Optimization Across Module
Boundaries
AH.J. Salet

Languages which provide separate compilation features through the module or package concept (such us
Modula-2 and Ada) have some little-known problems with maintaining integrity and also achieving optimi-
zations that cross the module houndaries. The paper addresses these questions using Modula-2 as the
example language, and proposes a number of different methods of constructing Moedula-2 processors
(systems that run Modula-2 programs) which have prepertics different from the conventional structure of

such processors.

Keywords and Phrases: optimization, modules, Modula-2, opaque export.

CR Category: D.3.4,

1. THE MODULE STRUCTURE OF MODULA-2

The programming language Modula-2 (Wirth, 1985}
permits programs to be constructed from modules. Each
module is considered to be a relatively self-contained pro-
gram fragment and communication between modules is
confined to a set of facilities which is defined by import
and export declarations. '

Modules may arise in the construction of a program asa
convenient way to fragment it into pans which can he
wrilten by separate programming groups, They can also
arise as a consequence of implementing a data abstraction,
when they provide a means of hiding the details of the duta
abstraction from the user of the module (for example in
Sale, 1986). lu this form modules are frequently collected
into a library and may be used by a number of programs,
The module concept also contains the procedure library as
a special case.

A simple local module is shown below as an example
for users not familiar with Modula- 2. The module is useful
for reassuring screen watchers that progress is being made
during a long computation by making regular calls to the
procedure Tick. After an appropriate number of calls 10

MODULE Reassure;

(* Every identifier required from the surrounding
scope must be imported. *)
MPORT CHAR, CARDINAL, Write, EOL;

EXPORT QUALIFIED Set, Tick, Positive;

TYPE
Positive=[1..2007;

VAR
(* Protected values which control the module
behaviour. ¥)
Mark : CHAR;
LineLength : Positive;
SilentTicks : Positive;
(* WVarables to hold the state of the ticking. *)
Ticks : CARDINAL;
Marks ; CARDINAL;

PROCEDURE Set-

{ch : CHAR,; length : Positive; quiet : Positive);
BEGIN

Mark :=ch;

LineLength :=length;

StlentTicks := quiet;

the Tick procedure a character is written to the output, Ticks := 0;
preceded by an EOL (end-of-line) if the line is filled. The Marks :=0;
procedure Set allows the user to specify the character to be END Set;

used, the line length and the number of ticks to be accumu- PROCEDURE Tick;
lated without visible effect (hy default =, 50 and 10 BEGIN

respectively). All the remaining identifiers of the module
are inaccessible from outside, since only the procedure

Ticks := Ticks 5 1;
IF Ticks = SilentTicks THEN
IF Marks = LineLength THEN

identifiers Set and Tick are exported. Marks = 0;

There are three kinds of conceptual modules in Write(EOL);
Modula-2: program modules, local modules and separate ND,
madules. The meaning of these terms is defined in the Ticks :=0;
following paragraphs. ga_rks = Mazks + 1;

rite(Mark);
ENDy,

Copyright € 1987, Avstralian Computer Saciety Inc. END Tick;

General permission to republish, bur not for profit, all or part of this
material is granted, provided that the AC I's copyright notice 1s ver and
that reference is made to the publication, 1o 11s date of 1ssue, and to the
fact that reprinting privileges were granted by permission of the
Australian Computer Society Inc.

¥ Deparnment of Informaiion Science, Universiry of Tasmania, GPO Box 2352C, Hobart 7001, Manuscript received July, 1986, revised October, 1986,

The Australian Computer Journal, Vol 19, No. 3, August 1987

BEGIN
(* [Initialization sequence, setting defaults, *)
Ser(".", 50, 10);

END Reassure;

167

Optimization across module boundaries

A separate module is a unit whose activation record has
the lifetime of the whole program execution, Unfortu-
nately the syntax and defining documents of Modula-2
describe two components of scparate modules and name
these definition modules and implementation moduldes. This
terminology is extremely confusing, since a definition
meodule and its corresponding implementation module are
simply two parts of a single module. In this paper these
terms will be avoided as far as possible and these two parts
will be referred 1o as the interface and the implementation
of a separate module. The previous example can be rewrit-
ten as a separate module with its interface and
implementation;

DEFINITION MODULE Reassure2;
{(* Interface. *)

TYFE
Positive=[1..200];

PROCEDURE Set
{ch : CHAR; length : Positive; quict : Positive);

PROCEDLRE Tick;

ENE Keassure™.

IMPLEMENTATION MODULE Reassure2;
(*. Implementation. *) '

(* Import from a standard library module for
input and output., *)
FROM InOut IMPORT Write, EQOL;

VAR
(* Protected values which contrel the module
behaviour. *)
Mark : CHAR;
LineLength : Positive;
SilentTicks : Positive;
(* Variables to hold the state of the ticking. *)
Ticks : CARDINAL;
Marks : CARDINAL;

PROCEDURE 8zt

{ch : CHAR; length : Positive; quief : Positive);
BEGIN

Mark :=ch;

LineLength :=length;

SilentTicks ;= quiet;

Ticks :=10;

Marks :=0;
END Set;

PROCEDURE Tick;
BEGIN
Ticks := Ticks + 1;
IF Ticks = SilentTicks THEN
1F Marks = LineLength THEN
Marks:=0;
Write(EOL);

END;
Ticks := 0;
Marks := Marks + I;
Write(Mark);
END;
END Tick;

168

BEGIN
(* Initialization sequence, setting defaults, *)
Set(".", 50, 10);

END Reassure2.

The interface is intended to be visible to programmers
using the module because it defines the facilities offered by
the module and the manner in which they are to be
accessed. All identifiers declared in the interface arc
automatically exported according to the revised rules of
Modula-2 (Wirth, 1985). The implementation defines the
actual implementation of the facilities and it is possible to
deny a programmer access to the source text of this
component.

A program module may be regarded as the implemen-
tation part of a separate module with an omitted interface.
Every program contains one and only one program
module. The program module may import facilities pro-
vided by other separate modules. Other distinguishing fea-
wwres of a program module are given below:

— Since it has no interface, and therefore no ability to
export, no identifier declared in it can be imported by
any other module.

— Its initialization sequence is executed after the initiali-
zation sequences of all other separate modules, and is
conventionally regarded as the ‘main body™ of the
program.

Local modules are textually declared within another
module. All the identifiers and implementation structure
of a local module are visible to a programmer who has
access to the text of the enclosing module. However, unlike
a procedure, a requirement to explicitly export and import
identifiers across the module boundary allows the pro-
grammer to control access to the facilities provided by the
module, and thereby use the controlled access to guarantee
correctness, or at least to produce a higher degree of
confidence regarding correciness.

The relationship between program modules, separate
modules and iocal modules can be illustrated by a more

~complex example. The program whose module structure is

shown schematically in Figure 1 is composed of a program
module P and three separate modules A, B and C. The
program module P imports facilitics exported by the inter-
faces (Int) of modules A and B, while both the interface
and the implementation (Imp) of A import facilities
exported by the interface of C. The program module P
contains two local modules (Loc) and the implementation

c

Figure 1. A program.
The Australian Computer Journal, Vol 19, No. 3, Augusi 1987

Optimization across module boundaries

of C contains one local module. Export and import of
identifiers across local module borders are explicitly con-
trolled by export and import declarations which are inter-
nal to the enclosing module.

2, FEATURES OF COMMON IMPLEMENTATIONS
Modula-2 provides for ‘separate compilation’, a feature
whose absence many regarded as a deficiency in the
design of Pascal. As a consequence, a Modula-2 processor
(a system for elaborating the meaning of a Modula-2
program when composed with input data) must have facil-
ities for handling the partial processing of the components
of the program. The source texts of these components are
called compilation units. The ability to part-process a pro-
gram givesrise to a number of difficulties and insecurities,
as explained later. Most Modula-2 processors are con-
structed with three major components: a compiler, a linker
and a run-time system. These components are designed to
comply with the following conditions:

— All the source texts (program modules, interfaces and
implementations) which belong to a program must be
successfully processed by a compiler. The compiler
checks the syntax of the source text and if this defines a
correct Modula-2 compilation unit it produces a com-
piled form of the source text.

— Onge compiled forms of all the source texts are availa-
ble, they must be successfully processed by a linker. The
linker checks the existence of and compatibility of each
compiled form and if no errors are detected it produces
an executable program.

— The compilation of an implementation (implementa-
tion module) requires that the compiled form of the
corresponding interface (definition module) be access-
ible to the compiler.

— The compilation of any compilation unit requires that
the compiler have access to the compiled forms of the
interfaces (definition modules) . of all modules it
imports.

These last two features define a partial ordering of the

required compilations.

Some Modula-2 processors generate and attach unigue
sequence codes to each definition module that is compiled.
This enables the linker to ensure that, when a module is
imported, all compiled forms of the associated implemen-
tation had access to exactly the same compiled form of the
interface. If this is not done, there is a serious risk of
introducing an insecurity if different forms of an interface
are used. For example, in the MacModula™ implementa-
tion (Modula Corporation, 1985), the recompilation of a
definition module forces the recompilation of the asso-
ciated implementation module and all modules that
import it, before linking is allowed.

Some of the consequences of the arrangement should
be pointed out explicitly, Consider first the case of a library
module which has been written for general use. Such a
maodule will have been written and tested long before its
use. The supplier of the module must make available to the
user the compiled form of both the interface and the

The Ausiralian Compuier Jowrnal, Vol 19, No. 3, August 1987

implementation, but nced not make the source text of

either available.

In practice, there is little point in suppressing publica-
tion of the source text of the interface, since it merely
defines the facilities provided by the module of which a
user of a module must be told anyway. However, if the
module impiements a deeper level of service, and the user
should not import it directly, then even this source text can
be kept private. It isnormal, however, for the source text of
the interface 1o be published in printed form but not supp-
lied in electronic form. The reason 1s simple: anyone who
recompiles the interface, and thus destroys the supplied
compiled form, thereby destroys the utility of the supplied
implementation which cannot thereafter be nsed.

However, the source text of the implementation may be
kept private with three consequent advantages:

— Since a module uvser is unable to determine how the
madule is implemented, he or she is less likely to writc
code that depends on a particular implementation. The
code is therefore more hikely to be correct, as it will be
solely based on the interface definitions.

— If the implementation turns out to be flawed, the errors
may be corrected and a new release of the module
delivered with no change in the documentation.

— Keeping the implementation private partially protects
the copyright in the module in two possible ways:

— it cannot be ported to another machine since it can-

not be recompiled, and

— the compiled form may contain a hidden serial

(licence) number,

In some library module contexts, it may be appropriate
for the module designer to prepare several implementa-
tions for the same (source text) interface. For example, a
module to implement a symbol table might be provided
with a hash table implementation, a binary tree implemen-
tation, and a binary tree implementation with rebalancing.
The scheme outlined above would require that the library
module be provided to the user as source text and compiled

: form of the interface, and three compiled forms of the

implementations. Only one of the implementations should
be resident in an environment while a program is being
processed, though it does not seem that many processors
would be able to check this.

If the module structure does not wholly involve the use
of a library, the order of compilations also becomes impor-
tant. This is the case for program development involving
several modules when the components of the program
may be being developed simultaneously and perhaps by
different persons. To illustrate this, consider the program
of Figure 1. An outline of the relevant import parts are
shown in the following program outline, and Figure 2

Interface B Interface C

Interface A

Tmplementation A Impl jon B I ation C Program P
Figure 2. Conventional partial ordering of compilation of source texts.

169

Optimization across module boundaries

MODULEP;
FROM A IMPORT ...;
FROM B IMPORT ...;

ENDP.

DEFINTTION MODULE A;
FROM CIMPCRT ...

END A,

IMPLEMENTATION MODULE A;
FROM CIMPORT ...

END A.

DEFINITION MODULE B;
ENDB.

IMPLEMENTATION MODULE B;
END B.

DEFINTTION MODULEC:

END €.

IMPLEMENTATION MODULE C;

shows the partial ordering of compilations required by the
particular form of Modula-2 processor construction des-
cribed earlier.

It will be clear that the interface of C must be delivered
in compiled {checked) form before the interface of A can
be compiled. However, once all the interfaces are deli-
vered, the three implementations and the program module
may be written and compiled in any order. Indeed, the
program module may be finalized before any of the
implementations of the modules it requires.

Revisions of the program are also affected. If the com-
piled forms can be preserved after an executable program
has been created, then a change in one component forces
all the components that depend on it to be recompiled.
Thus alteration of the definition module of C requires
recompilation of all the source texts excepl the interface
and the implementation of B, but alternation of the imple-
mentation module of C requires no compilations other
than of itself. This last case is important since it is imple-
mentations and the program module (which can be consi-
dered to be an implementation without an interface) which
are likely to contain errors and to be revised. In all cases a
relinking is required.

Itis also possible to tolerate a cycle of importations (for
example A imports B, Bimperts C, C imports A) provided
that at least one of the importations in the cycle occurs only
in an implementation and not an interface. This means that

170

there is no cyclic dependency between the interfaces and
an allowed order of compilation can be found. Then if all
the compiled forms of the interfaces are available all the
implementations can be compiled in any order. Caution
with such instances is required as the order of elaboration
of the initialization sections of the associated implementa-
tions is not defined and is likely to be implementation-
dependent.

3. BENEFITS OF INTERMODULE INTERACTIONS

The conventional Modula-2 processor construction des-
cribed in Section 2 minimizes the recompilation of
implementations. However, there are at least two distinct
disadvantages to this construction.

3.1 Opaque export

The firstis a language feature. Modula-2 allows a module
designer to declare a type identifier in the interface but not
give the corresponding type definition. This is called an
opaque export of the type and it offers a number of impor-
tant facilities. Most important of these is the ability to
protect the data in an instance of the type from alteration
by any means other than the facilities provided by the
module, while allowing the user of the module to declare
and preserve such instances in their activation records.
Thus it becomes possible to opaquely export a type free
together with basic tree operations such as create, insert,
delete, search and traverse, and thereby to use the module as
a mechanism 10 extend the power of the language.

In a similar usage it is possible to allow the user to hold
data pertaining to a resource (for example a file oranifo
device) while denying access to the details of the resouce
other than by calls to module procedures. An illustration of
the technique can be seen in the following fragment.

DEFINITION MODULE FileSystem;

TYPE
FileType; (* Opaque export *)
PROCEDURE OpenFile

(DirectoryName : ARRAY OF CHAR;
VAR f: FileType)

PROCEDURE Read
{VAR f: FileType;
VAR NextChar : CHIAR);
END FileSystem.

However, the Modula-2 Report (Wirth, 1985) states
‘Opaque export is restricted to pointers and to subranges of
standard types’. Many processors go further and restrict
opaque eXport to pointer types. Why does this restriction
exist?

It is not hard to find a plausible reason. At the point of
compilation of an inferface the text of the implementation
is not known; therefore the compiler has a problem even at
this stage with the representation of a type opaquely
exported. Some representation has to be assumed if it is to
be inserted into the compiled form of the interface

The Auswralian Computer Journal Vol 19, No. 3, August 1987

Optimization across module boundaries

{remember that this is all that the compiler looks at in
order to compile an importing module).

In most computer systems all pointer values have the
same size and representation, regardless of what their
bound type might be, and hence the simplest compilation
technique is to map all opaquely exported types into the
pointer type representation, thereby forcing the module
designer to declare the elaboration of the type in the
implementation as a pointer type. Such a technique is not
unduiy limiting as the bound type of a pointer type is not
constrained.

The suggested freedom to also allow subranges of the
standard types (meaning the types BOOLEAN, CHAR,
CARDINAL and INTEGER)is predicated on the assump-
tion that values of thesc types have the same storage
requirements as a pointer type. Wherever this assumption
is violated then opaque export is correspondingly res-
tricted. For example, in many computer systems it is not
reasonable to use the same representation for characters
(tvpe CHAR) as for whole numbers (type CARDINAL).

A user of a module with an opaquely exported type may
use the type:

— in structured type declarations,

— as the type of a formal parameter,

— as the result type of a function procedure, and
— as the type of a variable.

No selection or dereferencing of a value of an opaquely
exported type is allowed, and no operations are defined on
such a value other than those provided by the exported
procedures. The only allowed forms of an expression are a
simple variable or a selection of a variable of a structured
type that yields a variable of the opaquely exported type.
Correspondingly the declared variables or selected varia-
bles may be used as actual parameters corresponding to
variable parameters, as actual parameters corresponding
to value parameters, and in assignments.

There is a problem with this resotution. The user must
be fully aware that the opaque type is a pointer type and
must not be allowed to think that the type is ‘really’” a
record or some other kind of type, because the assignment
statement

variable = expression

copies a pointer value, not the hidden value. If the hidden
value is later altered by calls to the module’s procedures,
then all variables of the opaquely exported type which
point to it adopt the new changed value. This is not the
expected semantics for assignment with non-pointer types.

3.2 Removing the restriction

Suppose for argument that a program is viewed solely as
the totality of all its source texts. Since an opaquely
exported type is defined in the corresponding implementa-
tion, there is no problem in giving a meaning to opaque
export of any type, nor is there difficulty in deciding (as
humans} how each specific case should be implemented.
Consequently the restriction of opaque export to pointer
types with the consequent problems is a consequence of
separate compilation, or at least of the form of separate

The Australian Computer Journal Vol 19, No. 3, August 1987

compilation embodied in the usual Modula-2 processor
construction. Section 4 examines how this restriction can
be removed.

3.3 Optimization problems

A second constraint imposed by the usual construction of a
Modula-2 processor is the difficulty of carrying out any
optimizations across the boundary between a separate
module and its users. For example, the compilation of an
importing module cannot take into account any informa-
tion which might be derived from the compilation of the
implementation. Similarly, the compilation of the imple-
mentation cannot take into account the usage of an import-
ing module. Neither is a problem, of course, for local
modules which are compiled in the context of their enclos-
ing module.

A particular optimization ¢xample may highlight the
issue. Many module writers have adopted the practice of
exporting a variable identifier whose value holds some
important state information, Even some standard modules
(such as InOut) adopt this practice. The practice is regret-
table since the module itself cannot rely on the user leaving
the value of the variable unaitered, and the user cannot
protect his own moedule from an inadvertent modification
by his or her own code. The insecurity introduced demands
that the module itself make no use of the value of this
exporied variable, and the user would be well-advised to
encapsulate access to its value in a function procedure
declaration. Why would anyone choose to create self-
imposed problems of this kind when a secure option is
available — providing the state as the result value of a
parameterless function procedure cail?

However, the only plausible explanation of their use isa
misplaced concern for efficiency of access, assuming a
variable access is a direct access to a register and thus
faster or more compact than a call of a parameterless
procedure, and presuming that it may be a significant
efficiency determinant. However, the variable is in a dif-

. ferent module and probably in a different addressing

environment, so if the access involves the alteration of
address or display registers {(a context switch} then the
speed of a variable access may be nearly the same as that
of a parameterless procedure call. One conclusion that can
be drawn is that if a language permits the export of varia-
bles from modules, someone will want to use the facility.

However,ifthe compiler had access to the implementa-
tion while it was compiling an importing module it could
optimize a call of a parameterless function by substituting
the code body in-ling, thereby removing even any slight
advantage. Consider an exported procedure Done() and
the following declaration in the implementation as an
example.

PROCEDURE Done();
BEGIN
{* Retum the value of the private variable
InternalDoneState as the resalt. *)}
RETURN IntemalDoneState;
END Done;

177

Optimization across module boundaries

When the compiler finds a call in the importing module,
such as

WIHILE Doae() AND {¢h <> ","Y DO
then it should be able to substitute code equivalent to
WHILE IntemalDoneState AND (ch < ",") DO

4, ALLOWING OPTIMIZATION

The key question to be answered is whether there exist
alternative constructions of processors, which implement
the essentials of separate compilation, and yet permit some
of these problems to be circumvented. They exist, and in
this section the possibilities will be explored. The essentials
of satisfactory solutions are clear: either code generation-
must be delayed to some processing stage following com-
pilation, or the information must be made available to the
compiler at the time it generates code.

Oue solution has been suggested by K.J. Gough (private
communication, 1986) that does not involve either of
these, but it is relatively unsatisfactory, Suppose that the
code generated by a straightferward compiler is such that
it is always larger than optimized code. Then it is possible
for this code to be flagged so that the linker may substitute
for the tentative code something more efficient. Such a
system may permit an in-line varible access to be substi-
tuted for a procedure call, to use the earlier example. The
difference between a replacement strategy and a delayed
code generation scheme is not large, and resides only in the
containment of optimization decisions to a highly local
fragment of code.

4.1 Delayed code generation

The simplest suggestion is attributed to G. Goos (private
communication, 1982)in relation to Ada. Suppose that the
role of the compiler is defined to be the analysis of the
syntax and static semantics of each compilation unit
(including the reporting of errors) and the production of an
intermediate analysed treg form of each unit, with no
code-generation. Suppose further that two new processing
steps are substituted for the linking stage. Firstly a pro-
gram which will be called the resalver is.given access to all
the compiled trees and modifies them so as to take into
account all available information. The resolver also hasto
handle the compatibility problems of a linker. Secondly a
program which will be called the code generator takes ail
the trees and generates specific code for the machine from
them. This solution will readily handle beth the opague
export problem and the optimization problem.

It is also possible to combine the resolver and the code-
generator into a single pseudo-linker so as to hide the
individual steps. Delayed code-generation reduces the
task which the compiler has to undertake and shifts extra
tasks to the final phase (resolver and code-generator).
Separate compilation is retained at the expense of reduc-
ing the significance of compilation. However the scheme is
attractive, since all its components are well-understood,
and it has the potential 10 be able to apply complex trans-
forms in pursuit of optimizations.

It is worth exploring a few permutations on this con-

172

struction scheme. Suppose the task of the compiler were
further reduced o the analysis of the syntax and static
semantics of each compilation unit (including the report-
ing of errors), with correct source texts simply being
marked in some way to indicate their checked status.
Alternatively the source texis may be copied with some
identifying mark to show them as checked (compiled)
units. Nothing changes in the scheme except that the
resolver needs to reparse the source texts (with the assu-
rance that they are correct and hence no checking nor
error-recovery is needed) before tackling the tree process-
ing. The crder of reparsing will be determined by the
dependencies, and henge either the compiler must some-
how inform the reselver of these, or the resolver can estab-
lish a sub-task for each reparsing which interlocks and
waits when it reaches a point where it needs unavailable
information. Provision for resolving or detecting impor-
tation cycle deadlock will be needed in this case.

A further step along the same path eliminates the mark-
ing of source texts, The resolver now has a front-end which
compiles the source texts with checking and error-
recovery before it tackles tree-processing. The compileris
reduced to an optional (but highly desirable) program for
providing independent checking of compilation units, in
the interests of efficiency. It plays no role in the task of
code generation.

Since the executable program is always derived from a
consideration of all the compilation units, the dependen-
cies that remain are the essential ones. This is exactly the
same as in the usual Modula-2 processor structure,

4.2 Changing the processor structure

A second departure from the conventional processor con-

struction involves changing the conceptual structure of

madules and their compiled forms. Such a new processor

structure is based on that described earlier in Section 2, but

the fourth and last condition is altered to:

— The comptlation of any compilation unit requires
access to the compiled forms of all modules it imports.

One of the significant features of this change is the
compiler has access to both the interface and implementa-
tion of every imported medule, consequently it is capable
of making optimization decisions while compiling an
tmporting module which involve use of information
regarding the implementation of imported modules. In
addition the partial ordering of compilations is altered, as
shown in Figure 3 for the earlier example.

This new ordering requires implementations to be
compiled before any module that imports the features of its
interface. Several detailed constructions are possible.

— The compiler might be able to accept just a definition
module (interface) for checking only, or an interface
plus its implementation. Only in the latter case may it
generate a compiled form of the module.

— The compiler might generate a compiled form as a
result of compiling the interface. However, when com-
piling the implementation, the data in the compiled
form of the interface are incorporated into a new,
merged, compiled form of the total module.

The Austratian Compuiter Journal, Vol 19, No. 3, August 1987

Optimization ucross module bowndaries

Interface B

}

Interface C

ion B Fmpl atien C

Interface

l

Implementation A

™~

Figure 3. Revised partial ordering of compilation of source texts.

Program P

— The compiler might, as with the conventional construc-
tion, generate comptiled forms of both parts of a module.
The compilation of importing modules will involve
searching for both compiled components.

The consequences of this change need careful examina-
tion, for it is generally assumed by Modula- 2 programmers
that the conventional construction is the only one feasible
or practical. The first such consequence is that all importa-
tion cycles are disallowed. Recall that the conventional
construction allowed them, providing at least cne of the
imports was confined to an implementation. With this new
processor construction, even this restriction does not allow
an order of compilation to be determined. Modules involv-
ing importation cycles cannot be compiled. Fortunately
such cycles rarely arise in real programs,

Secondly the processor behaves differently under con-
ditions of change. Under the conventional model, an alter-
ation of an implementation module involves only its own
recompitation and relinking. In this new structure, altering
an implementation involves nearly the same consequences
as alteration of the interface; all the dependent compilation
units, except the interface itself, need compilation.

5. CONCLUSIONS .

Is the processor construction part of the definition of a
programming language such as Modula-2? [s tampering

The Australian Computer Journal Vol 19, No. 3, August 1987

with the conventional structure permissible? Are there
Modula-2 features from which a particular processor con-
struction must be inferred and no others are possible?

In this paper it is argued that the processor construction
is not fixed and that advantages can be gained from such
departures. Of course, there are frequently consequent
disadvantages which accompany the advantages, but it is
important to see the situation as involving choice.

A second conclusion is that it may not be desirable to
separate the interface and the implementation as done in
the langnage Modula-2, leaving a linker and operating
system to provide the connection links. It would appear to
be better 1o retain all parts of a module as a compilation
unit, with appropriate textual separation of the interface
for public distribution (but not recompilation).

ACKNOWLEDGEMENTS

The work described in this paper was carried out with the
assistance of Australian Research Grant F85160571 and a
University Research Grant from the University of Tasma-
nia. The comments of members of the staff of the Depart-
ment of Information Science and members of the Silicon
Research Group in the University of Tasmania arc also
gratefully acknowledged.

REFERENCES

MODULA CORPORATION LTD. (1985) MacModula™ Reference
Manual Modula Corporation, Provo, Utah.

SALE, AHJ. (1986): Modula-2: Discipline & Design, Addison-Wesley,
Wokingham, England.

WIRTH, N. (1985): Programming in Modwla-2, 3rd Ed, Springer-Verlag,
Berlin,

BIOGRAPHICAL NOTE

Professor Sale has been Professor of Information Science at
the University of Tasmania since 1974, and is currently
Chairman of the University s Professorial Board. His active
contribiition to the standardisation of Pascal led to the

. development of the Pascal Certification Process. More

recently he has published a book on Modular-2, wiich is fast
replacing Pascal and has a second in draft form.

173

