SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 11, 929-542 (1951)

The Implementation of Case Statements in Pascal

ARTHUR SALE

Department of Information Science, University of Tasmanmia, Box 252C GPO Hebart, Tusmania,
Australia 7001

SUMMARY

This paper examines the probable implementations of the case statement in Pascal, and
analyses their consequences. A particular implementation for the Burroughs B6700/7700
series illustrates the necessary investigations, The techniques, although not new, are brought
together to serve as a stimulus to improving the implementation of case-statements in other
compilers for Pascal, and to provide ideas for implementors. The architectural limitations of
even high-level computers in implementing the case statement are briefly discussed.

KEY worDS Case staternents Computer architecture

PURPOSE

This paper secks to document the implementation techniques which can be used to
implement the Pascal case statement, and the decisions that were made in an
implementation for the Burroughs B6700/7700 series.

THE PROBLEM

The implementation of a case statement breaks into two distinct parts. One is the set of
actions (statements} between which the case-selection is to choose: these may be simply
compiled according to their nature and followed by an unconditional branch which
leads to the statement following the case statement.

The other major part is the selection: the evaluation of the case expression and the
identification of which action is to be initiated as a consequence, followed by a transfer
of control to that action. The paper is solely concerned with implementing this part of
the case statement, and deals with issues of efficiency, range of efficacy, and correctness
of implementation.

THE PASCAL-P HERITAGE

Many compilers for Pascal are based on the compiler for the CDC Cyber and 6000
range {Pascal-6000), or on a semi-portable version producing code for an imaginary
stack machine (Pascal-P). As a consequence, the treatment of case statements in these
compilers has often survived unchanged into their descendants, even though it is not
optimal. The technique used is simple, and can be briefly summarized.

(a) Both compilers, and their descendants, make a single pass through the source
text, generating code as they go.

0038-0644/81/090929-14801 .40 Recetved 30 May 1979
© 1981 by John Wiley & Sons, Ltd. Revised 19 February 1981

930
(b)
(c)

{d)

ARTHUR SALE

On meeting the ¢case keyword, code is compiled to evaluate the case expression,
followed by an unconditional branch over the actions to ‘part (d}.

The actions are compiled as they are encountered, each followed by an
unconditional branch to the next executable statement after the case statement.
Each case-label constant is stored in a linked list together with the corresponding
code address of the action, and the list is maintained in ascending order of the
constants,

On meeting the closing end kevword, the selection is compiled. Since all case-
label values are now known, the expression is checked to ensure that its value lies
within the limits of the least and greatest constant values, followed by an indexed
branch through a jump-table to the appropriate action.

The jump-table entries which do not correspond to any case-label value in the source
text, and a case expression value outside the case-label limits, usually cause an error-
termination. Some compilers implement an otherwise clause as an extension, when
such events cause control to be passed to it. A few compilers treat such events as empty
actions and control passes to the next statement.

This implementation technique has several machine-independent consequences:

(a)

(b)

()

The time taken for the selection is practically independent of the width of the
selection and the values of the case-label constants. There may be arithmetic and
other second-order variations, but for all practical purposes the relationship is:

time for selection = &,

where &, is a constant.

the code-space required for the selection is made up of a fixed part (the checking
and indéxing) and a part whose size is proportional to the difference between the
greatest and least case-label values. Let this difference be called », and let &, and
&, be further constants:

code space = ky +(k; xr)

Due to this code-space proportionality, the implementor may put a limit on the
size of the table. In the event of this limit being exceeded, the case statement is
disallowed. 1If the implementor does not take this step, then such statements
either cause other errors (‘PROCEDURE TOO LONG’) or some reasonable
statements consume an unreasonable amount of resources, An example to evoke
these effects is the following, adapted from the Pascal validation suite of
programs.

case 7 of
1000 :j:=j+1;
—1000:7:=5-1;
end;
THE EFFICACY OF AN IMPLEMENTATION

"T'o judge an implementation of a language feature, we must first ask if it exactly models
the abstract notion embodied in the language feature. The implementation outlined
earlier meets this criterion, otherwise it would have been unacceptable. The next
question we should ask is over what range of validity the modelling holds, and whether
any implementation errors could arise if this range is exceeded. Clearly the technique

IMPLEMENTATION OF CASE STATEMENTS [N PASCAL 931

described is limited by its space demands, and many Pascal compilers refuse to comptle
the example given earlier. However, provided the range-check on the case-expression is
never omitted, and provided that there are no modulus arithmetic effects in indexing
into the jump-table, no erroneous compilations can occur.

The initial implementation in the University of Tasmania B6700 compiler? used this
technique, but gave an error message if the range exceeded 300, implying a jump-table
of 150 words. This limit was somewhat arbitrarily chosen so as to encompass the char
tvpe {256 values) as the type of the case expression, and to avoid a power of two. The
limnit was subsequently raised to another arbitrary value of 1000, and there is no good
reason why it could not approach the limit of 2'* set by the addressing range of the
unconditional branch.

One might query whether, given such a range, the technique is in any way limiting.
After all, the counter-example given is highly artificial. However, experience with this
implementation over several years brought a number of complaints derived from just
this source: programmers wanted to do something they considered reasonable, but
were prevented by the implementation, Examples are given in an Appendix.

Having satisfied oneself as to the correciness of the implementation and its range of
efficacy, only then should the third question be asked: How efficient is it? The
characteristic feature of the jump-table technique is that it is generally the fastest
available for selection between many values. Any alternative whose selection time
grows with the width of the selection must eventually become slower.

However, there are implementation techniques which are faster for very few
alternatives, and there are implementations which use less space for some case
statements. T’he almost unquerying acceptance of this technique is therefore somewhat
puzzling, especially as older languages {for example BCPL?) have had more
sophisticated compilers which employ a variety of stratagems.

We are therefore left with the conclusion that the jump-table technique 1s unduly
limiting, and i1s not always the most efficient in time of code-space.

THE COMPARISON TECHNIQUES

An immediately obvious alternative is to compile the selection as a linear sequence of
comparisons:

if ¢ = c¢1 then goto labell;
if ¢ = ¢2 then goto label2;
if ¢ = ¢3 then goto label3;

The time to accomplish a selection now depends on the value of the expression, and isa
minmmum for the first value and a maximum for the last. If a comparison takes time &
and a goto time [3, and all case-label values are equiprobable, then the average selection
time is:

g 5 W+)+ (an-+

time for selection= W)‘

=ﬁ-|;;n

Since the overhead (f) is low, this technique may be faster than the jump-tabie
technique for selection between very few alternatives.

932 ARTHUR SALE

T'he code-space required is simply proportional to the number of case-label values »
(not their range):

code space = ky X n

Obviously, whether this is better or worse than the previous technique depends en the
sparseness of values in the case-label range.

A more sophisticated technique is the if-tree: the selection is accomplished by a
nested set of comparisons organized into a tree. If the selection problem is considered to
be a selection of a subrange of values, including the subranges representing values
which do not occur as case-labels (rather than as a selection between individual values),
then this can easily be coded by a recursive procedure which splits its total subrange in
two and calls itself to handle the two parts. Some optimization is possible when only a
few alternatives remain, or by omitting comparisons which can be known to succeed at
the leaf level. In the face of such optimizations detailed analysis is difficult. It is
probably sufficient to note that:

time for selection =~k x log,m
code space >k Xm

where m is the number of subranges, and is bounded by:
1€<m<2r+1

These two techniques were used, for example, in a BCPL code-generator for
implementing the switchon statement on an IBM 7090 series. An interesting twist is
the use of tree-nodes of degree 3 which rely on the CAS instruction. The mnemonic
CAS is not an example of IBM prescience: it stands for Compare Accumulator with
Storage and produces conditional skips depending on whether the comparison vields
less, equal, or greater.

The comparison techniques are inherently correct and have no implicit limits apart
from excessive time or space usage for very complex case-staternents. Special range-
checks are not needed, unless the comparisons are somehow limited by modulus
arithretic or other effects.

It should be noted that the problem of selecting an action within a case-staterment can
be transformed into a decision table. Consequently all the techniques for compiling
‘optimal’ code for decision tables may be emploved for compiling case statements.*
However, case statements are simpler in structure than a general decision table, and the
approach given above achieves satisfactory efficiency with a relatively simple
algorithm.

TABULAR TECHNIQUES

If memory is a scarce resource, one should consider how the memory requirement for
selection can be pared to a minimum. About the least that one could get away with if the
case-label values cannot be implicit (as in a jump-table) is a table which holds records of
the following form:
var
searchtable = packed array[l. .n]of
packed record
caselabel : selectortype;
action : addressoffset;
end;

IMPLEMENTATION OF CASE STATEMENTS IN PASCAL Q933

It is then necessary to code a search algorithm to search this table for a particular case-
label value, and to branch to the indicated address. The algorithm may be a linear
search through the table, a binary search through a table ordered at compile-time, a
hash lookup in a suitably created table, or any other alternative you can think of. The
code may be m-line, or it may be shared amongst case staterents by incorporating it as
a system procedure.

For example, a 1972 BCPL. compiler for the CDC 1700 mini-computer was able to
choose between the jump-table technique, the linear table search with a tightly coded
loop, and a binary table search. The binary table search was implemented as a
procedure call to a system procedure which ‘returned’ to the indicated address if a
match was found.

Other table organizations are possible; for example a heap-organized one (cf.
Reference 5) as in the Heapsort algorithm. What differentiates all these tabular
methods from the jump-table technique—which is naturally a tabular method too—is
the explicit inclusion of case-label values in the table, and the dependence of the table
size and selection time on some measure loosely connected to the complexity of the case
statement, rather than the range of the greatest and least case-label values. Users of
compilers are much more ready to accept the rejection of a highly complex construct
than a simple one.

THE TASMANIA B670¢ COMPILER—A CASE STUDY

The jump-table technique

In reviewing the case statement implementation for the B6700/7700 compiler
maintained by the University of Tasmania, two principles were used to guide the
choices:

(a) No case statement of reasonable complexity should be rejected by the compiler.

(b) The resource demands of any reasonable case statement should not be excessive.

The meaning of ‘reasonable’ and “excessive’ 1s left vague; nevertheless it was felt that
the jump-table technique fails one or the other of these tests for sparse selections over a
wide range of case labels,

However, before considering alternatives in detail, the jump-table technique was
analysed. The jump-table itsélf conststs of half-word (3 bytes) unconditional branches,
and must be half-word synchronized. The range-check and indexed branch add up to
23 bytes of instructions on theassumption that the range limit values are fitted into 8-
bit literals, and there is a 0-2 byte padding required to achieve the jump-table
synchronization. The range-check is never omitted as the consequences of a wild
branch which lands outside the jump-table are potentially disastrous. If the range is r,
the space requirements are therefore:

code space = overhead + padding + jump-table
2 24-5 4 37 bytes

The execution time is much more difficult to estimate, particularly in the B6700/7700
series where three factors complicate matters: the asynchronous operation and differing
memory speeds, the different model characteristics, and difficulty of access to timing
data.® 7 However, to illustrate the comparison, consider the execution to be dominated
by memory accesses and measure it in units of this size. Instruction fetches will require
four word-accesses for the overhead, plus another to access the table. Data accesses are

IMPLEMENTATEON OF CASE STATEMENTS IN PASCAL

935

owing to the necessity to evaluate and store the expression value. The execution time is
derived on the assumption that all case-label values are equiprobable; the worst-case is
approximately double this estimate. Case-label values are assumed to fit in 8-bits,
Violation of this assumption only affects the formulae given, not the correctness or

range of validity of the code.

< evaluate expression>
NaMc(local temporary)
STON

< load case-label value>
EQUL

BRTR{address)

vaLc(iocal temporary)
<load case-label value>
EQUL

BRTR{address)

BRUN{default handler)

{address of un-named cell}
{store, but leave on stack too}
{a constant}

{compare}

{if true, then branch}

- - -end of first selection}

{retrieve copy of expression}
{a constant}

{Compal’e}

Jif true, then branch}

- - -repeat above section as needed}

{unconditional branch}

code space = first case+ other cases+default

=94+8(n—-1)+3
= 4+ 8nbytes

time for selection = instruction fetches+data fetches

78n+5 n

12 2

= 0-83+1-83 n memory cycles

A comparison tree

The first step in deriving a comparison tree is to consider the list of case-label values
as creating an ordered list of subranges, each with its unique target address. For

example, in the following statement:

case ! of
1,2,3 : 51,
7.8 52;
10 : s3
end;

the subranges are as follows:

subranges

target action

—maxint . . 0

1...3
4..6
7..8
P 9
10..10

11 . . maxint

defauit

default
53
default

936 ARTHUR SALE

Each tree node then corresponds to a break between intervals; if there are m intervals
then there are m — 1 breaks. If the tree is constructed straightforwardly but so as to
minimize the code-space required, then the optimum tree for the above case-statement
1s shown in Figure 1.

d s1 d s2 d 53
Figure 1. An example of a search tree

Most of the same considerations with respect to retrieval of the expression value
apply to the generated code here as for the linear comparison method, and the same
solution will be assumed. T'he code for each comparison is similar, with the substitution
of some other test (GRTR for example) for the equality test. The required code-space
is defined by the recurrence relations:

code space, =11 bytes (m=2)
code space,_, = code space,+8 (if m even)
code space,,_, = code space,+11 (if m odd)

An approximation is clearly
code space ~9:5(m—1) bytes
The execution time can be similarly derived; a suitable approximation is:

time for selection = instruction fetches+ data moves
&+ 1) x depth of search
=2-33 log,m memory accesses

Note that although the code space requirements still grow linearly with m, this method
capitalizes on any subrange structure in the case-label values, and it is possible that the
number of subranges is much less than the number of case-label values, or the range of
values. Intuitively, this method seems to have resource demands which correspond
fairly well with a programmer’s notion of complexity of a case-statement. Since the
time for selection grows slowly with the number of intervals, the method performs well
for sparse selections of reasonable size.

Using the masksearch instruction

The B6700 architecture contains an instruction (sRcH) which is designed for
searching tables. When provided with a descriptor pointing to a data segment, a one-
word bit-mask, and a one-word comparison value, it linearly searches down the

IMPLEMENTATION OF CASE STATEMENTS IN PASCAL 937

segment for an equality test under the mask pattern. The search starts from the top of
the table (segment) and decrements. The result left on the top of the stack is the index of
a successful match, or —1 if no match is found. Clearly, this can be used in an
implementation of case-statements using a tabular technique.

One possibility of using this instruction is to set up a table where each word is a
packed record containing an action address and a case-label value. Since the action
address would have to be loaded to the stack and used as an indirect address by the
dynamic branch instruction (DBUN), it is constrained to be a half-word address.
Consequently a 14-bit address field would suffice to give the same addressing range as
the byte-addressing branch instructions, leaving 34 bits for the case-label value in the
word. The space requirements for each case-label value amount to one word (6 bytes) in
the table, and from 0 to 2 bytes padding to half-word align each piece of the action code,
making a total of 7-5 bytes/value on average.

An alternative is to devote a whole word to a case-label value. The index found is then
used to construct an address in a jump-table within the code-segment. The two tables
together require (6 + 3) = 9 bytes per case-label value; slightly higher than the previous
method, It is then possible to dispense with range-checking completely, and let the
SRCH instruction carry out the validity check. In the packed record scheme, range-
checking is necessary to prevent expression values from masquerading as other values
by hiding under the masking. Obviously the checking could never be omitted without
creating the possibility of an incorrect compilation. The second method could therefore
be expected to be slightly faster.

Our decision was that the second method was the more desirable, since itimposed no
limits on the case-label values which would be admissible, and would quite happily
compile even:

case : of
maxint : writeln(’ VERY POSITIVE');
—maxint : writeln (' VERY NEGATIVE')
end;

The difference in space requirements is not large (9 bytes per value against 7-5) and
offset for small tables by the first method’s greater overheads to carry out a range-check.
The characteristics of this implementation, and the code skeleton, are shown below.

< evaluate expression >

ZERO

LNOT {creating an all — 1s mask}
NAMC(table descriptor)

LOAD {load a copy of the table descriptor}
SRCH {execute the search}

<load address of table Lt>

ADD {form halfword address}

DRUN {dynamic (indirect) branch}

< pad out to halfword boundary >

BRUN(defanlt) {branch if srcH returns —1}

Lt: BRUN(....)
BRUN(. ...}

938 ARTHUR SALE
code space instructions + padding + code table+ data table

=12+154+3(n+1)+6mn

16:5+ 6 bytes

time for selection overhead + data accesses for average case
4+ 0-572 memory accesses (B7700)

6+ 0-57 memory accesses (B6700)

Performance comparisons

With methods with such varving characteristics, direct comparisons are difficult. With
the exception of the two linear search techniques, no two methods have the same
parameters. We can, however, measure the characteristics of a particular case-
statement presented to a compiler, and derive from these some indicators of the best
method to use for that particular statement. Clearly, for large sparse selections the
comparison-tree technique will be appropriate, and for moderate-sized compact
selections the jump-table will be good. The questions that the compiler-writer is
interested in are:

(a} Whereabouts do the changeovers take place?

{b} Is code-space or execution-time to be the criterion?

{c) Are any methods of such low utility as to not be worth the trouble of writing the
code-generation routines?

T'o explore some of these issues, consider a case-statement which has # distinct actions,
each labelled by a case-label. The case-labels are adjacent (form a compact range), but
are a subrange of a larger type. For small values of n, this will enable us to plot the
resource requirements of each method, and this is the area of prime doubt where we do
not know whether the linear search methods are of any benefit. The jump-table method
is seen at its best (as there are no gaps in the table), and the search-tree method is seen as
something approaching its worst (as all subranges are of length 1).

The results are shown as Figure 2, and are plotted parametrically on a space-time
diagram.

From these results it is clear that the range of utility of the linear search methods is
small. Under the given assumptions, the linear comparison method (i) requires less
space for n< 4, and executes faster for n < 2 on the B7700. Two-way case statements are
rare, though of some use; one-way case statements have a very limited use.

Given the good execution speed performance of the jump-table method, dominating
all others for large n, it is clear that it should be preferred as long as the space
requirements are not excessive. The rapid increase in execution time with n for the
linear methods indicates that they will not be of much use for large selections, and the
only merit in implementing them must lie in selections between a few values sufficiently
widely separated to make the jump-table unattractive. The frequency of such cases is
probably fairly low.

The questions asked before can now be answered in reverse order:

(¢} The only two methods incorporated into the University of Tasmania compiler
are the jump-table and the search tree. The linear search methods do not have a
sufficiently high range of utility,

(b) Since execution times of both methods are quite good, space considerations
dominate.

IMPLEMENTATION OF CASE STATEMENTS IN PASCAL 939

20

time
{memory
ACCESSes)

1w+

1
0 50 100

space (bytes)

Figure 2. Performarce aof methods on a space-time map for a B7700.{0) jump-table, (1) linear search, (it) search
iree, (iv) masksearch tnstruction.

(a) Since the jump-table technique is faster, use of the search tree will not be
worthwhile until its space requirements are less than those of the jump-table.
How much less to warrant the change is arguable. In the University of Tasmania
compiler the changeover occurs when the space demands are equal so as to
minimize the memory requirements.

CONCLUSIONS

Summary

In conclusion, it can be seen that a slight increase in complexity of a Pascal compiler
leads toa much improved treatment of case statements, in that every case statement that
would be considered to be of reasonable complexity by a rational programmer can be
compiled. The efficient jump-table technique is retained for use where it does not
require an excessively large table, whereas a search-tree may be used to capitalize on
common destinations for adjacent selector values and to be reasonable for sparse
selections.

It is surprising that so few Pascal compilers seem to have implemented anything
other than the jump-table technique. A large measure of the responsibility for this state
of affairs must be given to the Pascal-P compiler and its siblings, which have been
widely copied. When a software product is good enough to warrant copying on the scale
that these have evoked, then the shortcomings of the software are extremely likely to
become frozen into its descendents. A very high degree of sophistication 1s thus
demanded of high quality software. T'o counter this problem, a tested patch to the

940 ARTHUR SALE

Pascal-P compiler should be available to make it generate suitable P-code for a search-
tree. Since the P-machine’s instruction set is very low-level, and close to that of most
architectures, this should encourage mamtainers to improve the quality of their
compilers.

Comments on machine architecture

Another consequence of this investigation is the clarity with which the complete
unsuitability of current machine architecture for dealing with the case statement is
revealed. Even on the Burroughs B6700/7700 architecture, supposedly the highest-
level architecture available, the construct demands quite difficult decisions and
complex code, and a specialized search instruction proves to be virtuaily useless for this
purpose.

The case-statement, as a language feature, was invented comparatively recently.®
Since the architecture of most extant machines is derived from tradition and
convention ante-dating this invention, this lack is not particularly surprising.
However, case statements are important in modern programming languages as a special
kind of selection, and it is reasonable to ask whether special provision could be made.
Four general directions suggest themselves. Note that in this discussion it is not
proposed that the case staternent be a directly executed instruction, but that facilities be
provided to simplify its compilation and to facilitate correct and efficient execution.

In a similar manner, the goto survives as the branch at the machine architecture level
because it is an efficient mechanism for implermnenting while statements, if statements,
etc. (cf. Reference 9}).

(a) Associative memories often seem to be cast in the role of Maxwell’s demon:
invoked to carry out any magical operation. However, associating a value (target
address} with a key (selector value) is exactly what we want. In the absence of a
direct parallel association, an association must be derived by algorithmic means,
leading to the next possibility.

An instruction simtlar to the B6700’s srcH could be implemented to retrieve an

index from a data segment by some more sophisticated algorithm than a linear

search. One possibility is to conduct a binary search on a table which is assumed
to be ordered. Binary field operations on an index are very simple to implement
in hardware. Another is to implement a hardware hash lookup, leaving the
software to construct a suitable table with the same algorithm at compile-time.

(¢) The jump-table technique, with an implicit key-value, is valuable and should be
preserved. Its only drawback is the clumsiness of the range-checking and offset;
it would be trivial to incorporate these into a descriptor for the jump-table, or
design a checking instruction. It is vital to correctness of software that the check
never be omitted, and be of low cost. The VAX-11/780'? has an instruction of
this type, appropriately given the mnemonic of ‘casg’. This machine 1s, of
course, of very recent design.

(d} The search-tree could readily be automated by an instruction which searched a
table which was implicitly tree-structured (as in the familiar Treesort
algorithm). A one-bit tag in each table word could indicate either a comparison
value or a target address, or the tag could be implicit.

(b

—

Unavailable Statistics
A search of the literature yielded little factual data on how the case statement 1s used

IMPLEMENTATION OF CASE STATEMENTS IN PASCAL 941

in practice. Several questions are of interest to implementors of languages containing
such statements, amongst which the following deserve attention:

(a) How frequently are case statements used when there are no psychological or
habitual barriers to their use?

(b) What is the distribution of the number of actions making up a case-statement?

(c} Since case statements are directly analogous to record variants in Pascal, how
frequently is this construct used to select a variant in preference to a series of if-
statements? (This will affect the proportion of very narrow and even one-way
case statements.)

(d) How frequently do sparse case statements occur as to be inefficiently
implemented by a jump-table? (Existing practice is no good guide if only jump-
table technigues are available to programmers.)

A careful examination of Pascal programming style could be of considerable use to
implementors, but is not currently available. The major difficulties seem to lie in
capturing a representative sample of Pascal programs, and in avoeiding influences of
implementations or other programming languages.

APPENDIX

This appendix describes three of the plausible uses of the case-statement construct
which have been brought to the author’s notice. In two of the cases cited the
programmers concerned remarked that they had adopted the particular construct
because they were unaware of any implementation limits on its use, and that they were
unlikely to do so again after they had discovered what happened. The conclusion can be
drawn that ‘unusual’ uses of the case-statement will remain ‘unusual’ so long as the
common implementations prohibit them; their rarity is not necessarily a consequence
of a poor structure or abstraction.

T'he first case was caused by a program which was dealing with Roman numerals. In
the midst of this program appeared a case-statement which had as case-constants the
numeric values of the symbols in the Roman numeral system: 1, 5, 10, 50, 100, 500,
1000. Of course, there were other ways to carry out the selection required and indeed
the subproblem it appeared in, but the use was plausible and consistent.

The second example occurred in a program with integer variables, and on a compiler
which had an extension which permitted case-label values to be given as a range. The
program fragment is self-expianatory:

case 7 of
—maxint . . —1 : HandleNegativeValue,
0: HandleZeroValue;
+1 .. +maxint : HandlePositive Value,
end;

In the third example, the programmer had packed two characters into a single integer
value, and wished to use the case-statement to identify command sequences. The
following program fragment is not standard Pascal, but will explain the intent better
than the original.

94

2. ARTHUR SALE
var twochars = packed array[l. .2] of char;

case {wochars of
‘HE' ;. ProcessHelloCommand,
‘FL' . ProcessFlashCommand,
‘TP« Process TurnCommand,
‘BY' : ProcessByeCommand,
end;

With the substitution of a string type for the Pascal packed array the above example isin
fact allowed in a new language called S-Algol'! and running under UNIX on PDP-11

m

0~

10.
11.

achines.

REFERENCES

. B.J. Wichmannand A, J. H. Sale, Draft Validation Suite for Pascal Comptiers, preliminary draft 1978.

. A.J. H. Sale, B6700{7700 Pascal Reference Manual, Department of Information Science Report
R77-3, University of Tasmania, 1977.

. M. Richards, The BCPL Reference Manual, Technical Memo No. 69/1-2, The Computer
Laboratory, Cambridge, 1971.

. U. W, Pooch, “Translation of decision tables’, Computing Surveys, 6, 2 (1974).

. D. E. Knuth, The Art of Compuier Programming—Vol 3 Searching and Sorting, Addison-Wesley,
1973.

. Burroughs Corporation, Burroughs B6700 Reference Manual, Form 1058633, 1969.

. Burroughs Corporation, Burroughs B7700 Reference Manuwal, Form 1060233, 1975,

. €. A. R. Houre, Hints on Programming Language Design, Technical Report C3403, Computer Science
Department, Stanford University, 1974,

. D. Gries, Compiler Construction for Digital Computers, Wiley, New York, 1971, pp. 279-281.

Digital Equipment Corporation, VAX-11]780 Arckitecture Handbook, 1977.

A.]. Cole and R. Morrison, An Introduction te S-Algel Programming, University of St. Andrews,
1979,

i

