e

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 9, 913-919 {1979)

Miniscules and Majuscules

ARTHUR SALE

Department of Fnformation Science, University of Tasmania, Box 252C, GPO Hobart, Tasmania,
Australia 7001

THE PAST
Once, not so long ago, practically all programming was carried out in one case of letters:
the upper case of majuscules A, . . ., Z. Necessarily, programs were printed this way, and

readers of programs had to contend with it. Indeed programmers probably became some
of the most fluent readers of capitals in the world, and they forgot that this was not normal.

Then along came the ROM, dot matrix printers, and the VDU, and it became possible to
produce lower case, or miniscule, letters economically, Those of us who had been arguing
that writing and reading in upper case alone was dismally bad at last found our arguments
acceptable. Though perhaps it is too soon te say that the battle for more readable programs
is over, it is reasonable to claim that victory is in sight. For example, a very pragmatic
Computing Centre Director told me a few months ago that he refused to consider any
terminal or printer devices unless they had both letter cases available.

But the freedom to use either case brings with it some important stylistic decisions. This
note attempts to bring these decisions together, and suggest some preferred solations. Some
have been incorporated into the draft Pascal Standard.!

MIXING THE CASES

If writing programs entirely in upper casc letters is bad, then writing programs entirely in
lower case letters is foslish, 'T'he result is more readable than previous practice, but it throws
away many possible improvements in style. 1Jowever, once we allow programmers to mix
letter cases in programs we find that we need to formulate a principle:

Principle 1 :
The meaning of a program should not be affected by the case of any letter in it,
with the exception of literal constants containing character values.

This principle can be justified on three equally cogent grounds:

{a) The case of a letter does not conventionally change the meaning of a natural-language
word. For example, this sub-clause contains the word ke in four different represen-
tations: only the italic one has substantially diffcrent meaning. For me, this is THE
mest important justification,

{b) Much as we regret it, some installations arc still restricted to one letter case, perhaps
by six-bit characters. Consequently, for programs to be portable it must be possible
to convert all letters to one case without causing the program meaning to change.
Equally obvicusly, this cannot apply to character values themselves,

0038-0644/79/1109-0915501.00 Received 1 March 1979
© 1979 by John Wiley & Sons, Ltd.

915

916 ARTHUR SALE

(¢} If programming languages permit programmers to denote different objects by similar
names, say x and.X, then the chances of accidental error are increased and programs
may be more difficult to read. We have all probably experienced the practical
jokester who substitutes zeros for ohs, as in STOPFLAG for STOPFLAG. Lower
case may foil him, but we do not want to add new possibilitics for confusion.

In fact, this principle has been expressed in the draft standard for the programming language
Tascal, save for one tiny loophole which must be corrected in the next draft, The University
of Tasmania Pascal compiler has always processed input text in accordance with the
principle, by translating identifiers and reserved words into a canonic form for\internal
processing. Other techniques are possible which will still fit in with the principle: for
example, rules restricting the use of cases to particular token classes, or prohibiting any
representation of a word other than the one declared. To me, these seem somewhat ad hoc
measures, and I prefer the generality of equivalence.

KEYWORDS AND IDENTIFIERS

1 have written previously about keywords and identificrs® so I shall be brief here. When
keywords are basic symbols distinct from the set of identificrs, as in Algol 60’s reference
representation, then distinguishing by the use of case is defensible, if regrettable, When, as
in Pascal, keywords are simply identifiers with a reserved meaning, there is no good reason
for treating them differently from user-defined identifiers.

The arguments language designers use in choosing between reserved words and basic
symbols do not admit of any definite resolution in favour of cither. It scems to depend on the
number of keywords necded: large sets indicate a basic symbel approach may be preferable
to avoid confusion. Experience with several old Algels, with examples of $BEGIN,
‘BEGIN' and begin, indicates that care is nceded. Subtle hints are sufficient for the
machine. Perhaps distinguishing on the first letter of the word is the least objectionable,
Personally I prefer to avoid the mess and use reserved words: I do not much care for user-
names which conflict in appearance with the fixed-meaning words.

COMMENTARY

Comments are easy to dispose of. They are solely intended for the human reader, and
comments therefore ought to be written to conform to all the usual conventions of prose
text. Sentences ought to start with a capital and end with a full-stop, etc. Example in
Pascal: '

{At this point, the variable Index points to the record in the list that has the same

key as the search key. It remains to be determined whether this is the sentinel or a

correct lookup.}
This is a consequence of my next principle:

Principle 2
Upper and lower cases of letters should be used only in ways that make programs
more readable and more understandable to people reading them.

IDENTIFIER NAMING

We come to the second major problem with the naming of identifiers. There seem to be
four main classes of identifier names:

{a) mathematical symbols (x, {)

(b) single words (count, table)

MINISCULES AND MAJUSCULES 97

{c) noun phrases (x moze, apple type)

(d) verb phrases (sort the vector, print day of the week)

There are no scrious problems with the first two classes: mathematicians and prosc writers
have always preferred to write symbols and words as T gave them in the examples: in pure
lower casc. {T'o be fair, since mathematicians have a paucity of symbols, capitals are some-
times used to denote specizl objects: for example B for a matrix, but & for an integer variable.
With 2 wider range of identificrs, programmers need not resort to this.)

My classes (c) and (d) do give problems, for it is now widely recognized that space cught
to have limited significance in programming, acting as a separator of tokens. Before I turn
to the practices that have grown up in programming, let me look at natural languages.
There are two main mechanisms provided for constructing aggregates from words:

in English, for example: hyphenation

apple-pie, king-hit, out-of-doors

in Nederlands and Deutsch, for example: concatenation

buitenshuis {out-of-doors, outside the house),
Taschenwirterbiicher {pocket dictionary)

T am assuming that we are not interested in the agglutination method of stringing words
together with intervening spaces since this makes lexical parsing much more difficult.

Someone once remarked (I have lost the reference) that programming languages some-
times look like a Continental revenge for English. There is some evidence for this view:
for example, Algol 60 and Pascal make provision only for the concatenating form of ag-
glutination, while COBOL and PL/I (originating from the other side of the Atlantic) make
provision for the hyphenated agglutination. COBOL uses the hyphen and PL/I uses an
underlined space.

If I assume that Nederlanders are guite happy to write long agglutinated identifiers (an
assumption I cannot prove), it is certainly not true that English-speaking programmers are
happy with it. Only short compounds are acceptable in English, and even these are often
truncated. Identifiers such as finddistinctionnode, modeerror and pixelarray are not pleasant
to rcad, let alone long procedure names such as ensureexpressionvalueisonstack. What
remedies do we have ?

In Standard Pascal, the only remedy is to utilize the two letter cases we arc now permitted.
While all sorts of fanciful rules could be dreamed up, the only one which is sensible (and
has achieved a significant following) is to capitalize cach distinct word. To give a successful
example, the same procedure name becomes EnsureExpressionValuelsOnStack. This s
certainly better. Its only disadvantages are that it is still somewhat unnatural, and that a
desire for consistency often tempts programmers to capitalize identifiers of my classes (a)
and (b) also. There is a real dilemma here: consistency vs readability—and no way of
resolving it. Personally, T avoid the use of this device unless it is necessary, so that 1 should
leave symboltype like that, but use it in procedure names like the earlier example. The
capitalizing practice has becn around for some time, and has been used in BCPL and other
lanpuages.

However, English-speaking programmers (including Americans, and Tasmanians
amongst others) seem to prefer alternative mechanisms. I can only offer anecdotal evidence,
in the form of an experiment with students. When our Pascat compiler was provided with
the PL/I form of agglutination, but net publicized or promoted, a large number of students
discovered it and its use spread like wildfire despite scveral disadvantages relating to the
system print devices, If someone can do a carefully controlled experiment, here is a very
interesting research question.

918 ARTHUR SALE

So, I ask myself, how can we best introduce English-style agglutination into new
programming languages ? I think there are three reasonable choices:
(a) Use the minus as a hyphen
Since minus-signs are also used as operators, this option requires that we make the
minus-operator lexically distinct, perhaps by requiring separating spaces in cases of
doubt. This has a consistency disadvantage, for the plus-operator is not affected.
(b} Use the underlined space as a hyphen
This is the option used in PL/I, presumably because underlines are in the EBCDIC
character set. In practice it suffers from a number of practical disadvantages. Some
print and display devices have an awful underline that in fact runs through the
bottom of the character; thus no-one can tefl if L is underlined or not! Also, if the
lines are closely-spaced, the underlines tend to merge with the next line. Typesetters,
too, hate underlines.
(c) Use the tilde as a hyphen
No language I know uses this option, yet is is very attractive, The tilde is hyphen-
like, even in English usage, it is a standard character in the ASCTIT set, and likely
to be as widely available as lower-case letters.
There are other options which can be found in use in varicus corners of our computing
world; for example the Burroughs file names use the slash (solidus) as an agglutinator.
Examples of all these systems are given below.

SYSTEM EXAMPLES
Germanic pixelarray finddistinctionnode
Modified Germanic PixelArray FindDistinctionNode
Hyphenated pixel-array find-distinction-node
Tilde pixel ~array find ~ distinction ~ node
PL/T pixel array find.distinction_node
Burroughs convention pixel/array find/distinction/node

Personally, I look forward to the day when the tilde is made to work for its place in the
ASCII character sct. T regret that Pascal never allowed it in identifier names, for the resulting
text is very easy to read and is free of the distractions of the Modified Germanic style.

The hyphenated styles-do raise one new problem: should a hyphenated identifier be the
same as an unhyphenated Germanic style one ? Is x move the same as xmove ! My answer is
no, for the simple reason that word delimiting is meaningful. Thus ranking ~ tntact means
something different to me from ranking ~in~tact, and from rank ~in~gin~ tact {though
I would be puzzled by the last!). There are no prizes for finding other ways of breaking
rankingintact into word sequences.

FREE STYLE

Most people would probably agree that identifiers should always be displayed in the same
way, and would probably extend this to keywords too. Yet is therc a case for treating some
keywords differemly from others, or in a context dependent manner ? In fact, some pro-
grammers have adopted emphatic styles which mark significant places in the program text
by capitals. For example, the keywords program, procedure and fumetion mark distinct
units for which it is often necessary to scan. Within a program unit, label, const, type, car,
and the first begin of the exceutable statement part begin significant sections, and end closes

MINISCULES AND MAJUSCULES 919

the unit. In this style these keywords are written entirely in upper-case letters, so that they
stand out by contrast. For example:

FUNCTION power(x : real; i : integer);
VAR
xtopowercftwo, {x raised to powers of two}
result : real; {formulates result}
reducedi : integer; {residual powers not in result}
BEGIN
reducedi : = i;
result := 1.0;
xtopoweroftwo : = x;
{Establishes the invariant R1 trivially.}

END:

Note that because VAR is capitalized in this position is no argument for doing the same
with var in a parameter list. Personally, though T concede this argument, I do not do it
myself as I consider that the visual cucs of indentation and blank lines are much more
successful and quite adequate,

The other practice I have seen is a treatment of statements as though they were sentences,

resulting in the capitalization of the leading character of each statement (if it begins with a
reserved word). For example:

Fori:= 1 to nmax do
Begin
With table[i] do
If key = value then

Again, this does not do much for me, mostly because programming languages are much
more hierarchical than natural languages. The ‘sentences” within ‘sentences’ seem slightly
awkward, but not so much that T object to the practice. Perhaps this awkwardness is a
consequence of lack of familiarity; stylistic questions often get bogged down in arguments
from habit.

CONCLUSIONS

Though we know a lot more about programming than we did in the days of the birth of
Fortran, we have not come all the way yet. Even Pascal’s lexical representation is not perfeet,
and the draft Pascal Standard has appeared with very poor stylistics.

What we all need to realize, and put into practice, is that the readability of programs is
important. More important than minor implementation details or slight losses in compiler
efficiency, and certainly worth thinking about rather than mindlessly copying traditions
from the past.

REFERENCES

1. A. Addvman et al., ‘A draft description of Pascal’, Pascal News, No. 14, 454 (January 1979), and
Sufteware—Practice and Fxpertence, 9, (5} 3181-424 (1979},

2. A. H.]. Sale, ‘Pascal stylistics and reserved words’, Software—Practice and Experience, 9 (10), 821-
825 (1979).

