364-35, 4Gy-36/
CHTA GFLLANIILKEALLGZ) KFALTAT]KFALI44) 7 44, 43,-36) 457
S3TL CEALIeS) NFAL(45) 7 464-367

T
ImEIK FIA COMMENT
wPLOLileRl)Y 21,2

35
TeceeaT-eN _~E0K FOR & CONTINUATION RECORD
2 IF el mR{C(8) RBLNK)) 3,5,3
3 1P (4 A6}, K2ZPO) 4,5,4
& Jtype?
@i Ty 55
el TiALTZe THE LOUP
5 JSaxd
ISw=)
JEG=0
JCHA=O
JHOLL =0
JSAVE=KBLNK
Cas. o ASSIGNMENT SCAN Loup
26 J=T,LENG
JCH=K ()
IF (KCGMPLUCH)KBLNKD) 6,266
Cevoan ITS NOTU BLANK, IS wOLLEREIH SWITCH ON .
6 IF {JHOLL) E2,12,¢
7 D0 8 L=yl
IF {KCOMP{JCH,KDECILI}) 8,10,8
8 CONTENUE
CesenoFIRST TIM:, ND ENTEGER MEANS NOT HOLLERITH
LIF {JHULE=11 11,11,9

Covn e sOTHERWISE LOOK FOR THE H
9 IF (KCOMP{JCH(KHI) 11,32,11
««STILL FITS HOLLERITH CONSTANT SYNFAX
13 JHULL =JHOLL+1
60 Ta 25
oNUT A HOLLERITH CONSTANT, SET SWITCH OFF
JHOLL =3
Cevso s TEST UTHER CHARACTERS (1,2/¢
12 IF (KCOMPUUCH,KLPAR)) 13,20,13
13 {KCUMPLJCH,KRPARY) 14416414
14 IF (KCOMPIJCH,KEMA 1) 15,22,15
15 IF (KCOMPIUCHLKED 1) 16,217,106
16 IF (KCUMPIJCH,KSLSH)) 17,21417
17 IF (KCOMP(JCHIKASTKY) 25,21,25
«RIGHT PARENTHESIS FOUNG
18 JSW=45w=1
IF 1J5W) 19,19.25
«SET SHITCH TD ALLOW UNLY ONE MORE NON-BLANK CHARACTER
15W=1
G0 TO 26
Ceeas o LEFT PARENTHESIS FOUND
20 JSH=JSwel
CoveooSET HOLLERITH SHITCH FOR (4 / ®
21 JHOLL=1
G0 TO 25
++-COMNA FOUND), CHECK LEVEL
22 IF (JSW) 30,30,21
C.-.--FQUALS SIGN FOUND, CHECK LEVEL
23 IF [45W) 26,24,32
24 JEQ=1
CeeesoTEST IF TCRMINATED BY SWITCH SET
25 IF (1Sw] 26426,27
CeasesEND UF ASSEIGNMENT SCAN LOUP
26 CONTINUE

£y

GO T0 28
CevsveSAVE LAST CHARACTER IF TERMINATED EARLY
27 JSAVE=JCH

VE SCAN AND COME HLRE IF .. o .
NO MORE CHARACTERS
UNE NUN-BLANK CHARACLTLR AFTER A RICHT PARENTHLES1S
«NOT A DOs MIGHT BE ASSIGNMENT
28 IF (Jig) 32,32,29
29 JTYP=3
60 Tu 55

«LEAVE SCAN AND COME HERE IF aea , .
N AN UPPER LEVEL COMMA FOUND
CursnoMIGHT B8& A DD, NOT. AN ASSIGNMENT
35 JOMA=L
IF {JEQ) 32432,31
31 JTYP=1y
GG TO 5%

+sLEAVE SCAN AND COME HERE e
. A HOLLERITH CUNSTANT FOUND
. AN TQUALS IN PAREMTHESES
.. FALLURL DF 0O AND ASSIGNMENT TESTS
««oNEITHER A DO NJR AM ASSTGNMENT
+es1oENTER THE KEVKORD CLASSIFICATION
J=1
ISw=7
33 JCH=K(ISW)
CuessedF A BLANK, IGNORE, GET ThE NEXT
IF [KCOMP(JCH KBLNX)) 34,37,34
CeonenTEST AGAINST CURRENT TREE CHARACTER
34 IF {KCUMP(JCH,KALP(J})) 35,36,35
CouessCHARACTER DOES NOV MATCH, TRY THE NEXT IN TREE
35 J=KFALIJ)
TF {J} 39,39,34
€ove s oCHARACTER MATCHES) TRY NEXT IN TREC AND IN RECORD
36 J=KSUCL4)
IF €J) 39,39,37
37 1SW=ISw+l
IF (I5n-LENG) 33,33,38
CoeovelF RUN DUT OF CHARACTERS, FORGE A ROGUL TYPE
38 JCHaKKBLNK
GO TO 35
«CLASSIFICATION COMPLETED, FORM TYPE CNDE
39 JTYpP=-y
CovewslHECK TO SEE IF MORE YREATMENT NEEDED
IF (JTYP-5) 55,45,40
40 IF (JTYP-B) 55,43,41
41 If (JIYP=22) 55,42,42
42 IF _{JTYP~26) 47,47,55

++LOGICAL If SEPARATIODN TEST
43 DO 44 L=1,10

IF {KCOMPLJSAVE,KDEC{L))) 4%,55,64
44 CONTINUE

SIGNED AND UNCONDITIONAL GUTUS

A
45 IF (JCMA) 55,55,46
46 JTYP=6
GO To 55

CHEC
47 L=11

IF {L-LENG) 49,49,55
4% IF (KCDMP (K (L} KBLNK)) 50y48,50
50 IF (KCOMPIKIL) JKFOISW)IT 514,553,510
51 IF {ISK=-1) 52,48,52
52 ISw=l

G0 TU 50
53 ISW=ISwW+l

IF [I5W-8) 48.48,54
Sé JTVP=34
-ALL RESULTS COME HCRE FOR RETURN
55 ITYP=uTVP

RETURN

END

References

AMERICAN NATIONAL STANDARDS INsTITUTE (1966). ANSI FORTRAN, X3.9-1966.
AMERICAN NATIONAL STANDARDS INSTITUTE (1966). ANSI Basic FORTRAN, X3.10-1966,
Pyig, L C. (1964). Implementation of FORTRAN on ATLAS, Introduction to System Programming, Ed. P. Wegner, Academic

Press, 1964.
12

The Computer Journal

