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Abstract. The usefulness of surrogates to estimate complex variables describing
community structure, such as the various components of biodiversity, is long established.
Most attention has been given to surrogates of species richness and species diversity and has
focused on identifying a subset of taxa as a surrogate of total community richness or diversity.
In adopting a surrogate measure, it is assumed that the relationship between the surrogate(s)
and total richness or diversity is consistent in both space and time. These assumptions are
rarely examined explicitly. We examined the robustness of potential surrogates of familial
richness and multivariate community structure for macrofauna communities inhabiting
artificial kelp holdfasts by comparing among communities of dissimilar ages and among
communities established at different times of the year. This is important because most benthic
‘‘landscapes’’ will be a mosaic of patches reflecting different intensities, frequencies, and timing
of disturbances. The total abundance of organisms and familial richness of crustaceans or
polychaetes were all good predictors of total familial richness (R2 . 0.68). In contrast, while
the familial richness of other groups, such as mollusks and echinoderms, were well correlated
with total familial richness for communities at an early stage of development, the strength of
these relationships declined with community age. For multivariate community structure,
carefully selected subsets of ;10% of the total taxa yielded similar patterns to the total suite of
taxa, irrespective of the age of the community. Thus, useful surrogates of both familial
richness and multivariate community structure can be identified for this type of community.
However, the choice of technique for selecting surrogate taxa largely depends on the nature of
the pilot data available, and careful selection is required to ensure that surrogates perform
consistently across different-aged communities. While the specific taxa selected as surrogates
will vary among different communities, and possibly even among similar communities at
different sites, the techniques and the concepts we address are applicable to any community
type.

Key words: biodiversity surrogates; diversity; Ecklonia radiata; kelp holdfasts; macrofauna; multi-
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INTRODUCTION

Biodiversity is an important and fundamental concept

in ecology, but it is also highly complex because it

encompasses functional system components in addition

to structural components such as genetic, species,

habitat, and ecosystem diversity (Franklin 1988, Noss

1990, Vane-Wright et al. 1991). Accordingly, the

assessment of biodiversity usually relies on a proxy,

such as species richness or diversity. However, for

conservation biologists, even attempting to enumerate

all species is time-consuming, labor-intensive, and a task

requiring expertise (Daily and Ehrlich 1995, Kitching et

al. 2001), so that extrapolative and other techniques will

always be sought to optimize efficiencies. This is

particularly true while taxonomy continues to be a low

priority for both researchers and funding bodies

(Valdecasas and Camacho 2003, Wheeler et al. 2004)

and is conducted in relative isolation from the other

disciplines in the life sciences (Dayrat 2005).

Research has long established the potential usefulness

of one type of extrapolative approach, namely the use of

various indices to estimate and monitor ecological

impact and describe ecosystem integrity (Noss 1990).

These indices are known as biological indicators or

‘‘bioindicators’’ and their application has been wide-

spread across terrestrial (e.g., Kremen 1992, Samways

and Steytler 1996, Warman et al. 2004), freshwater (e.g.,

Karr 1981, Savage 1982, Fore et al. 1996), and marine

environments (e.g., Olsgard et al. 2003).

Of several different kinds of indices, each with their

relative merits (see Noss 1990, McGeoch 1998), surro-

gates for biodiversity are among the most commonly

used (McGeoch 1998). This approach usually involves

selecting a subset of species (or higher taxon) from a

community as a surrogate of either the biodiversity of

another taxon or as a surrogate of the total biodiversity
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of a community. In these studies, the aim is usually to

monitor or compare ecosystem properties (such as

biodiversity) or to detect environmental impact (e.g.,

Karr et al. 1987, Gaston and Williams 1993, Gaston and

Blackburn 1995, Gaston 1996b). Taxa may be selected

because they are abundant or are known to be sensitive

to particular environmental perturbations, or because of

a predilection toward particular taxa, which may simply

reflect available taxonomic expertise.

In the case of monitoring taxa thought to be sensitive

to environmental impact, considerable effort, particu-

larly in freshwater systems, has been given to ratifying

indicators of impact and testing underlying assumptions,

(e.g., Karr et al. 1987, Barbour et al. 1992, Diamond et

al. 1996, Fore et al. 1996). However, this is not the case

in the use of surrogates for more general monitoring of

biodiversity, where in only a few cases attention has

been given to comparing the performance of a range of

potential choices of surrogates (e.g., Oliver and Beattie

1996, Lund and Rahbek 2002, Anderson et al. 2005b) or

to the underlying assumptions (McGeoch 1998). The

key assumption made in attempting to identify and

apply surrogates of total biodiversity is that the

relationship between the selected surrogate taxa and

total biodiversity is constant in space and time (Colwell

and Coddington 1994). Spatial consistency in the

identity of surrogates has been examined and, at least

in some cases, it is clear that surrogates should not be

applied across regional spatial scales because species

relationships are not necessarily the same in different

regions (Beccaloni and Gaston 1995, Gaston 1996a, b,

Anderson et al. 2005b). Surprisingly however, the

assumption that within any particular location the

relationship between the surrogate and total biodiversity

is constant through time (e.g., Kitching et al. 2000) has

received scant attention. Lack of discussion of this

important aspect of the application of surrogacy

arguably reflects that the majority of work employing

surrogates has focused on comparing biodiversity

among sites rather than through time, even though

samples are usually pooled across several sampling

periods (e.g., Pearson and Cassola 1992, Beccaloni and

Gaston 1995, Gaston and Blackburn 1995, Erdmann

and Caldwell 1997, Garson et al. 2002, Lund and

Rahbek 2002, Olsgard et al. 2003, Warman et al. 2004).

It is usually assumed (often implicitly) that differences in

biodiversity indicated from samples collected at different

sites and at different times are due to spatial variability.

It is therefore assumed that surrogates are temporally

consistent.

It is well recognized that community structure may

vary temporally depending on successional status (i.e.,

disturbance history; e.g., Dean and Connell 1987) and

seasonal effects. Moreover, these two factors may

interact such that the relative abundance of a taxon

for a given successional state may depend on the timing

of the original disturbance (Dayton et al. 1984, Chap-

man and Johnson 1990, Underwood and Anderson

1994, Nandakumar 1996). While changes in the relative

abundance of a suite of taxa does not necessarily infer
poor suitability as a surrogate of total biodiversity, it is

nonetheless important to establish robustness in the
performance of putative surrogates in the face of

temporal change in community structure. Thus, suitable
surrogates for monitoring biodiversity are those that
correlate with changes in biodiversity, whether due to

spatial variability, succession, season, or disturbance
(Colwell and Coddington 1994). Note that, in this

context, the assessment of the performance of surrogates
in monitoring biodiversity differs from the traditional

approach used to assess surrogates of environmental
impact. Good surrogates of environmental impact are

relatively static through space and time across reference
sites, but sensitive to impact levels (Karr et al. 1987,

Underwood and Peterson 1988, Barbour et al. 1992,
Glasby and Underwood 1998). Thus, surrogates in-

tended to detect specific environmental impacts (often
based on sensitive or intolerant taxa or functional

groups; e.g., Barbour et al. 1992) will not necessarily be
useful as surrogates to monitor or compare total

biodiversity within or between sites. Moreover, surro-
gates of total diversity are more likely to be based on the
species or familial richness of a single higher-level taxon

or the abundance of several taxa (Hammond 1994).
In this paper we explore whether temporal variability

is an important consideration in the selection of a
structural biodiversity surrogate by examining the

effects on surrogate performance of community age
and the season of sampling, two distinct components of

temporal variability in community structure. By doing
so, we also explore several potentially useful techniques

to define surrogates and compare their performance. We
use subtidal marine communities inhabiting artificial

kelp holdfasts as a model system, and given that
biodiversity can be defined validly in a number of ways

(Noss 1990), we examine both univariate and multi-
variate indices of familial biodiversity. We show that

temporally stable surrogates can be identified for
communities of different ages and across different

seasons of initial deployment and final assessment.
However, exactly which taxa to use depends on the
particular community in question. Moreover, the choice

of which technique to use for selecting surrogate taxa
depends largely on the nature of the reference data

available.

METHODS

Experimental design and fieldwork

Artificial kelp holdfasts (hereafter ‘‘holdfasts’’) were

constructed of bundles of 10 150-mm lengths of
polypropylene rope bound together at one end with a

plastic cable tie. At the other end, the rope strands were
separated, splayed, and glued to a 100 3 100 mm PVC
base. The design was similar in size and physical

complexity to the holdfasts of Ecklonia radiata, the
most common species of kelp in southern Australia. An
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earlier pilot study showed that this design developed a

community similar to that found in E. radiata holdfasts

from the same area.

Holdfasts were attached to concrete bricks with cable

ties and distributed over sand adjacent to a reef at ;8 m

depth in the Derwent River Estuary, Tasmania,

Australia (42857.70 S, 147820.50 E). The study site was

100 3 4 m, and holdfasts were deployed randomly to 1-

m grid coordinates. The rocky reef ran the full length

(100 m) of the grid, and was likely the major source of

immigrants to the holdfasts.

Holdfasts were deployed each month for 13 months

beginning in December 1997. At each deployment,

sufficient holdfasts were established to collect six

replicate holdfasts each subsequent month until January

1999 (Fig. 1). An earlier pilot study indicated that six

holdfasts was the minimum sampling intensity to

adequately estimate natural variability across replicate

holdfast communities. Deployment and collection dates

were toward the end of the nominated month, weather

permitting. Water temperature peaked in January and

February at 188C and reached a minimum of 118C

during June, July, and August. A total of 408 holdfasts

were deployed to random positions on the grid and later

recovered.

Monthly collections involved recovering six randomly

selected, replicate holdfasts from each previous month

of deployment. Holdfasts were gently covered with a

plastic bag before cutting the cable ties attaching the

holdfast to its concrete brick and sealing the bag for

transport to the surface. Vacated grid positions were

open to subsequent deployment of another artificial

holdfast (if randomly selected). Due to poor weather,

holdfasts could not be collected or deployed in

September and collections were not possible in June.

For treatments deployed in December 1997, four

replicates (rather than six) were collected each subse-

quent month.

Holdfasts were preserved in ;5% buffered formalin.

For processing, holdfasts were broken open and washed

thoroughly over a 1-mm sieve to remove all animals.

Solitary animals retained on the sieve were identified

where possible to the level of family, the most notable

exception being amphipods, which were identified to

suborder. We deemed taxonomic resolution to the level

of family as the optimal cost–benefit trade-off of

research time to information gain, given the large

abundance of organisms encountered (148 841 individ-

uals), and that family-level patterns typically reflect

patterns at the species level (Williams and Gaston 1994,

Faith et al. 1995, James et al. 1995, Somerfield and

Clarke 1995, Balmford et al. 1996, Olsgard et al. 1997,

Mistri and Rossi 2001, Dahl and Dahl 2002, Olsgard et

al. 2003, Anderson et al. 2005a, b).

Surrogacy analysis: univariate surrogates

of community richness

Higher-level taxa likely to prove suitable surrogates

are those that are proportionally abundant and rich. In

our communities the Crustacea, Mollusca, Polychaeta,

FIG. 1. Schematic representation of the sequence of deployment and collection of artificial kelp holdfasts. The entire experiment
extended from December 1997 to January 1999. The complete design included 91 different treatments, each with unique
deployment and collection dates, and there were six replicate holdfasts of each deployment/collection combination. Note however,
that because of poor weather, we were unable to deploy and retrieve holdfasts exactly to this design (see Methods). Each line
represents deployment and collection dates of six replicate holdfasts. Dashed lines show where treatments have been excluded for
clarity.
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and Echinodermata taxa were all potential candidates.

Polychaetes (Olsgard and Somerfield 2000, Olsgard et al.

2003) and mollusks (Gladstone 2002) in particular have

been suggested as possible surrogates of marine macro-

fauna communities in soft sediment and on rocky

shores, respectively, because they are both abundant

and ecologically important groups. The total abundance

of all fauna counted within a holdfast was also used

because it is the easiest of all community properties to

enumerate. Thus, any surrogate taxon selected must be

able to outperform total abundance as a surrogate to be

cost-effective.

The average familial richness (by deployment date

and community age) of each taxonomic group and the

average total abundance of all organisms were recorded

and plotted against the average total familial richness

(averages were of each group of six replicate holdfasts).

Regression analysis was used to compare the goodness

of fit (R2) for each potential surrogate. Good surrogate

taxa will have a high R2 value, reflecting a less noisy, and

thus more predictable, relationship with richness. While

we acknowledge that the familial richness of each

taxonomic group is not independent of total familial

richness and that this may be problematic in regression

analysis (Schulze et al. 2004), we proceeded with the

analysis in this way simply because the focus of the work

was to evaluate how well the richness of a specific taxon

was correlated with total richness.

If surrogate taxa are robust, then the relationship

between each potential surrogate and total richness

should not change with community age or deployment

date. This premise was examined using ANCOVA.

Because of evidence of a correlation between community

age and richness (at least for colder months), regression

analysis was also used to determine whether the good-

ness of fit (adjusted R2) of the relationship between

richness of particular taxa and total richness varied with

community age. Adjusted R2 was used because the

degrees of freedom varied for the various community

age categories.

Surrogacy analysis: multivariate surrogates

of community pattern

We compared several approaches to select subsets of

families that may reflect the multivariate patterns seen in

the complete kelp holdfast communities in the experi-

ment. The first was a taxonomic approach, where all

families within a higher taxon (usually phylum) were

selected. We also used two techniques within the

PRIMER5 statistical software package to select subsets

of families, namely BVSTEP (Clarke and Warwick 1998,

2001) and SIMPER (Clarke and Warwick 2001).

Surrogates selected using these techniques were com-

pared with surrogates defined by random selections of

taxa and selections of the numerically abundant taxa.

The performance of each subset of surrogates was tested

by comparing the matrices of similarities between all

community ages and deployment dates for each

surrogate set with the equivalent similarity matrix

determined from the complete faunal complement.

Taxonomic approach.—The four higher taxa selected

were the same groups used to assess ‘‘univariate

surrogates’’ (Mollusca, Crustacea, Polychaeta, and

Echinodermata). All families within each of these groups

were identified, and each higher group was considered

separately in contrasting the ‘‘treatments’’ of community

age and deployment date. Thus, a similarity matrix

describing the similarity between each pair of treatments

was produced for each of the higher taxa.

SIMPER.—SIMPER is used to identify those taxa

that either contribute most to the average similarity

within a treatment (i.e., between replicates) or to the

average dissimilarity between two treatments (Clarke

and Warwick 2001). We used SIMPER to identify

families that contributed most to the average similarity

among replicate communities of a particular deployment

date. Since a suitable surrogate family must also occur

consistently within holdfasts, the ratio of the average

similarity to its standard deviation (SIM/SD) for each

family (see Clarke and Warwick 2001) was also used to

select families. Data were first transformed using a

fourth-root transformation. For each deployment date

selected as a reference point (arbitrarily January–April

1998), results of within-group average similarities were

presented for each community age. Families were

included in the surrogate set for a particular deployment

date if they were selected for at least one community age.

The number of families included within a surrogate set

generated by SIMPER was therefore variable depending

on deployment dates.

Because SIMPER was used to look for similarities

within treatments rather than among treatments (as it is

only able to make pairwise comparisons between treat-

ments), we also tested whether the results from the

SIMPER analyses were consistent regardless of which

deployment date or community age was selected. This

was done by identifying the surrogate set for each

treatment combination of deployment date and com-

munity age and comparing these surrogate sets using the

Bray-Curtis similarity measure (Bray and Curtis 1957).

Surrogate sets were compared across community ages

for a given deployment date and across deployment

dates for a given community age. Each surrogate set was

compared to a reference point (either the first deploy-

ment date or first community age) to look for directional

deviation from that point. A directional decline in Bray-

Curtis similarity would suggest that the surrogate set

identified by SIMPER indicated a gradual and direc-

tional change in community composition. Looking for a

directional change is important because the Bray-Curtis

measure is of overall similarity, not absolute community

structure (i.e., the community structure of two samples

of identical Bray-Curtis similarity to a given reference

community may be dissimilar). Uniformly low Bray-

Curtis values would suggest that there was no con-

sistency in families selected by SIMPER across deploy-
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ment dates or community ages. Note that we also

conducted these analyses using a different arbitrary

reference point (viz., the average surrogate subset), but

since the interpretation of the results was similar, this

analysis is not presented.

BVSTEP.—BVSTEP is a stepwise algorithm used

most frequently to identify environmental variables that

best correlate with patterns in biological data (Clarke

and Warwick 2001). The routine identifies combinations

of environmental variables that yield the highest rank

correlation between similarity matrices based on bio-

logical and environmental variables (where similarity

matrices describe similarities among samples). In a

similar approach, if the original data matrix of bio-

logical variables is used instead of the environmental

variables, BVSTEP can be used to exclude taxa that are

redundant in explaining community level patterns

(Clarke and Warwick 1998).

We used BVSTEP to identify potential surrogate sets

of families (regardless of which higher taxon they came

from), which best reflected community level patterns

through time for each of four deployment dates

(January–April 1998). Early deployment dates were

selected because they yielded longer time series in

community development. December 1997 was not used

because there were fewer replicates for this month.

Similarity matrices describing Bray-Curtis similarity

among communities of different ages but identical

deployment date were based on fourth-root-transformed

data. Selections of taxa in defining surrogate sets were

based on highest values of the weighted or harmonic

Spearman rank correlation coefficient, qw (Clarke and

Ainsworth 1993). We selected the best results presented

by BVSTEP for combinations of 5, 10, 12, 15, and 20

families. Thus, we obtained surrogate sets generated by

BVSTEP for four different deployment dates, and for

each of these deployment dates we had surrogate sets of

5, 10, 12, 15, and 20 families. Note that the total number

of families detected across all holdfasts combined was

exactly 100.

Comparing multivariate surrogate sets.—We then

examined whether the ‘‘optimal’’ surrogate sets identi-

fied by a taxonomic approach, SIMPER, and BVSTEP

performed any better than combinations of 5, 10, 12, 15,

and 20 families selected either randomly or on the basis

of greatest total abundance. If the putative optimal

surrogate sets are to be useful, they must perform better

(achieve a higher (qw) than selection by random choice

or on the basis of abundance, which are both quicker

and easier ways of selecting surrogate taxa.

Performance was assessed by how well each multi-

variate surrogate set predicted the multivariate relation-

ships across all treatments of deployment date and

community age, based on the complete suite of families.

This was accomplished using ‘‘a second stage analysis’’

(Somerfield and Clarke 1995) in which similarity

matrices (describing similarities between treatments of

deployment date and community age) based on surro-

gate sets were correlated with the equivalent similarity

matrix based on all families (Anderson et al. 2005b).
Correlations were calculated for each comparison using

the weighted Spearman rank correlation coefficient
(note that qualitative patterns in correlations were

similar to those using the Spearman or Kendall
correlation coefficients). Results of the second stage
analysis can be presented using a nonmetric multi-

dimensional scaling (NMDS) plot to display patterns in
the degree of correlation (Somerfield and Clarke 1995,

Anderson et al. 2005a, b). However, since an NMDS
plot is only a two-dimensional estimation of all relation-

ships (including those between surrogates), we present
correlations between each surrogate set and the com-

plete suite of families in table form.
Similarity matrices based on surrogate families that

are highly correlated with the similarity matrix using all
families should produce similar patterns in NMDS

plots. Accordingly, NMDS plots were generated for
some results to demonstrate how patterns changed as

correlations between similarity matrices, based on the
full data set and those based on subsets of species,

declined. Data from March 1998 (which gave the best
and worst correlations depending on the number of

families selected), were used in this analysis. Note that
some treatments were deleted from displayed plots to
clarify presentation, but they were not deleted from the

actual analysis.

RESULTS

Univariate surrogates of community richness:

surrogates by taxonomic group

The relationship between each taxonomic group’s
average familial richness and average total familial

richness was linear, while the relationship between
average total abundance of all individuals and average

familial richness was a power curve (Fig. 2). Surpris-
ingly, the best surrogate of average total familial

richness (highest R2) was the average total abundance
of all individuals (R2¼ 0.85; Fig. 2), followed closely by
the familial richness of the Crustacea (R2¼ 0.81), while

the goodness of fit for the familial richness of the
Mollusca, Polychaeta, and Echinodermata nonetheless

indicated clear relationships (R2 ¼ 0.62, 0.68, 0.57,
respectively; Fig. 2). The observed correlations appear to

be independent of the richness and total abundance of
each taxon, since the number of families identified over

the entire study period for Crustacea, Mollusca, Poly-
chaeta, and Echinodermata was 24, 32, 21, and 12,

respectively, and the number of individuals was 45 448,
21 636, 34 641, and 44 319, respectively.

The slope of the relationship between average
surrogate familial richness and average total familial

richness did not vary significantly with community age
or deployment date (Table 1). In contrast, however, the

goodness of fit of these relationships did depend on
community age and/or deployment date for some

surrogate taxa (Fig. 3). While polychaetes showed a
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consistently good fit irrespective of community age,

mollusks and echinoderms showed a linear decline in

goodness of fit with increasing community age (for

mollusks, slope¼�0.67, intercept¼1.13, P , 0.0005, R2

¼ 0.91; for echinoderms, slope¼�0.09, intercept¼ 0.57,

P ¼ 0.005, R2 ¼ 0.59). Thus, for these two phyla, the

variability around the relationship depicted in Fig. 2

increased as the community aged. The overall trend for

Crustacea and for the total abundance of all individuals

appeared worse for communities of intermediate age,

although there are too few data points to be certain of

this trend.

Multivariate surrogates of community richness

Testing the robustness of SIMPER as a technique for

selecting surrogate taxa.—For each deployment date

there was no consistent evidence of a directional decline

in similarity with community age that could be linked to

a temporal shift in the identity of the surrogate subset

(Fig. 4). However, for young communities ,5 months

old, there was some evidence of directional decline in

similarity for the different deployment dates, suggesting

a seasonal and/or successional influence in the identity

of the surrogate subset (Fig. 5). By corollary, families

typical of a set of holdfasts are less influenced by the

season of deployment when communities are allowed to

develop for a longer time period. Not surprisingly, by

selecting a larger number of families within the surrogate

set (by changing the cut off for including taxa),

sensitivity to the season of deployment was usually

FIG. 2. (a–d) Relationship between mean number of taxa (mean total familial richness) and mean number of families in higher
taxonomic groups and (e) mean total abundance (means are of six replicate holdfasts for each combination of deployment date 3
community age): (a) mollusk richness, y¼2.35xþ8.22; (b) crustacean richness, y¼2.81xþ1.60; (c) polychaete richness, y¼2.05xþ
10.72; (d) echinoderm richness, y ¼ 5.92x þ 4.40; and (e) total abundance, ln(y) ¼ 0.33ln(x) þ 1.18. All regression analyses were
significant at P , 0.0001.

TABLE 1. Results of ANCOVAs showing that the slope of the
relationship between average total richness and average
richness of each higher taxon and between average total
richness and average total abundance did not vary signifi-
cantly with community age or date of deployment.

Test df F P

Test of surrogate 3 community age

Mollusca 10, 47 1.93 0.07
Crustacea 10, 47 0.87 0.57
Polychaeta 10, 47 1.64 0.12
Echinodermata 10, 47 0.59 0.81
ln(total abundance) 10, 47 0.59 0.81

Test of surrogate 3 deployment date

Mollusca 10, 48 1.41 0.20
Crustacea 10, 48 1.17 0.33
Polychaeta 10, 48 0.74 0.69
Echinodermata 10, 48 1.07 0.40
ln(total abundance) 10, 48 0.78 0.65

Note: Significant differences in these relationships among
community ages or among dates of deployment would be
indicated by a significant interaction (P , 0.05) between the
surrogate and community age/deployment date.
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reduced, and in most cases, low values of similarity

between a given community and the reference point

increased in magnitude (Fig. 5).

Comparison of multivariate surrogate communities.—

Predictably, the more families that occurred in a

surrogate set, the better the performance in matching

the patterns evident in the complete data set containing

all 100 families (Table 2). For a given number of

families, BVSTEP tended to perform as well or better

than a surrogate set selected on the basis of most

abundant families, while SIMPER only did as well as

selecting the most abundant families (Table 2). For a

given number of families, both techniques were better

than selecting families randomly, and there was no

noticeable effect of the deployment date selected (Table

2). Basing surrogate sets on a single higher taxon did not

improve performance over random selection of families,

even when the number of families was high (e.g., 32

mollusk families identified; Table 2). Of the higher taxa

examined, patterns among treatments based on Crusta-

cea best reflected patterns indicated by the full suite of

families, even though this group contained fewer

families than the mollusks (Table 2).

Results based on all families suggest an interaction

between deployment date and community age (Fig. 6a).

Older communities, particularly those �6 months old,

tended to cluster in a cloud. Younger communities (1

month) separated from this cloud, especially those

developed in holdfasts deployed in cooler months. This

suggests that succession towards a mature community

occurs more quickly in the summer. This pattern

becomes less clear as surrogate communities with

progressively lower qw values are selected, and is not

readily discernable with a correlation less than qw ¼
87.05 (Fig. 6b–f). By this criterion, it corresponds to

identifying at least 10–15 families (i.e., 10–15% of the

total number of families detected). Results are presented

for BVSTEP; however, using SIMPER to select

surrogate sets, or simply basing the selection on the

most abundant families, also produced similar results

since qw values of 91.33 and 90.54 were obtained for a

selection of 14 families by SIMPER and a selection of 12

families on the basis of abundance respectively (Table

2).

DISCUSSION

Univariate surrogates of community richness

Biodiversity is often presented as the total species (or

familial) richness at a site or time (Fleishman et al.

2004). Because total richness itself can be difficult to

measure, researchers have suggested the use of surro-

gates based on the richness of particular higher taxa

(e.g., Pearson and Cassola 1992, Beccaloni and Gaston

1995, Gaston and Blackburn 1995, Garson et al. 2002,

Lund and Rahbek 2002, Olsgard et al. 2003, Warman et

al. 2004). While the familial richness of crustaceans,

FIG. 3. Change in the goodness of fit (adjusted R2) in the relationship between mean number of taxa (mean total familial
richness) and the surrogate with age of the community. Surrogates are: (a) molluscan familial richness, y ¼�0.15x þ 1.06; (b)
crustacean familial richness, y¼ 0.01xþ 0.61; (c) polychaete familial richness, y¼�0.01xþ 0.84; (d) echinoderm familial richness, y
¼�0.08xþ 0.5; and (e) total abundance. Note that we used a regression technique able to calculate negative adjusted R2 values.
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mollusks, polychaetes, and echinoderms were all clearly

correlated with total family richness in the artificial

holdfasts, the best overall predictor of total richness was

simply the total abundance of all individuals, irrespec-

tive of taxonomic affinity. However, the correlation

between a surrogate and total familial richness was not

indicative of the temporal consistency in performance as

a surrogate. The Polychaeta, which did not achieve the

highest correlation with total familial richness, was the

most consistent univariate surrogate of total familial

richness across communities of a range of ages. The

familial richness and total abundance of a given

taxonomic group were not good predictors of its

performance with respect to the overall correlation with

total familial richness and the temporal consistency of

this correlation. This was also true in the multivariate

analysis. These observations raise the possibility that the

variety of ecological and/or functional roles, rather than

the number of individuals or taxa within a taxon, may

be a better determinant of the suitability of a surrogate

set. These results are similar to those of Anderson et al.

(2005b), who also found that high taxon richness was

not highly correlated with a surrogate’s ability to predict

biodiversity in macrofauna communities in natural kelp

holdfasts across different spatial scales in northeastern

New Zealand (although total abundance may have

been).

Multivariate surrogates of family-level community pattern

Since there are robust arguments to advocate use of

multivariate similarity measures, such as Bray-Curtis to

compare biodiversity among sites (and times) rather

than total species richness or Shannon-Wiener diversity

(e.g., Cao et al. 1996, Su et al. 2004), we also tested the

robustness of surrogates of multivariate patterns in

community structure to temporal variation in commun-

ity structure. Of the multivariate surrogate sets we

examined, approaches that selected sets of taxa irre-

spective of their taxonomic affinities (e.g., Oliver and

Beattie 1996, Fleishman et al. 2004), or which simply

selected the most abundant taxa, performed consistently

better than random selections of families and selection

of a single higher taxon, provided that a sufficient

number of families were identified (.10% of all

families). Our finding that using a single higher taxon

as a surrogate of total biodiversity in marine commun-

FIG. 4. Bray-Curtis similarity between the surrogate set identified by SIMPER (PRIMER5) for each community age and the
surrogate set identified by SIMPER for one-month holdfasts for several representative deployment dates (see Appendix A for all
deployment dates). Taxa were included in a surrogate set if they contributed �5% to the total variation and had a ratio of mean to
standard deviation �1.4. Deployment dates were (a) December 1997, (b) February 1998, (c) April 1998, and (d) June 1998.
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ities is suboptimal is consistent with the results of

Anderson et al. (2005b), but not of some others. In

contrast with our conclusions, Gladstone (2002) sug-

gested that marine reserves established to conserve

mollusk diversity would also adequately protect total

biodiversity (of noncryptic animals .5 mm maximum

dimension) on rocky shores in New South Wales,

Australia, while Olsgard and Somerfield (2000) and

Olsgard et al. (2003) showed that polychaetes are

suitable surrogates of biodiversity in soft-sediment

communities. These contrasting results probably reflect

differences in the ecological roles of these higher taxa in

different habitat types and highlight the importance of

validating a surrogacy technique for the specific

community being examined. We note however, that

none of the above authors examined the performance of

their surrogates across time intervals of different

magnitude or season, nor did they compare the

performance of their selected surrogates to other

selections of taxa where taxonomic affinity was ignored.

How should surrogates be identified?

While the specific taxa selected as a surrogate suite

will vary among different communities, and possibly

even among similar communities in different environ-

ments, the techniques used to select taxa apply to any

community type. Among the several techniques for

selecting surrogate sets that did perform well, the choice

of which to use will largely depend on the nature of the

reference data used to select surrogates. Techniques that

require information to compare between treatments (in

our case, the different combinations of deployment date

and community age) such as BVSTEP (Clarke and

Warwick 2001) appear to be most useful. Under these

circumstances the surrogate is selected because it

correlates best with the change in overall community

structure it is intended to detect. However, this approach

requires access to pilot data collected across several

treatments or through time.

When these kinds of pilot data are not available (for

example, because of the expense of obtaining data),

techniques that select taxa because they are abundant

FIG. 5. Bray-Curtis similarity between the surrogate set identified by SIMPER (PRIMER5) for each deployment date and the
surrogate set identified by SIMPER for holdfasts deployed in December 1997, for several representative community ages (1, 3, 5,
and 7 months, panels a–d, respectively; see Appendix B for all community ages). Two techniques were used to select surrogates: (þ)
taxa were included in a surrogate set if they contributed �5% to the average similarity within treatments and had a ratio of average
similarity to standard deviation �1.4; and (�) taxa were included in a surrogate set in order of decreasing percentage contribution to
the average similarity within treatments until the cumulative contribution was 80% (note that this technique consistently selected a
greater number of families in the surrogate set than the criteria based on contribution of �5% to average similarity).
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and consistent can also be used (e.g., BVSTEP, SIMPER,

or by selecting abundant taxa). However, in this case

selection of surrogates should be confirmed subsequently

since the composition of the surrogate set may vary with

time. Encouragingly, our results showed that for macro-

fauna communities of kelp holdfasts, similar surrogate

communities were identified (using SIMPER) for hold-

fast communities deployed on different dates and for

different community ages, as long as a sufficient number

of taxa were identified (;10% of the total) and the

community was not at a very early stage of succession,

particularly for deployments in winter months. Note that

the performance of SIMPER was similar to that of using

the most abundant families; however, we used SIMPER

to select families that were both abundant and also

consistently present in time. On this basis, using

SIMPER to select surrogates should be preferred over

selection of taxa based only on abundance.

CONCLUSIONS

Our results show that temporally robust surrogates

can be identified; however, the nature of these surrogates

will depend on how biodiversity is defined (Noss 1990),

the type of community under study, and whether baseline

data are available across several consecutive sampling

TABLE 2. Comparison of the similarity matrix contrasting
communities defined by each combination of deployment
date and community age based on all taxonomic groups with
the equivalent similarity matrix based on each surrogate set.

Surrogacy technique
Reference
month

No. taxa in
surrogate set qw

BVSTEP Mar 20 95.32
BVSTEP Feb 20 94.92
BVSTEP Jan 20 94.19
Most abundant families 20 93.92
BVSTEP Apr 20 93.75
BVSTEP Feb 15 93.16
BVSTEP Apr 15 92.66
Most abundant families 15 92.56
BVSTEP Jan 15 92.38
SIMPER Mar 14 92.26
SIMPER Apr 13 92.12
BVSTEP Apr 12 91.43
SIMPER Jan 14 91.33
BVSTEP Jan 10 90.90
BVSTEP Apr 10 90.84
BVSTEP Feb 10 90.74
BVSTEP Jan 12 90.70
Most abundant families 12 90.54
BVSTEP Mar 15 90.37
BVSTEP Feb 12 90.19
BVSTEP Mar 12 89.40
Most abundant families 10 89.20
Random selection 20 88.89
Crustacea only 24 88.02
BVSTEP Mar 10 87.05
Most abundant families 5 86.73
BVSTEP Apr 5 86.64
SIMPER Feb 6 86.18
Mollusca only 32 85.82
Polychaeta only 21 85.45
BVSTEP Jan 5 85.31
BVSTEP Feb 5 85.30
Random selection 20 84.10
Random selection 20 83.06
Random selection 20 82.19
Random selection 20 77.63
Echinodermata only 12 77.05
BVSTEP Mar 5 76.41

Notes: Reference month (where applicable) refers to the
deployment date used to select a surrogate set. Comparisons of
similarity matrices (based on Bray-Curtis distances of the
fourth-root-transformed data) were made using the weighted
Spearman rank correlation coefficient, qw; results are presented
in descending order of goodness of fit (decreasing similarity).
See Methods: Surrogacy analysis: Multivariate surrogates of
community pattern for a description of the BVSTEP and
SIMPER techniques.

FIG. 6. NMDS (nonmetric multidirectional scaling) plots
based on Bray-Curtis similarity (fourth-root-transformed data)
for (a) the full data set including all families; and for various
surrogate sets selected using BVSTEP (data from the deploy-
ment date March 1998), based on selections of (b) 20 families,
(c) 15 families, (d) 12 families, (e) 10 families, and (f) five
families. Although Bray-Curtis similarities were used to
contrast all deployment dates and community ages, this figure
presents only a subset of treatments to assist interpretation. For
one-month-old communities, treatment symbols are s, deployed
in December 1997, January 1998, February 1998, or December
1998; a, deployed in March or April 1998; w, deployed in June
or July 1998; p, deployed in October or November 1998. All
three-month-old communities are designated by ‘‘o,’’ and all 10-
month-old communities by ‘‘þ.’’ In panels (b)–(f ) we also report
qw, the weighted Spearman rank correlation between the
similarity matrix used to generate plot (a) and the similarity
matrix used to generate each surrogate set.

December 2006 2273ROBUSTNESS OF SURROGATES OF BIODIVERSITY



periods or from only a single sampling. Regardless of

which surrogate is selected for study, the spatial and

temporal robustness of the surrogate should be examined

across relevant scales of observation. Where temporal

data are not available, information on temporal varia-

tion might be gained by examining spatial variation in

cases where the disturbance history of patches or lineal

geographic features (e.g., coastlines) is known. Patches

on a benthic ‘‘landscape’’ may be on an attractor

describing oscillating community dynamics, but out of

phase (Habeeb et al. 2005).

We note that the capacity to identify surrogates of

kelp holdfast macrofauna communities that are tempo-

rally stable over 13 months does not mean that the

surrogates will continue to be stable over longer time

periods. Similarly, the effectiveness of a surrogate may

differ before and after environmental impact. Environ-

mental impact that disrupts community structure may

change the relationship between a taxa and total

biodiversity (e.g., Smith 1996, Olsgard and Somerfield

2000). Regular validation of a surrogate’s performance

is required throughout any monitoring program, partic-

ularly in the face of changing patterns of disturbance.
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APPENDIX A

A figure showing Bray-Curtis similarity between the surrogate set identified by SIMPER (PRIMER5) for each community age
and the surrogate set identified by SIMPER for one month holdfasts, for each deployment date (Ecological Archives A016-072-A1).

APPENDIX B

A figure showing Bray-Curtis similarity between the surrogate set identified by SIMPER (PRIMER5) for each deployment date
and the surrogate set identified by SIMPER for holdfasts deployed in December 1997, for each community age (Ecological Archives
A016-072-A2).
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