SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 11, 123-130 (1981)

Forward-declared Procedures, Parameter-lists and
Scope

A. H. J. SALE
Department of Information Science, University of Tasmania, FHobart, Tasmania

SUMMARY

‘This paper examines some issues which relate to the definition of scope in Pascal, and
pressures which have been brought te bear on the draft international standard for Pascal for
duplicate procedure headings for forward-declared procedures. The causes for these pres-
sures, and the conceptual integrity of Pascal are discussed. The interfacing nature of
parameter lists is examined, and the concept of ‘detergent construct’ introduced, leading to
‘detergent scope rules’.

KEY WORDS Forward-declarations Parameters Scope Pascal

INTRODUCTION

In the processing of the sequence of working drafts (ISO/TC97/SC5 documents N462
and N510) of an International Standard for Pascal,!’ 2 many comments were received
suggesting that the definition of Pascal should be changed so as to require a formal
parameter list in the second part of a procedure which has been declared ‘forward’. The
original definition, and the working drafts, require that the definition of the block of a
procedure declared ‘forward’ does not have a parameter list following the procedure
name. (In this paper, procedure is used generically to denote either a Pascal procedure
or a Pascal function, with the obvious small differences that exist.)

These comments have not been sufficiently convincing as to result in a change to the
language defined by the working drafts. The reasons for this are both interesting and
important, and illuminate some preconceptions with which computer languages are
often viewed.

THE CRITICAL COMMENTS
To understand the issues, it is necessary to understand the critics of the Pascal

definition. Their comments hinge around the provision in the language for separating

0038—0644/81/020123-08%01.00 Received 22 January 1980
© 1981 by John Wiley & Sons, Ltd.

124 A. H. J. SALE

the specification of a procedure-heading and its block-definition by the “forward
declaration’ feature, and are illustrated by the example in Figure 1.

procedure [landle (this : Thing; what . Treatment);
forward;

{ather procedure declarations)
procedure Handle;
{block of Handle}

end;

Figure 1. Example of forward-declared procedure

The critics of this particular syntax point out that the second part of the procedure is
often separated from the first part by many lines of text, if not pages. Consequently, it is
argued, the procedure-heading information is not readily accessible when reading the
text which constitutes the block. It is therefore suggested that the procedure-heading
information be repeated in the second part of the procedure and that the compiler be
required to check that the two sets of information are identical. In this context,
procedure-heading information means the formal parameter list (if any), and the
function-type (if applicable).

THE NAIVE COUNTER-COMMENT

The usual reaction of Pascal-users to this suggestion is to point out that there is an
alternative way of achieving the objective. If the parameter-list is indeed so important
that it need be put in the second part, then it can be included there within comment
delimiters. The same example is shown in this style in Figure 2.

procedure Handle (this - Thing; what : Treatment),
forward;)

{other procedure declarations}
procedure Handle { (this : Thing; what . Treatment) };
{ biock Handie }

end;

Figure 2, Example with commented supplement

Such a response is correct, but is not sufficient to completely dispose of the criticism.
It concedes the point and proposes a palliative. Nothing enforces the existence of the
comment, except perhaps some in-house programming standard which programmers
are exhorted to follow. Even worse, there is no guarantee it is right, and a few
generations of maintenance may well make it quite probable that it is not, as changes to

FORWARD AND SCOPE 125

the program cause the first heading to be altered and the second forgotten. Itis, afterall,
quite likely to be far away from the point of definition of the heading.

THE IMPLEMENTOR’S CRITICISM

A more direct criticism of the repetition proposal is that raised by implementors of
Pascal. The main issues are the size of the checking code and the definition of the check
to be performed.

Size

If the language requires two instances of a parameter-list, then a compiler that does
not check that the two are ‘identical’ is irresponsibie. Such checking must add to the
compiler’s size, but gives no increase in expressive power. The evidence indicates that
the size increment is appreciable, though naturally small in comparison to the entire
compiler.

Definition

One possibility is to insist on textual-identity: the two pieces of program text are
character-for-character identical, presumably alsc embracing line transitions. As long
as no redefinitions of identifiers in the list is possible (as would be sensible}, this would
guarantee correctness. However, an exact textual match would sit uneasily in Pascal,
since there is no other corresponding feature with this property. It would be likely that
token-equivalence (at the very least) would be considered preferable, so that the exact
number and type of token separators need not match (spaces, newlines, comments). But
this too is without precedent in Pascal, and implies that the accompanying commentary
may not match—which is exactly the problem we started out with. Yet a third proposal
is to define some sort of ‘structural equivalence’. This runs into several new problems to
be resolved; for instance which of the pairs of examples in Figure 3 are to be considered
‘identical’?

type angle = real, radius = real,
digits = 0..9; decimal = 0..9;

(a.b : real)
(a : veal; b : real)

(a : angle)
(a : radius)

(d : digils)
{d : dectmal)

(dummy : integer)
(count : integer)

(procedure p (x : real))
(procedure p (v : real))

(x : real) ; angle
(x : angle) : real

Figure 3. Similar procedure heading fragments

126 A. H.]. SALE

All these questions can be resolved if necessary, and some of them have had to be
tackled in order to define the related concept of parameter list congruity in N510,
However, what such rules do is to add to the complexity of the language, with
implications for teachers, learners and users, for implementors, and for standards-
definitions. It can be expected that this increase in complexity will have an effect also on
the general standard of correctness of compilers, especially as the checking is purely a
check and has no inherent semantics.

Thus from the implementor’s point of view, repetition of the procedure heading
information is simply a pain-in-the-neck. This view is shared by standards-writers.
The benefits for users also appear at least debatable, in view of the points raised above.

THE ABSTRACT COUNTER-ARGUMENT

All the above problems with the implementation of the repetition suggestion should
indicate to the interested reader that there is something conceptually wrong. And there
is: the danger signals are there because it violates a basic principle—that an object of a
programming language have one and only one definition. The suggestion modifies the
language to require two definitions which must then be checked to be ‘identical’, and
guite naturally this leads to all the familiar problems of a posteriori structural
incompatibility. Largely due to careful design and sympathetic standardization, Pascal
has avoided most of the structural incompatibility mess and the few examples are
recognizably due to late modifications (congruity, some aspects of conformant array
parameters, the so-called string-types).

The manifestation of the problem here is due to two major causes. Both set up mental
blocks so that the obvious solution cannot be seen, and they deserve individual
attention.

Programs as structured objects

There is a tendency to think of a program as a sequence of tokens. Of course, this is
how language designers lay out the syntax and how standards specifications are written.
But a program is something much deeper than that—it is a structured object.

T'o illustrate, conceive of the example procedure given earlier as being embedded in
an entire program. At the level that it is defined, the only artributes of the procedure
that are relevant to the embedding matrix of text are the procedure name, the type(s) of
the parameters and whether they are variable or value parameters, and the function-
type (if relevant). Thus the heading should seem as though viewed through virtual red-
and-green 3-d spectacles, so some parts become indistinct and fuzzy:

procedure Handle (¥*%* ;. Thing, **** : Treatment),

1gnoring a single complication (the possible existence of non-local gotos), the rest of
the procedure text is invisible and irrelevant, as though hiding behind the heading
which is its external interface.

If we seek to find out about the procedure, then we shift the focus and colour of our
virtual spectacles, and we can view the identifiers that denote the formal parameters,

FORWARD AND SCOPE 127

the definitions and statements of the block, and the interfaces of any further
refinements. This is closer to a realistic model of a program, and if this is adopted as the
model then the picture of forward-declared procedures changes dramatically!

All of a sudden we see that the view of ‘normal procedures’ is perhaps not so obvious
as had been thought. The heading of a procedure and its block (in Pascal terms) are two
distinct things, which distinctness is preserved by the forward-declared procedure
form, The ‘normal’ form in which the procedure heading and its block are contiguous
can be seen to be a convenient short-hand notation; syntactic sugar if you wish. The
process of squashing the structured object called a program into the linearized and
flattened form we know as Pascal programs is what creates the conflicts we saw earlier.
Or do we still see them as conflicts?

Conventional Pascal style suggests that procedures are not declared forward unless
this is essential, and then when a mutually recursive situation does arise only the fewest
number of such forward declarations are made. This should now be considered to be a
bad practice, for if two or more procedures are mutually recursive then declaring them
all as forward procedures in the same place (with appropriate commentary} clearly
indicates their mutual interdependence. That this is important can be easily under-
stood when it is realized that the correctness of a group of mutually recursive
procedures depends on all the members of the group.

The other insight is that a procedure should have only one heading, wherever we
have to put its block so that it can be compiled conveniently. If two headings have to be
introduced by the flattening process, we should do this only with the utmost reluctance.

Programs and listings

In stark clarity, we can now see the second flaw in the argument for repetition. It was
obviously assumed by the critics that a program and a listing are equivalent, for they
were arguing for a change to the syntax of Pascal while pointing to problems with
reading a listing (or screen). But programs are not identical to listings. A Pascal
program is a representation of an abstract program we have conceived, and a listing or
screen display is still more a representation of a Pascal program. It is not ‘the program’
itself. Even the most primitive compilers produce listings that have more features than
are in the program text, and more sophisticated tools for browsing through programs or
producing structured printed forms are easy to conceive.

The answer to the critics is now quite clear: the notion of changing the language to
have two headings is rejected because it would degrade the conceptual integrity of
Pascal. If it is important to see the procedure-heading near the text it is the interface for,
then it is the compiler’s job {or a software tool’s job) to reproduce on the listing at the
appropriate peint the definition it has of the heading.

Armed with this idea, we can generate a plethora of possible actions that industrious
implementors might try out in the market-place:

* Print out the heading at the location of the second part of a forward-declared
procedure only.

* Print out the heading at the ‘begin’ and ‘end’ that delimit the statement-part of a
procedure, perhaps with the first conditional on the presence of local procedures or
functions, and the second conditional on statement-part length.

128 A. H.]. SALE

* Print out at the top of each page an indented form of the headings of all enclosing
procedures at that point in the text,

* Provide a software tool which documents all headings and the locations of the
headings, corresponding blocks if separated, and statement-parts if separated by
intervening procedure and function declarations.

Clearly there is no problem when you look at the issue in the right way. To
demonstrate this, the software tool outlined in the fourth of the possible actions has
been implemented.* It is also interesting to note that the information a compiler needs
to check whatever definition of ‘identity’ is adopted, is exact/y the same information
needed to allow reproduction of the parameter list in the listing! Consequently the
problem only exists for those who insist that one tool should suffice for all purposes they
can conceive, In this case, programming language syntax is clearly the wrong tool.

THE DETERGENT MOLECULE VIEW OF PARAMETERS

Having come this far with the examination of the original problem, it is appropriate to
examine some further insights into parameter lists thrown up by Pascal. It has been
argued that the procedure heading is an interface between the embedding matrix or
medium, and the internal details of the procedure block. A very close analogy, which
will be used to name the concept, is that of a detergent molecule. Such a molecule has a
rnumber of chemical chains {or sites) which have an afhnity for water, and are ‘soluble’
in it. Other chains or sites have an affinity for oil or grease. The two kinds of tails are
called hydrophilic (water-loving) and hydrophobic (water-hating).

A procedure heading 1s therefore a detergent construct. It contains parts which have an
affinity for the outer medium (procedure-identifier, parameter list types, function-
type, vaniable- or value-parameter kinds) and which are all the outer medium can see,
and parts that have an affinity for the interior of the procedure (the formal parameter-
identifiers).

Examining this detergent construct between us and the procedure block, it can be
seen that the notion of ‘scope’ is bound up with the two sides of the interface. The
parameter-identifiers properly belong in the scope of the procedure, for they are not
known outside it. On the other hand, the sutwards-facing identifiers properly belong in
the enclosing scope, for the procedure is not usable unless its types and identifier are
known. What this suggests is that the scope of the interior of a Pascal procedure (or one
in a Pascal-like language) should be recognized as including all formal parameter-
identifiers and the procedure block, but not any other component of the procedure-
heading.

The only objection to this is that the portion of text over which the scope reignsis not
contiguous: the parameter-list portion consists of separated regions, as indicated in
Figure 4. The implementation of the scheme would not be difficult, and would simply
entail controlling the apparent scope level while scanning the parameter-list, That the
suggestion 1s reasonable can be seen by briefly examining the corresponding situation
in Algol 60. In that language, all types were represented by word-symbols of totally
immutable meaning over the whole program and both the procedure-identifier and the
function-type (if appropriate) preceded the parameter-list. Thus a simple textual
division achieved exactly the same effect that in Pascal requires a little more work.

FORWARD AND SCOPE 129

Y, 1
procedure Handle (this l Tkmgi what : Treatment);
J L

const

{Mw.k of Handle}

end!
1

Figure 4. Detergent scope in Pascal

Scope is not, of course, defined this way in the current draft internatienal standard
for Pascal. For one thing, very few (if any) compilers for Pascal implement scope this
way at present, and a standardizer must be very sure of his ground before invalidating
all current compilers! However, scope has to be well-defined, and the definition
contained in the Working Draft presented to the Turin meeting of ISO/TC97/5C5
(NS510) contains an acceptable compromise which is very close to the position stated
above; in fact it is slightly more restrictive in that there are a few unpleasant procedure
headings which it is impossible to write under N310’s rules, but would be permissible
under Detergent rules. N

This solution to the scope problem for parameter-lists states that there are two
regions {ranges, places, text-fragments) of a program which belong to a procedure and
which may have scope properties. The first is the parameter-list, and the second is the
procedure-block. A definition of a formal parameter-identifier then constitutes two
definitions:

1. As a parameter-identifier within the parameter-list scope, and
2. As a variable-identifier within the procedure-block scope.

Both the N510 rules cutlined here, and the Detergent rules, allow for scope rules to
be enforced uniformly by both one-pass and multi-pass compilers, using rather simple
algorithms.* Pascal compilers that have inherited from Pascal-P an inability to
distinguish programs with correct or incorrect scope usages can therefore be altered
slightly so as to be more correct, and the concept of scope is kept as simple as possible.

A BRIEF COMPARISON WITH ADA

By way of contrast, a brief lock at the structure of Ada® in these areas is interesting. The
kev features to note are:

1. The forward-declaration feature of Pascal is also in Ada. However, Ada requires
full repetition of the procedure heading (called subprogram specification} if the
subprogram-declaration and subprogram-body are separated.

2. Ada requires that the two specifications ‘must be identical’, but the definition of
identity is elusive. The most plausible interpretation seems to be token-identity.

3. The concept of scope is present in Ada, but it is not the same concept as that of
Pascal; indeed the resemblance is slight. In Pascal one can talk about the scope of
the interior of a procedure, but in Ada virtually each identifier has a different
‘scope’. For instance: “The scope of a declaration given in the declarative part of a

130

A. H.]J. SALE

block, subprogram body, or module body extends from (and includes) the
declaration up to the end of the corresponding block, subprogram, or module.’,
which is one of nine scope rules.

. There is an attempt to achieve the effects of normal scope rules by the addition of
restrictions: ‘An identifier used {as opposed to being declared) in a declaration (or
component) list may not be redeclared in subsequent declarations of the same
list.” Conceptually, therefore, the use of an Ada identifier causes it to assume an
immutable state for a particular region of text—a sort of instant reserved word.

. The scope rules for Ada’s formal parameters are similar to the treatment in N510
for Pascal, as far as can be determined. The published descriptions of Ada do not
give sufficient formalism to be able to determine if they are identical.

. The formal parameter-identifiers are conceptually knowable and known to the
embedding procedure since they may be used in actual procedure calls to identify
the parameters. The closest analogy in Pascal is that of the field-identifiers of a
record-type.

With the exception of points 5 and 6, these features are distinctly unabstract. The
conclusion must be drawn that Ada’s treatment of procedure headings and scope are
based on the linearized view of an Ada program, and are not one of those Pascal-based
features that one reads about. Insisting on a linearized, or flattened, view of a program

can

be likened to believing in the Flat Earth Theory . . .

ACKNOWLEDGEMENTS

This work was partially carried out in Turin, Italy while attending an [S0Q/TC97/SC5
meeting, and partially while on sabbatical leave at the University of Southampton,
England. The arguments and co-operation of W. B. Price, A. M. Addyman and J.
Miner are gratefully acknowledged.

REFERENCES

1. A, M. Addyman, ‘Specification for Computer Programming Language—Pascal’, Document
ISOITC7I8C5 N462, February 9, 1979. {Reprinted with slight differences in Pascal News No. 14,
IEEE Computer, and Software—Practice and Experience.)

. A. M. Addyman, ‘Specification for the Computer Programming Language Pascal’, Dwcument

18O TC97(8C5 N510, October 4, 1979,

- A. H.]J. Sale, “The Design of a Software Tool’, Department of Information Science Technical Report,

University of Tasmania, 1980.

. A_H.]. Sale, ‘Scope and One-Pass Compilers’, Australian Computer Science Communications, 1 No. 2,

(April 1979), (Reprinted in Pascal News No. 13).

. .8, Department of Defence, ‘PRELIMINARY ADA REFERENCE MANUAL?’ and ‘Rationale

for the Design of the ADA Programming Language’, SIGPLAN Notices, 14, No. 6, Parts A and B,
{June 1979).

