Stylistics in Languages
With Compound Statements

By Arthur Sale*

This short communication discusses a stylistic problem which arises in languages, such as PASCAL,
which use both statement separators, such as semicolons, and begin-end bracketting structures. It
suggests that an alternative to the traditional rules which have evolved from Algol 60 is preferable.
KEYWORDS AND PHRASES: Programming stylistics, indentation, compound statements.
CR CATEGORIES: 4.20.

1. INTRODUCTION horizontally: If most compound constructs contain
Programming languages of reasonably modern origin begin-end pairs, inner statements are indented
usually have two [caturcs which are of interest to this by two 'levels. This means that programs
paper: containing much structuring detail rapidly
(a) the language is made up of statements separated by move across the page, to be wrccked at the
some lexical token, usually a semicolon, and right margin (as in the distributed version of
(b) groups of statements can be treated together by PASCAL-P).
enclosing them by distinctive tokens, for cxample (i) editing inconvenience
begin and end. Since most cditing facilities (be they
Such languages are common; examples are Algol 60, PL/1, terminal-oriented, or punched cards) work on a
Algol 68, and PASCAL. source line, the classical placement rules for
The problem of stylistics arises from the basically semicolons make insertion or deletion of lines a real
line-oriented structure of program source text, and headache. Such editing can often have consequent
the increasingly prevalent practice of emphasising this effects on the lines surrounding the change; in the
structure by indentation. This structure cuts across the extreme case a four line change is required to add a
syntax structure to create mismatch problems which are sccond line to an internal statement which is not
not present in langauges like FORTRAN and BASIC. already enclosed in a begin-end. (Interestingly, the
Some rules for stylistically formatting programs in declaration part of PASCAL avoids this problem by
such languages have been developed from the requirements good design.)
specified by the editors of the (now discontinued) (iii) understanding
Algorithms scction of the Communications. of the ACM it is apparently quite difficult to reconcile two
originally for Algol 60. These rules, which 1 shall call the different structuring rules which cut across each
classical rules, can be incompletely summarised as follows: other, and beginning students seem to have much
(a) Every begin and end shall be on a line by itself, and difficulty in deciding where to put semicolons. The
the enclosed text shall be indented one level deeper cvidenee seems to show that if they were never told
than either the begin or the end. anything about layout, and could write one long line
(b) Ewery internal statement of a statement (such as s in of program, they would have no problems with
“while b do s7), shall be indented one level deeper scmicolons. But introduce these topics, and all is
than the context structure. ; confusion. To help, they may devise line-oriented
(¢) Semicolons are inserted only when necessary (o
separate two adjacent statements., begin
To tocus attention, the following program fragment has {classical style!
been modified from a recent program I wrote and put into while (i <M) ao
classical style as shown in Figure 1. begin

ch:=text]i];
if (ch=lastchar) then
begin

2. PROBLEMS WITH THE CLASSICAL STYLE

The classical style has three problems; their relative
importance being subjective: checkocourrence:
(i) wastage of page space Dl eh] ;

vertically: The layout has many lines of little

ngs : ; i end

information content. The extreme casc is “end dlse

else begin” in the middle of an if, which . ;

borders on the ludicrous. begin .)) .

increment{usecount {stride [ch]]):

“Copyright © 1978, Australian Computer Society Ine. i:=i+stride[ch]
General permission to republish, but not for profit, all or part of end

this material is granted, provided that ACJS’s copyright notice is

ziven and that reference 1s made to the publication, to its date of A
issue, and to the fact that reprinting privileges were granted by end;
permission of the Australian Computer Society.” Figure 1

end

* Depariment of Information Science, University of Tasmania. Manuscript received | 7th January, 1978. Revised version received 7th March,
1978,

58 The Australian Computer Journal, Vol. 10, No. 2, May 1978

Stylistics in Languages with Compound Statements

rules-of-thumb which imply the stream-oriented rules
underlying the syntax. For example, onc such rule is:
“Never put a semicolon after a begin or an else”
The difficulty about this lies in when to put
semicolons on ordinary statements (it depends on
what follows), or on ends. Such rules are complex.

3. ALTERNATIVES
Clearly the problem revolves around internal
statements, begin-end, and semi-colons. The possibilities are
legion, as I have discovered by polling my colleagues on
what they consider to be best practice, and by looking at
rcal programs. Though few programmers seem to
understand why they write programs the way they do,
there are a lot of style variations around.
The following three examples should illustrate the
variety that is possible:
while b do
begin
s1;
s2
end;

while b do
begin
st
52

end;

while b do
begins1;
s2 end;

4. A PERSONAL STYLE
1 would like here to promote a personal style which I
use for all programs I write. and which I believe has some
important morals for designers of programming languages.
This personal style consciously tries to
the problems 1 identified earlier while rctaining the
advantages of syntactic regularity and obvious indentation
structure. Let me first re-write my example in my own style
and then justify it.
begin
{personal style}
while (i < M) do begin
ch:=text[i] ;
if (ch = lastchar) then begin
checkoccurrence;
ir=i+D[ch];
end else begin
increment(usecount [stride [ch] |);
ir=itstride [ch] ;
end;
end;
end;
The rules for this style can be summarised as follows:
RULE 1: Put semicolons at the end of every line,
except after a begin (und even here they don’t matter), or iff
you have to break up something you’d normally put on one
line over several (such as an assignment or an expression).
RULE 2: Remember each statement construct as a

minimize’

line oriented template, as for example:
while condition do begin
statements,
end;

COROLLARY: Always use begin-end even if only
one statement is controlled.

COROLLARY: The template for an if includes ‘end
else begin’, so no confusing errors due to elses are possible.

This style is more compact, though it is possible to
reduce vertical space usage even further, and I maintain that
it does not compromise the basic purposes of layout at all.
The problem of where to put semicolons is greatly
simplified, and editing insertions and deletions always
involve only the one line concerned. Beginning students
should also find that the regular use of syntactic templates
of the kind illustrated (which have no exceptions to
remember) is quite easy, and they do not have to reconcile
some stream-oriented syntax rules with another set of
layout rules.

Why is this not a universal style then? Probably the
answer lies in two aspects: habit and syntax. We are all
familiar with the resistance to change when we try to alter
some deeply ingrained and habitual behaviour, and it is
quite apparent in some conversations I have had that layout
is a learned response of this type. Some programmers
remark that they find my examples harder to follow, and
are taken aback when I say that I find their style similarly
awkward (because of relative unfamiliarity).

The other resistance arises because the classical style
rules directly mirror the syntactic constructs of Algol 60.
Apply a new syntax production rule, and you indent onc
level, at least down to the statement productions. Of course
Algol 60 totally ignored the existence of lines. and I argue
now that this was unfortunate, and should not force us to
therefore adopt clumsy habits. To illustrate this we can
look at two constructs which were imported into PASCAL
but were not in Algol 60. The case and repeat constructs do
not require begins, and have defined closing terminators
(end and until). Curious that in the two new importations,
the language is better than the carry-overs . . .

Example:
case expression of
statcments
end;
5. MORALS
1. Designers of programming langauges should be more

aware that the languages they design are not simply

collections of syntactic rules, but are going to be

mapped onto lines, and the language should

acknowledge this fact.

The begin ought to die a graceful death; compound

constructs ought 1o cmbrace the many-statement

enclosure as the normal case, not as an exception.

3. All compound constructs should have an explicit
termination; perhaps chosen to match the construct
(as in repeat-until, or the less felicitous if-fi of Algol
68).

4. We should all ask ourselves more often: “why do I lay
programs out the way [do?”

(&1

The Australian Computer Journal, Vol. 10, No. 2, May 1978

