Is Disciplined Programming Transferable,

and is it Insightful?

By Charles Lakos and Arthur Sale®

This paper examines the disciplined programming methodology of E.W. Dijkstra which
advocates the development of correctness proofs simultaneously with writing a program, (if not
before) in the context of two problems which faced the authots recently, The paper applies the
thought processes advocated by Dvjkstra to these problems and indicates the insights that the authors
gained from this. In both cases algorithms new to the authors were derived, and the properties of these
are also examined. The paper should be interesting to those concerned with increasing the

effectiveness of

ogtamuning, for it demonsirates that the techniques advocated by Dijkstra are

indeed transferable to other progrzammers, and that this transfer yields better insight into the activity

we call programming.

KEYWORDS AND PHRASFS: Disciplined programming, programming methodology, tree

traversal, text scarching,

orithm analysis, correctness proofs.

CR CATEGORIES: 3.74, 4.0, 5.24.

I. INTROPUCTION

The purpose of this paper is simple: it is to
demonstrate that the programming technigues advocated
by E.W. Dijkstra in ‘A Discipline of Programming’ are
(a) transferable to other programmers,

(b) useful and insightful, and

(c) important.

Such a simple aim is however very difficult to achieve, since
we have to steer a narrow course between tigorous
formality and loose reportage. The first will lose us readers
we wish to interest in these ideas, while the second will
disgust computer scientists with a taste for formality.

We have therefore chosen te describe attacks on two
quite distinet problems, illusirating how we came by them
and how we tackled them, at a level of description which is
intermediate between the two extremes indicated above.
Qur description of invariants and correctness proofs are
aimed to be understandable to ordinary programmers so as
to make the paper generally useful, but leaving sufficient
hints and clues so that the formal gaps can be filled in
without difficulty by those with the necessary expertise.

The twe problems we shall illustrate are quite
common programming situations, and were not contrived
for the purpose. In fact they arose independently in the
course of the work of each of the joint authaors.
Nevertheless they serve as admirable examples of the power
of clear thought in programming and, we hope, illustrate
the development of correctness proofs together with the act
of programming. The first example calls for traversing a tree
data structure (commeonly found in symbaol tables, file
hierarchies, search situations, databases, and many other
places), while the second looks at the problem of searching
a piece of text for occurrences of a given word or phrase
(increasingly important in information retrieval).

It is impossible to encapsulate all the ideas expressed
in ‘A Discipline of Programming’ in this introduction for
readers unfamiliar with Dijkstra’s work; indeed it would be
naive to think anything less than a book would do.

“Copyright & 1978, Ausitalian Computer Soviety Ing,

Genera! permissien 1o republish, but nou for profin all or part of
this material is eranted, provided ther ACHs copyright notce 1%
eiven and that reference v made to the publication, to 1ts date of
tssue, andk to the tact thut reprinting priviieees were sranted by

"

permission of the Australiun Computer Socicty.

Obviously readers who have carefully read this work will
benefit from our discussion, as perhaps will those who have
skimmed the ideas which are most apparent. However, so as
not to neglect the rest of the computing community, we
feel we have to try to express some of what it is we are
promoting:

(a) the notion that developing a correctness proof
simuitaneocusly along with the act of programming is
the best way to program;

(b) the promotion of clear thought in programming,
including the expression of exactly what vonditions
(post-conditions, pre-conditions, loop-invariants, etc)
are supposed to hold at any particular execution
point of a program;

{c) the acquisition of some wsefid design rules which aid
the programmer in generalizing a given post-condition
(the statement of the problem) so as to develop a
program that automaticaily particularizes the
generalization; and

{d) the removal of obsessions with control flow by the
introduction of guarded commands which are
executed only when the corresponding (boolean)
guard conditions are true, and then sometimes
without strict sequencing requirements.

“We shudder at the simplication of the above. but

hope that it will help. In most of what follows, the point

of (d) is not relevant, and the major Dijkstra construct we

shall use {a simple do-od loop) can be given an exact

equivalent in a conventional programming language, Table 1.

The point behind the do-od loop in its full generalization

and in these equivalents of a simple case lies in three simple

facts:

(a) there is some logical condition (a loop invarianr)
which is true when the loop is entered, every time
around it, and when 1t is left;

(b) each time around the loop some finite progress is
made towards a definite goal . (this ensures
termination); and :

(c) when the loop terminates we know the guard
condition (just b above) must be false.

We shall also have occasion to use Dijkstra’s if-fi construct.

In this construct, the guards (boolean conditions) are

evaluated and the statement corresponding to one of the

true guards is executed {an error occurring if there is no

*Both with the Department of Information Science, University of Tasmania. Mawscript received 315t January 1978. Revised version received

10th May 1978,
The Australian Compteter Journal, Vol 10, No. 3, Augusr, 1978

87

Is Disciplined Programming Transferable

TABLE 1

DO-0OD LOOP

dob +
sl;
s2;

od;

PASCAL EQUIVALENT

while b do
begin
s1;
52;

end;

FORTRAN EQUIVALENT

I IF(NOT.b)GO TO 2
si

82

GOTO

true guard). Since all our programs use guards which are
mutually exclusive, we can give another equivalence which
will suffice for this paper (see table below). We should
however add a wariing that if we explain Dijkstra’s
constructs this way, this does not mean that the programs
should be implemented directly by our equivalences. The
notation is currently one for thinking in, not for coding.

TABLE 2

ITF-FI SELECTION

if bl »sl;
b2 » 52;
...

fi;

2.1 A First Problem: Traversing a Tree
Tree structures occur quite frequently in computing

problems, and the first program to which we wish to apply

Dijkstra’s ideas arises from a need to traverse a tree (or in

other words, to apply some procedure to every node of the

tree structure). Examples of practical situations where this
is needed often occur in system software:

(2) if a compiler symbol table is stored as a tree
structure, then printing its contents is 2 tree traversal
problem; and

(b) if file names in an operating system are qualified by a
hierarchy of directory qualifiers, then inspecting all
files in an automatic archiving process is also a tree
traversal problem.

Recursive algorithms to solve this traversal problem are
well-known, and easy to derive, since a tree structure is a
recursively defined data structure. To make the problem
more interesting, and the solution more useful, we shall
look for non-recursive programs to solve this problem. This
will make it usable in FORTRAN and assembly code
environments.

To make the succeeding development simpler, we
need 1o define some notation. Let us agree to describe our
programs in a PASCAL-ike notation, so that we can
describe the procedure heading of the program we are
trying to write as:

procedure traverse {T:tree ; procedure P);
and it is supposed to apply the procedure £ to every node
of the tree pointed at by T in turn. Since the representation
of the tree is of minor importance for the algorithm, we
shall simply use the following notation to access parts of
the tree T (derived from a notation of J.B. Hext, 1972).

NOTATION | MEANING

T the value of the root node of T

5T the degree of the root node of T (ie.
the number of subtrees)

T[] the first subtree of T

T[2] the second subtree of T

T[nl the n-th subtree of T

PASCAL EQUIVALENT

if bl then s1
else if b2 then 52

else aborttheprogram;

FORTRAN EQUIVALENT

IF {.NOT. b1} GO TO 1
sl

GO TO 99

1 IF (NOT.122)GO TO 2
52
GO TO 99

n STOP7777

88

2.2 Massaging a Recursive Algotithm

To contrast approaches, we shall first employ a
classical approach. Since the problem is trivia) if recursion is
allowed, this immediately suggests starting with a recursive
program and manipulating (“massaging”™} it into a
non-recursive form. Accordingly, let us start with the
following recursive solution to the problem, which you
should understand before we go further:

procedure traverse(T:tree; procedure P},

{ recursive version R1}

var i : integer;

begin | process the root node }
P(«T); :
{process the subtrees }
fori:=] to 5T do

traverse (T [i}, P);
end; { of procedure traverse}

This simple algorithm effects a traversal by subtrees. In
other words, for every node in the tree, the first subtree of
that node is completely traversed before the second subtree
and so on. Thus with the tree of Fig. 1 the order of

The Australian Computer Journal, Vol. 10, No. 3, August, 1978

Is Disciplined Programming Transferable

Figure 1 A tree example

traversal of nodes is: A,B,E.F.C,.D,G.

In contrast, a traversal by levels would traverse all the
nodes at level 0 before the nodes at level 1, etc. Then the
node order for the above example would be:
AB,C.D.EF,G. To produce this latter ordering is genezally
regarded as more involved since the processing cuts across
the natural definition of a iree in terms of subtrees, One
normally expects the tree to be differently represented if
traversing by levels is to be an important operation (Hext,
1972; Knuth, 1968}. We shall not consider this point
further unti we reach section 2.4.

Returning to the recursive algorithm, if we are to
make it nom-recursive then the normal approach {c¢f Bird,
1974) is to make explicit what has so far been implicit —
the stack which has held the activation records. To simplify
the discussion we define the following stack primitive
operations:

NOTATION MEANING

stack § is initialized to be
emply

clear(S);

load(5,ay,34,...) loads a; ,a;, etc. onto stack

S in a left- to right order.
unload(S,a;,az,...) unioads a,,a,, etc. from stack
S in a right-to-left order.

a boolean function that retumns
true if stack § is empty, and
false otherwise.

empiy(S)

The stack operations which have so far been implicit in the
recursion must now be made explicit. They consisted of
saving parameters and local variables on the stack prior to
the procedure call and restoring them at procedure exit.
The tree parameter (T) and local variable {i) are the only
items which change with each procedure invocation and
therefore they are ihe only ones that need to be saved on
our stack.

The Australian Computer Jowurmnal, Vol 10, No. 3, Aagust, 1978

Thus, in eliminating the recursive procedure call, the
call itself will be repiaced by code to load the cusrent valyes
of T and i onto the stack, reset T (as the new “parameter”)
and jump to the start of the procedure (the new “recursive
call™). Then at “procedure exit”, values of T and i must be
unloaded and the loop continued. However, since it is not
normatly possible to re-enter a loop construct once it has
been exitted, the loop is rewritten using if and goto
statements. In other words, the loop

fori:=1t08TdoS;

is rewritien as

i=1;
loop: if i < 8T then
begin
S;
i:=it+l; goto loop,
end;

These transformations result in our first non-recursive
solution {N1).

01 procedure traverse (T: tree; procedure P);

Q2 non-recursive version Ni}

03 bel start, subtree, exit;

04 var i integer;

05 S :stack;

06 begin

07 clear(S);

08 start: {process root and then initialize for subtrees}

09 P(>T);

10 i=1;

11 subtree: {try next subtree unfess all have been provessed }

12 if (i <8T) then

13 begin .

14 {save current position and try next level}
-15 10ad(8,T.i);

16 T:=T):

17 goto start;

18 end;

19 { no more subtrees — go back a level }

20 if empty(S) then goto exit;

21 unload(8,T,);

22 ii=itl;

23 goto subtree;

24 exit:

25 end: {of procedure traverse)

While this algorithm is certainly effective, it may offend
those of us with an aesthetic sense with its liberal
sprinklings of goto statements. Can these be eliminated? If
we look at the control flow of the program we have written
(Fig. 2), it breaks up into two overlapping loops. We can
achjeve a tidier solution either by nesting loop2 within
loopl, or vice versa. The results of these two approaches are
given below; the latter solution requires the loading of a
dummy value.

89

{3 Disciplined Programming Transferable

procedure traverse(T:tree; procedure P);
{ non-recursive solution N2}
label exit;
var i integer;
8 : stack;
begin
clear(S);
while true do
begin
{process root and initialize for subtrees}
PfaT);
i:=1;
{find next subtree to be processed }
while (i >5T) do
begin
if empty(S) then goto exit;
urdoad (8,T,i);
p=itly
end;
{ save position and try deeper level}
load(S,T.i);
T:=TJi];
end;
exit:
end; { of procedure traverse)

procedure traverse{T:tree; procedure P);
{non-recursive solurion N3 }
vat 1:integer;
S 1 stack;
begin .
{initialize stack and process the root }
clear(S);
load(S.nil,);
P(«T):
i:=1;
{continue while subtrees remain }
while not empty(S} do
begin
follow subtree
while (i < 5T) do
begin]
{ save position and go a level deeper}
load(8,T.i);
T:=Tli];
P(T);
T .:1 .

end,;
{no more subtrees — go back q level}
unload(S,T.i);
=it
end:
end; {of procedure traverse }

As this now stands, N2 appears to be the less attractive
solution: it contains an extra goto statement together with
the unattractive construct “while true do ...” (or forever
do ...). Yet if the tree traversal is to be a search for a
particular node (“nut” say) then the ocuter loop of N2
becomes

“while (aT #nutydo .. .”

This modified form of N2 is the one derived by I.B.
Hext (1972). It is also the one which can be modified so
that the search can always be guaranteed to terminate by

90

entry

8-10

loop 2 13- 18

11-12

21- 23 loop 1

19-20

L

exit

Figure 2 Control flow of program N1

encouniering a séntinel placed in the tree thus making
redundant the test for an empty stack. (This is the sort of
approach taken by Wirth, 1976).

Program N3 has its flaws too. For example it contains
a dummy load onto the stack simply to satisfy the
boundary conditions.

So, we have derived two non-recursive tree traversal
algorithms by transforming a recursive solution. The
principal advantage of such an approach is the simplicity of
the original recursive solution, and our confidence in its
correctness. If all the transformation steps can be proven to
be allowable, then the original together with the steps can
be considered to be a cormectness proof for the
end-program. As such this is a respectable and very useful
technique. Unfortunately, the transformation process can
be long and involved if an attractive end-product is desired.
This massaging serves also to dectease our confidence in the
correctness of the final solutions, for each manipulation
must preserve the essential nature of the process and its
correctness. Can you be as confident that N, and Ny are
correct as you can be about R, ?

This is a very serious objection to the tzansformation
process, since it will manifest itself in a debupging problem
if we cannot be certain that our programs are indeed
correct. This is exacerbated in the example by the
modifications making the transformed algorithms look little
like the original R1; this introduces uncertainty as to the
precise significance of each statement.

The Ausiralian Computer Jowrnal, Vol. 10, No. 3, August, 1978

Is Disciplined Programming Transferable

2.3 Starting from Scratch

We therefore propose to attempt to derive a
tree-traversyl algorithm using Dijkstra’s notation and
thought patterns (as far as we can reproduce them). After
this has been done, we can compare the results, Any readers
who are familiar encugh with Dijkstra’s ideas are urged to
attempl their own solutions to the problem before reading
further since this is sure 1o increase awareness of the tasks
involved.

Following Dijksira’s methodology, we should look at
what is to be achieved, and formulate an appropriate
post-condition which is capable of being generalized in
moving back further from the end-result. Suppose we take
this simply as:

R = all the tree nodes have beern processed

To achieve this pust-condition, it is not difficult to deduce
that one or more loops ate going to be required, but the
choice of loop invarianis is not quite as obvious. From our
experience or intuition, let us suggest that a stack is going
to play some part in this algorithm. (For consistency we
shall retain our earlier programming style and stack
primitive operations; for although it is trivial to turn these
into Dijkstra’s vector operations, Lhis will destroy some of
the structure of what we are doing.) A stack is normally
used to record partially processed items, and so it appears
natural to suggest that an appropriate invariant for an outer
loop of the program would be:

P; = rhe sitack holds the trees still 1o be processed
fwith the understanding that if a tree s
recorded as unprocessed, all iis subtrees are
unprocessed too)

(Clearly then, the loop will conlinue while the stack is not
empty. Hence we arrive at the program fragment following,
which is written in a blend of Dijkstra’s notation and
PASCAL:

{put the trec on the stack — establishes P}
clear(S):
load(S.T}):
do (not empty(3)} >
remove an unprocessed tree |
unload(s,T);
{process the root node)
P(xT);
{re-establish PI}
<stack the subtrces>;
od;

The initial load directive establishes the invarant to begin
with. Then. each time around the loop, the next subtree to
be processed is removed from the stack, i root is
processed, and its subtrees are stacked for later processing,
thus te-establishing the invariant P,.

[t is not difficuit to see that the loop will t¢rminate
since the number of nodes to be processed decreases by one
each time uround the ioop. Therefore provided the trec is a

The Australien Computer Journal, Vol 10, No. 3, August, 1978

finite one, termination is guaranteed. Since we are then
assured that the guard condition is false, it follows that the
invariant taken together with:
not empty(S) = false
Le. empty(S) = true

implies the desired postcondition Rj. It only remains to fill
in the details of ‘stack the subtrees’, and this is simply
done:

{Df,fkstra style version D1}
{initialize, establish P1}

clear(S});
loadiS.T);
do (not empty(S)) >
unload($,T);
P(xT);
i=5T;
{stack the subtrees}
do (i #0)+
load(S.T[i] };
i;=i-1;
od;
od;

Readers will have noted that the subtrees are stacked in
reverse order, so that they will be unloaded, and therefore
processed by P, in left-to-right order. (In other words we
are preserving the behaviour of our earlier ulgorithms in
that the first subtree is processed before the.second., etc.).
You may be struck, as we were, by the simplicity of the
solution. Furthermore, the derivation was supported by
theoretical considerations, and we are guaranteed of its
correctness by our reasoning. Qur level of confidence that
this solution is correct is much higher than with the version
N2 or Na.

Having created a solution, we might still try to
improve on it. We obscrve, for example, that we couid
improve the storage efficiency of the algorithm. Each time
around the outer loop we save all the subtrces {as pointers
perhaps) on the stack. Instead we could record a pointer o
the root node, and the number of the next subiree to be

 progessed: this is similar to our approach in converting

algorithm R; to Nj. Then if we assume a peinter and an
index take the same storage space, we shall use less stack
space if the average node branching ratio is less than two.
(In fact, witk a homogeneous tree of degree d and height h,

hol
this approach uses (2xh) stack elements and 4_2{)(1‘+l
e

stuck accesses whereas the earlier solution used a maximum

of (dxh — h+1) stack elements and 2 fﬁ d' stack accesses.)
i

The cuter invariant will need to be refonnulated to
become: ;

P2 = the stack contains an indication of the subtrees
to be processed, such that a pair, (T, [) on the
stack implies that subtrees Tfij, T{i+1], ...
TI6T] are still to be processed.

The results in the program:

91

Is Disciplined Programming Transferable

{ Dijkstra style version D2}
{initialize — establish P2}
clear(8)

P{«T),

{save indication of subrrees}
if (6T = 0) > skip;

(8T > 0) »load(S.T,1);

it
do (not empty(8)) +
unload (S,T,i):
{save remaining subtrees, if any}
if (i = 8T) + skip;
UG < 8T) > load(S,T,i+1);

i;
{follow this subtree}
T:=T{i];
{ process irs root)
P(«T),
{ and save its subtrees }
if (6T = 0) + skip;
DT > 0)» load(8.T,1);
fi;

od;

We make one final observation. The algorithm D, is
formulated in terms of subfrees. Since the entire Lree is not
itself” a subtree, the root must be processed outside the
loop. To eliminate this the invariant must again be altered
giving P3 (below) with the resulting solution D5

P; = the mree T (provided it Is not nil) is still to be
processed, so are the subtrees indicated on the
stack, where (T} on the stack implies that
subtrees Tfi+i], T{#2], ... Tf8T} are still o
be processed.

{ Dijkstra style version D3}
clear{S);
de (T # nil) »
{ process a node }
P(xT);
{and its subtrees)
load(S,T,0);
T:=nil;
{1 (T=nil) and not empty (8) *
{process a subtree}

unload (8,T.i);

ir=i+1;

if ({i<6T)>
10ad(S,T.i);
T:=Tli];

O (=81}
{subtree completed}
T:=nil;

fi;

od,

2.4 Using a Queue

When algorithm Dy was originally derived, the use of
a stack seemed ‘natural’, preconditioned as we were by the
existence of other known solutions. However, the form of
derivation of this version highlighted an obscure possibility:
what other structures could be used to hold subtree
information as yet unprocessed? Clearly stacks, queues, and

92

even trees! Let us explore the possibility of replacing the
stack in algorithm D; by a queue. To do this we shall need
some new primitive queue operations:

NOTATION MEANING

open(Q)
join{Q.ay.az. - -) -

queue Q is initialized 10 be empty.
add a;, a3, etc to queue Q in left-
to-right order.

remove ap, a, ¢t¢ from gqueve Q in
ieft-to-right order.

a boolean function that returns true
if queue Q is empty, and false

leave(Q.uy,33,. . .}

empty(Q)

otherwise.

We can now derive program version Dy:
{Dijkstra style version D4}
open(Q};
join(Q,T); *

{fniriah‘zed, established P}
do (not empty (Q)) +
leave(Q.T):
P(aT);
i==0;
{enqueue the subtrees }
do (i#6T) >
i:=itl;
join(Q.T{il ks
od;
od;

To illustrate the conversion of this Dijkstra-like notation
inte a practical program, a PASCAL program equivalent 1o
it is given in the Appendix.

Astonishingly perhaps, this solution turns out to be a
significant one — it results in the tree being traversed by
levels, instead of subtrees. The result is simple, beautiful,
and apparently not widely known. We referred to traversal
by levels in section 2.1, and indicated that the common
view was that this required a special data-structuring, se
that the structure should reflect the operations commoenly

" required. Here however the transition has been achieved

almost painlessly: apparently the only price to pay is the
size of queue required whose maximum size is proportional
to the maximum width of the tree.

2.5 An Examination of this Problem

So far we have been considering the production of a
non-recursive algorithm for tree traversal. We found that if
we modified a simple recursive solution, the indirect nature
of the approach meant that we did not have a very good
grasp of the end-product, and consequently our confidence
level in our ability to avoid mistakes {in proef or in coding)
suffered. .

In contrast, the use of Dijkstra’s approach to
programming, once we had mastered the change in
thought-pattern required, yielded better results — the
resulting programs were neater and the accompanying
development of a proof while we were programming meant
that we could be very confident of the result. As an added
bonus, we found that the same basic solution could vield
gither a traversal by subtree, or a traversal by level,
depending on whether a stack or a queue was used to store

The Austrelian Computer Jowrnal, Vol. 10, No. 3, August, 1978

Is Disciplined Programming Transferabie

the unprocessed subtrees. The discovery of this new (to us
at least) solution is directly traceable to our better
understanding of what we were doing, and of the decision
freedom we had at each point.

1t is interesting to go back and ask ourselves where we
went wrong in our traditional derivation of tree traversal
algerithms, for the recursive algorithm R, exhibits the same
compelling elegance as the Dijkstra-style algorithm D..
indeed, this is the clue, for the two algorithms are very
similar and have the same invariant and proof structure.
The only essential differences are that R, processes one
node and initiates the processing of the associated subtrees
cach recursive activation whereas D, does this each time
round the outer loop. Other than that, they are identical.
They both reflect the basic unit of the data structure, viz. a
node with a set of subtrees. The more we depart from this
ideal and the more we become obsessed with control flow
and the details of the algorithm, the messier our programs
become and the weaker is our grasp of what the algorithm
was trying to do. We think that such insights must be
chatked up as a plus for the techniques we used because the
discipline of identifying and writing down the invariants
and post-conditions allowed us to keep the basic tree
structure in mind during the whole process, and
consequently the derived programs reflected the structure
of the dats. By contiast, though it is not impossible to go
from pragram R; to our D;, it is very casy to be
side-tracked by some detail of the transformation.

text:

NEVERTHELESS, Till. TIEME OF TIIE BIG BAD WOLF RLCURS IN THE Folg

i LITEKATURE OF EASTERX EUKOPﬂ

Figure 3 [Hustrating the text-search or pattern-match problem.

3.1 The Text-Searching Problem

As a second example, we shall look al the problem of
searching some text for occurrences of a particular (smaller)
piece of text. Suppose that we have two objects declared:

var
text : array|!..M] of char;
word : array [1..N] of char;

Fig. 3 illustrates onc possible situation. To maske the
problem formulation general and similar to the previous
one, assume that we are asked to apply a procedure P to
every occurrence of ward in sexi. Thus if we want simply
to count the occurrences, or print them in context, or take
some other action, we can supply particular versions of P
for our needs. Thus we can define a PASCAL-ike
procedure heading for the program we are going 1o write:

ptocedure search {text,word : array of char;
M.N : integer;
procedure P);

The Australian Computer Journal, Vol 10, No. 3, August, 1978

This is a famous problem and many algorithms have been
devised to tackle it. We can first exhibit the most obvious
solution, which is one which appears to be derived by mest
beginning programmers faced with this problem.

{simple-minded search: version S1}
for i:=1 to (M-N+1) do
begin

j:=0;
while (j # N) cand {text[i+] = word[j+1]) do
begin
ji=pLs
end;
if (i = N) then P(1):

end;

It should not need much explanation, except perhaps for
the connective cand (conditional-and). This connective is
similar to the familiar and for logical algebra, except that
the right term of a cand is evaluated only if the left term
proves to be true. Assuming that if-then-else s evaluated
straightforwardly, the following equivalence holds:

(bl cand b2) = (if bi then b2 else false}

Program S, is however a very poor algorithm. Its best
performance requires it to inspect (M-N+1) characters,
while its worst performance requires the inspection of
approximately (M x N) characters. We have given this
algorithm for comparisen purposes, and because most
pecple scem 1o think of it first. It is instructive for the
reader to prove it correct, and to deduce what properties of
text and word evoke the best- and worst-case performances.
Dijkstra, toc, has tackled this problem in ‘A
Discipline of Programming’, and a short but very perceptive
chapter (No 18) is devoted to it. The solution naturally
proceeds by specifying a post-condition R; from the
statement of the problem, intuiting that a loop is needed,
and generalizing R, to give Dijkstra’s outer invariant R, :

R; = all occurrences of word in text have been
processed by P.

Ro = afl occurrences of word which have Tts first
character in any of text positions 1 to § have
been processed by F.

I is interesting to note in passing that this is exactly
the same invariant needed to prove 8, correct! Thereafter,
however, the two solutions part company. The
simple-minded search simply advances i by one (cautiously)
each iteration, and uses none of the information which may
have been obtained from previous match attempts.
Dijkstra’s program is however based on advancing i by as far
as is safe to go based on the available evidence, and using
that evidence also to begin matching as far advanced as is
warranted. Necessarily this involves pre-analysis of the word
to set up a table of safe increments & (indexed by the last
depth of successful matching), and Dijkstra gives alse an
algorithm to create this table. Since Dijkstra’s treatment is
already available, we exhibit the algorithm for searching
without comment, except to say that it inspects of the
order of M characters in all cases, and that we have slightly
modified the solution to accord with our cenventions.

93

Is Disciplined Programming Transferable

{ Dijkstra-search . version 82}
<imitialize table 4>
ij = 1.0
do (i < (M-N+1))+
do (j # N) cand (text[itj] = word [j+1])~

J=jl
od;
fG=N)y> P(i);
| 1 =l <[]
Qo <j<Ny> ij=id[j],jdf];
O¢ =0y~ =it
fi;

od;

3.2 The Skip Algorithm

The initial impetus to tackle this problem came from
a paper written for publication by Geoft Dromey
{University of Wollongong, 1977). The algorithm proposed
therein {which we propose to call the skip algorithm}) was
developed on quite different premises from the two
programs we have considered so far. Dromey argues that
matches with typical text could be expected to be rare, and
that the algorithm should minimize the number of
characters inspected on average. From this base it is quite
gasy to see that the abselute minimum number of
characters that might need to be inspected 1s (M/N), and
this is achieved if characters at text positions N, 2 x N,
3 x N, etc are inspected and none of them actually occur in
the word searched for..

Fromm this idea, the algorithm develops. If the
character inspected does not occur in the word, make the
next inspection N characters further on; if it does occur in
the word but not as the last character, make the next
inspection where the end of the word may be cxpected to
be; and if it is the same as the last character of the word,
attempt a retrospective match, after which re-apply the two
previous rules. Care is needed to generalize the above to
cases where characters occur multiply in the word, and
possibly also as the last character. Dromey also suggests
that the most effective retrospective search is one which
inspects the character positions relative to the presumed
end-of-word in increasing occurrence probability order of
the actual characters in the word. This maximizes the
probability of not finding a match, and therefore of being
able to leave off matching and resume forward stepping.

The key point about the Dromey algorithm is that it
inspects comparatively few characters if matches are in tact
rare. The best-case performance, as indicated above, calls
for (M/N} chamacter inspections, and the average
performance on English text approaches this limit for short
words {say N < 10). As N is increased, the performance
relative to the (M/N) limit degrades, and for very long
words the algorithm tends to take an asymptotic stride
through the text which is determined by the probability
distributions of characters in the text and in the word. This
behaviour should be well-developed in English text for
N=100, but nevertheless despite the degradation from the
limit, the number of characters inspected is much smaller
than in §; or S;. The worst-case performance for Dromey’s
original version is poor (MxN inspections), but the case for
the aigorithm rests on this being very rare.

After preparation of the manuscript for this paper,
we noted that the essentials of the algorithm proposed by
Dromey were published by Boyer and Mocre (1977) in a

94

recent issue of the Communications of the ACM, and had
been in draft form since 1975. The two algorithms differ in
some details which affect the average and worst-cuse
performances. Our concem is with program design, not
primarily with particular forms of the algorithm, and
interested readers are referred 1o this article for a version
which has a worst-case performance which is of order (M +
N) while preserving the low number of probes for typical,
text searches. Our future discussion will refer to the basic
approach as the ‘skip algorithm’ since many characters in
the text are skipped.

The description of the skip algorithm given above is
sketchy, and deliberately so. The algorithm appears to he
difficult 1o describe in its original form: Dromey’s
description is quite long, and Boyer and Moore’s
description runs to about 2000 words. One of the authors
was dissatisfied with this complexity, and with the
difficulty of proving it formally correct, together with some
niggling concerns about its performance for large N.
{Neither paper attempted a formal correctness proof; the
suggested programs are structurally messy.) This motivated
us to undertake a proof of the algorithm which we shall
shortly develop. However, it is interesting to note that we
found this process much harder than any of the other
programs in this paper; indeed the polished version
presented here was arrived at only after this section had
been re-drafted twice. The moral is, of course, that it is
much more difficult to prove someone else’s program
correct than it is to develop correctness proofs of your own
programs as you design them. Naturally we expected this,
but it does not seem to have percolated through to the
industry as yet.

The key that we need to develop the skip algorithm
cleanly is the generalization of the post-condition R, into
the following invariant which we pronose for the outer loop
of the program:

R3 = all vceurrences of word which have its last
character in any of text positions 1 to {i-1) have
been processed by F.

Clearly, no such occurrences occur in the first (N-1)
character positions of the text, and we can establish Ry
trivially by setting i to N. Inside the loop, we need to
increase i under invariance of Rj;, and two cases
immediately present themselves. If the character inspected
matches the last character of the word, then we need to
carry out a retrospective search to establish if a match of
wotd actually occurs and if so 1o process it with P, and then
we need to increase 1 as far as we can keeping Rj invariant.

The retrospective search will at least have warranted
the increase of i by 1, so the loop will terminate.

if on the other hand, the character inspected is not
the last one in the word, we simply advance i by the
maximum permitted keeping Ra invariant. If the character
does not appear in positions 1 to (N-1) of the word we can
advance by N positions, while if it does we can only
advance by the distance from the end of the werd to the
nearest occurrence of the character in the word. Fig. 4
illustrates this process. This calls for pre-processing of the
word to set up a table of safe increments D indexed for
each character possible. This gives us the following skeleton
program:

The Australian Computer Joyrnal, Vol 10, No. 3, August, 1978

Is Disciplined Programming Transferable

{skeleton of skip family of programs : s3}
{establish R3 trivially}
1;=N;
do (is<M)>
chi=text{i};
if {ch=word[N])~+
<attempt match based on i as last char>;
<increusc i under invariance of R32>;
{ having re-established R3}
O (ch=word{N])~»
i:=i+D[ch| ;

fi;
{R3 is still fme}
od;
{{i>M) and R3 imply RI}

So far we have not specified precisely the actions to be
taken when the last character is found, for there is a whole
family of skip algorithms depending on how this part is
filled out. The average performance of the algorithm for
normal text is dominated by the alternative guarded
command which strides through the text. The last-character
part mainly determines the worst-case performance, and has
minor effects on average performance. It is however
interesting to consider the possibilities.

Dromey’s original choice can be constructed by
setting up a table F which holds records containing each of
the characters in the word (except the last) and their
position indices. This might be declared as:

F: array [1..(N-1}j of
record
¢ : char;
index : ! .. (N-1}
end;

The initialization of this table consists of setting up all the
leading characters in it and sorting it on ascending order of
a virtual key of the occurrence probability of ¢ in the text.
We cun then fill out the first if guarded command to give
Dromey’s original algorithm:

if (ch=word[N])~
{identify and process any match }
j=1
do (j# N)cand
(text[i-N+E [j] index] =F[j] c)+

j=itl;
od;
f (=N}~ P(i-N+1):
U {d<j<N)» skip;
fi;
{increase i under invariance of R3)
i:=i+D[ch] ;

O {ch#word [N])

It will be noted that once having attempted to identify
possible matches based on the last churacter of the word at
text[i], this version simply bases its increase of i on the
same criterion as the alternative command; i is increased as
much as possible based simply on the character at text{i].

Let us look at alternative expansion possibilities. One
is simply to try to match the word backwards from text/[i]
and word [N]. We will have increased the probability that

The Austrelian Computer Journal, Vol 10, No. 3, August, 1978

n

LLsSCTMFLINED

!

DESCIPLLIKED

+

DISCTPFLINED

Figure 4 Possibie alignments of the word ‘DISCIPLINED’ when an
‘T is found in the text, and the safe displacement of 3.

the match proceeds past the first character inspected, but it
is unlikely this will make much difference on average, and
we will have eliminated table F. On the other hand, looking
deeper, we see that a pattern analysis of the kind used in
Dijkstra’s program $, could be carried out for backwards
maiches, and we could construct a new table (indexed by
greatest depth of match) giving the safe increment based on
all the information we have, after which we ignore it.

Such increments would be at least equal to that for
Dfword [N}], and usually larger. This corresponds to Boyer
and Moore’s algorithm. Of course, such pattern analysis is
not restricted to lincar scanning, but couid be applied to
the least-frequent-first search too, but the complexity is not
warranted. There are lots of possibilities . . .

Since the skip algorithm deserves to be better known,
we exhibit a simple and efficient version of it in an
appendix. This examplc uses a PASCAT -like notation and
utilizes a linear backward match scan together with use of
the D-table.

3.3 Starting from Scratch Again

Again, we determined to tackle the problem with
fresh eyes, and to try to use some of the insights we have
been given by our previous attempts. One possibility that
occurred to us from consideration of Dromey’s algorithm
was to rewrite our generalized invariant so that it was based

" on specific character positions:

Ry = all occurrences of word which include the
characters at fext positions N, 2x N, 3x N, ...
, I have been processed by P, where § is an
integer multiple of N.

What we are aiming ai, of course, is an algorithm whose
performance is better than S;, and hopefully achieves
(M/N) performance even for large N. What we will achieve
(looking ahead) is a new algorithm with very similar
performance to 83, but a quite different process. Using the
invariant above, this leads directly to our first-level program
fragment:

i:=0;

{R4 has been established trivially }

do (i<(M-N))~
i=i+N;
<process all occurrences that include text [i] >>;
{R4 has been re-established 1

od;

1 R4 together with {1 > (M-N} implies R1}

95

Is Disciplined Programming Transferable

To fill out the *process all occurrences that include text [i}
part, we can again use the insights provided by Dromey’s
algorithm by passing straight on if the character is not
represented in the word. If it does occur in the word,
however, we need to carry out searches to see if there are
any complete matches here that must be processed by P.
There are many ways of handling this, and the one we
choose to illustrate the algorithm is to create a table Z
which for every possible character holds a queue of records
which detail the actual position indices of that character in
the word. If the character does not occur in the word, the
corresponding queue is empty. For notational convenience,
we shall also define the following basic operation on this
table:

NOTATION MEANING

select(Z,ch,@) | selects the queue for character ¢l in table

Z and makes a focal copy in queue Q.

We again suspect that a loop will be useful in
processing the possible. cecurrences, and so we need to
generalize our invariant still more, suggesting that it ought
to be:

Rgs=all occurrences of word which include the
characters at text positions N, 2xN, 3xN, ... i
have been processed except for those which
correspond to having the character texifif in
the word positions noted in the queue .

This now allows us to write the following program fragment
to replace our outlined section:

process all occurrences that nclude textfif :}
select(Z,text[i],Q);
IRS5 is now established trivially }
do (not empty(Q)) >
leave(Q,j};
<attempt match of text{i4+1]
with word and process>:

{re-establishing RS }
od;
{R5 and empiy{Q} implies R4 }

The final expansion calls for some simple match procedure
to examine definite word positions in the text. Though the
match procedure involves characters behind and ahead of
text[i], it is possible to carry out the same types of search
as were possible for the skip algorithm, for the presumed
location of the last character of the word (if the match
exists) is located at text[i-j+N]. If we assemble the lowest
frequency search into here, we can pull all these pieces
together inte a whole program:

96

{ new search program . version $4}
<initialize table 72>;
<initialize table I>>;
{ remember F must now include the last char }
i=0;
do (is{M-N))=+
i=itN;
select(Z,text[i] QY
do (not empty(Q)) >
leave(Q.ix
base,count:=(i4),0;

do (count # N) cand ((base+N) < M) cand

(text[base+F [count+1] .index]
= Flcount+1] .c) »
count:=count+i;

od;

if (count =N)» Plij+1);

0{0 € count <N)» skip;

fi;

od;
od;
3.4 Efficiency and Other Reflections

Clearly the new algorithm 34 we have derived is not a
skip algorithm. It is easy 1o prove correct, but it is more
efficient? There is not room here to reproduce an analysis
of either of the skip algorithms contained in the two
previous papers. nor to analyse this new one, but it can be
said that they all perform similarly. As N becomes very
farge, they all reach a situation where the average ‘stride’
through the text (measured as M/(no of inspections})) tends
to the same limit. This limit is determined by the character
probability distributions in the two objects, which may not
be the same. We have not therefore been able to find a
better aigorithm, though we have found a different one. It
is also interesting to note that the additional space
requirements of all algorithms grow proporticnally to N; we
have omitted to discuss algorithms which have space
requirements which grow faster or which require other
expensive space requirements.

Again, we reflect, the necessity of having to write
down and formalize our invariants has led to clarity of
thought. While we were looking for algorithmic twists to
improve performance, the clarity with which we could view
the choices provided us with a wide range of options. With
the experience we gained, we found a clean and simple way
to prove Dromey’s algorithm correct which hinged on a
de-emphasized facet of the original description. In
Dromey’s original statement, the last character of the word
appeared to play a minor role in the algorithm; it turns out
to be crucial to the proef.

4. SUMMARY

We have intended to show with this paper. that the
techniques advocated by Dijkstra are transfezable to other
programmers. Indeed, our own experiences have been that
the transfer is easy and profitable once the mental switch in
thought patterns has been made. We have enjoyed the
experience, and have been surprised at the insights we have
found into even some rather simple problems. In fact, in
preparing this paper for publication, we have had to rather
ruthlessly prune many byways which we found interesting
for fear of complicating our exposition. We conclude
therefore that the techniques are indeed fransferable and
insightful,

The Australian Computer Journal, Vol. 10, No. 3, August, 1978

Is Disciplined Programmting Transferable

That we produce algorithms which are novel to us is
not important; for all we know they are already buried
somewhere in the literature. What is important is that we
were led to discover them in natural ways, and that in each
case we could express a high degree of confidence in the
correctness of the resulting algorithm. Debugging programs
is not an activity either of us pursues very often, and we
perceive that we can reduce its frequency even further.

We had, too, an ulterior motive. All too many
industry programmess are likely 10 be put off by the first
few chapters of Dijkstra’s book. We hope that by
illustrating what can be done in a less formal way, some
programmers may be encouraged to probe deeper into what
we consider to be very important ideas. Though there
remains much work to be done (when is there not?), we
think the orientation important enough that we are
teaching it as part of our undergraduate coursework. The
ideas will be in the marketplace quite scon ...

5 REFERENCES

BIRD, R.S. (1977): “Notes on Recursion Elimination”, CACM, Vol
20, No. 6 pp434-439.

BOYER, R.S. and MCORE, 1.8. (1977): “A Fast String Searching
Algorithm™, CACM, Vol 20, No. 10 (October 1977),
pp762-772.

DISKSTRA, EW. (1976): “A Discipline of Programming”,
Printice-Hall.

DUKSTRA, EW. (1976) “Formal Techniques and Sizeable
Programs”, Lecture Notes in Compurer Science. 44 LC1
Conference, 1976. .

DLIKSTRA, E.W. (1975): “Guarded Commands, Non-determinancy
and Formal Derivation of Programs”, CACM Voi 18, No. 8,

53-457.

DROMEY, R.G. (1977} “Quicksearch — An algorithm for fast
keyword searching in text”, Paper submifted to CACM.
gbtainable from the author, University of Wollongong.

GRIES, D. (1977): “An illustraion of current ideas on the
Derivation of Correctness Proofs and Corrcct Programs.™
IEEE, Trans. Soft Eng. SEZ2 4, 238-244, 1976 + correction in
p.262 May 1977,

HEXT, LB. (1972): “Data Structures”, unpublished lecture notes
circulated to students at the University of Sydney.

KNUTH, D.E. (1968): “The Art of Computer Programming —
Volume 1 — Fundamental Algorithms™, Addison-Wesley.

WIRTH, N. (1976): “Algorithms + Data Structures = Programs™.
Prentice-Hall.

6. APPENDIX: PASCAL EQUIVALENTS OF

FINAL SOLUTIONS :

In this appendix, we give equivalents of some of the
Dijkstra-style programs we derived in the body of this paper
for two pragmatic purposes:

(1) to illustrate the process and make it apparent that
useful programs can really be produced this way, and
(2) to make the algorithms and our arguments more
accessible to readers who may not be familiar with

Dijkstra’s notation.

The first example is an equivalent of the Dy version of tree
traversal; it is presented as a procedure with some
surrounding type declarations in a slightly extended
PASCAL to supply a context:

The Austratinn Computer Journal, Vol 70, No. 3, August, 1978

type
treepointer = + treenode;
treenode = recard
value : valuetype;
degrec: integer;
subtree: array {1 .. degree] of treepointer
end;

procedure traverse(T:treepointer; procedure P);
{this is version D4 converted to a particulgr PASCAL purpose |
var
1 : integer;
(; queue;

begin
open(();
join(Q.T);
while not ermpty (Q) do
begin
leave(Q.T);
P(T + .value);
for i:=1 to T + .degree do join(T, T+ .subtree[i] };
end;
end; {of procedure rraverse)

The second example is a procedure to implement a
version of the skip search algorithm. It is written in a
slightly extended PASCAL to permit notational flexibility.

procedure search (text,word: array of char;
M,N: integer;
procedure F);

label 1:
var
i : integer;
ch,lastch : char;
D : array fchar] of integer;
begin
(set up table D}
for ch:=chr(0) to maxchar do D[ch]:=N;
for i:=1 to (N-1) do D[word[i]] :=(N-i);
{set up lasich for efficiency}
lastch:=word [N] ;
{estgblish R3 trivially}
i=N;
while (i < M) do
begin
ch:=text[i] ;
if {ch = lasich) then
begin { this is an occurrence of the last character }
B=(N-1);
while (j # 0} do
begin
if (text[i-N+j]+ word[j]) then goto 1;
i=j-1;
end;

P(i-N+1);

end;
{ advance i under inveriance of R3 He
1:=i+D[ch] ;
end; {of while}
end; {of procedure}

97

