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Abstract. We continue the study of directoid groups, directed abelian
groups equipped with an extra binary operation which assigns an upper
bound to each ordered pair subject to some natural restrictions. The class of
all such structures can to some extent be viewed as an equationally de�ned
substitute for the class of (2-torsion-free) directed abelian groups. We explore
the relationship between the two associated categories, and some aspects of
ideals of directoid groups
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1 Introduction

Jeºek and Quackenbush [9] introduced directoids, not necessarily commu-
tative groupoids which correspond to up-directed sets in the same way as
semilattices (commutative semigroups of idempotents) correspond to par-
tially ordered sets in which each pair has a supremum. The authors in [4]
began a similar algebraic study of directed groups. We subsequently discov-
ered that the motivating ideas of both [9] and[4] had been anticipated in a
slightly earlier paper of Kopytov and Dimitrov [10]. For related ideas see [12],
[14], [15]. In this paper we further develop the theory for directed groups.

Thus we consider directoid groups (formal de�nition below) directed
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abelian groups with a binary operation which assigns an upper bound to
each couple and is compatible with the group addition in the way the supre-
mum operation is in lattice-ordered abelian groups. Directoid groups thus
represent both an attempt to "equationalize" directed abelian groups and a
generalization of abelian l-groups. These two aspects together provide the
principal motivation for this study, and various questions involving the three
categories - directoid groups, directed abelian groups and abelian l-groups
- will be addressed. For instance while for abelian l-groups kernels are pre-
cisely convex l-subgroups, the more complicated but analogous role of convex
directed subgroups in directoid groups is elucidated, the relationship between
directoid group homomorphisms and order homomorphisms is described. In
marked contrast to the case of abelian l-groups, the lattice of subvarieties
of directoid groups is quite complicated. A non-trivial example of a variety
- the class of directoid groups whose one-generator subobjects are l-groups
- was given in [10]. In the context of comparisons between our three cate-
gories, it is natural to ask whether there are any varieties of directoid groups
whose membership is characterized by order alone, rather than involving the
directoid operation, analogous to the now well studied e-varieties of regular
semigroups. There are, but we shall defer the discussion of this question and
varieties in general to another paper.

Our notational conventions are consistent with those of [1] and [3];
note, however, that the symbol ‖ denotes incomparability with respect to a
partial order of any kind.

Because of con�icting terminology arising from the independent in-
troduction of ideas, and because we have elected to treat only commutative
directoids and only 2-torsion-free abelian groups (in the former case because
it seems natural, in the latter by virtual necessity) we shall begin by de�ning
some terms as we shall use them.

We shall call a groupoid D a directoid if it satis�es the identities
xx ≈ x; xy ≈ yx; (xy)x ≈ xy; x((xy)z) ≈ (xy)z. If we de�ne a ≤ b to
mean ab = b, D becomes an up-directed partially ordered set (a, b ≤ ab).
Conversely we can make any up-directed set into a directoid by de�ning x · y
to be y if x ≤ y, x if y ≤ x and otherwise to be any chosen upper bound
of x, y as long as x · y = y · x. Of course (except when ≤ is linear) lots of
di�erent directoid structures will correspond to a given order. All of this
was established by Kopytov and Dimitrov [10] and Jezek and Quackenbush
[9]. What we call a directoid was called a commutative directoid in [9],
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while in [10] sets which are both up- and down-directed were associated with
structures carrying two binary operations related by absorption laws.

In [4] we considered directed abelian groups from a similar point of
view. Here we recall the de�nition and give a little more detail of the precise
connection between our structures and directed abelian groups.

(An earlier 'algebraic' approach to directed groups, that of Fuchs [2],
used the set of all upper bounds of {x, y} instead of selecting an upper bound
and thereby de�ning an operation.This approach was also used in a related
context by McAlister [13]. On the other hand, choosing elements so as to
de�ne an extra unary operation is an established technique in the theory of
regular semigroups (see Hall [5] for instance) and this is quite analogous to
what we are doing here. This will be mentioned again in Section 5.)

A directoid group is an abelian group G with a directoid operation ·
such that a + b · c = (a + b) · (a + c) for all a, b, c ∈ G.

Theorem 1.1 (i) Every directoid group is a directed group with respect to
the directoid order i.e. a ≤ b if and only if a · b = b.

(ii) Directoid groups have no elements of order 2 ([4],[10]).

(iii) Conversely, every 2-torsion-free abelian directed group can be
made into a directoid group by a directoid operation which de�nes its or-
der.

For the proof of (iii) (and at many points throughout the paper) we
make use of

Lemma 1.2 Every 2-torsion-free abelian group G has a subset M such that
G = {0}∪̇M ∪̇{−m : m ∈ M} (disjoint union). If G is partially ordered, M
can be chosen to contain the positive elements.

Proof. If G = {0}, let M = ∅. If not, let

F = {S : S ⊆ G \ {0}; x ∈ S ⇒ −x /∈ S}.
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Then {a} ∈ F for every a 6= 0 as a can't have order 2. By Zorn's Lemma,
F has a maximal member M . Suppose G has an element b 6= 0 such that
b,−b /∈ M . Then M ∪ {b} ∈ F , contradicting the maximality of M . Thus
M ∪ {−m : m ∈ M} = G \ {0}. For the second assertion, we use the set of
positive elements instead of {a} to start the Zorn's Lemma argument. �
.

Proof of 1.1. (i) Let G be a directoid group. Then certainly G is an up-
directed set with respect to the order ≤ de�ned by the directoid operation.
If a ≤ b then a · b = b so for every c we have (a + c) · (b + c) = a · b+ c = b+ c
so that a + c ≤ b + c.

(ii) If 2a = 0, then a + 0 · a = a + 0 · (−a) = a · 0 = 0 · a so a = 0.

(iii) Let G be a 2-torsion-free directed group, M a subset as described
in 1.2 containing all positive elements. We de�ne a binary operation · on G
in several steps. If a ∈ M we let a · 0 = 0 · a = a if a > 0 and otherwise
we let a · 0 = 0 · a be any chosen upper bound of {a, 0}. Then we set
(−a) · 0 = 0 · (−a) = −a + a · 0 for all a ∈ M . (Note that if −a < 0, i.e.
a > 0, then (−a) · 0 = 0.) Since 0 ≤ a · 0 we have −a ≤ (−a) · 0, and since
a ≤ a · 0 we have 0 = −a+a ≤ −a + a · 0 = 0 · (−a) = (−a) ·0. Of course we
set 0 · 0 = 0 and now we have de�ned g · 0 (=0 · g) for every g ∈ G. Finally,
we set d · c = c + (d− c) · 0 for all c, d ∈ G.

If d = c, then c·c = c+0·0 = c. If d−c ∈ M , then c·d = d+(c− d)·0 =
d + (c− d) + (d− c) · 0 = c + (d− c) · 0 = d · c, while if d− c /∈ M and d 6= c,
then c− d ∈ M so d · c = c · d. Thus · is idempotent and commutative. Since
(d− c) · 0 ≥ 0 we have c ≤ c + (d− c) · 0 = d · c and similarly d ≤ c · d = d · c
for all c, d ∈ G. If c < d then (d−c) > 0 so d·c = c+(d−c)·0 = c+(d−c) = d.
We therefore have a commutative binary operation which assigns to each
(c, d) an upper bound of {c, d} and c · d = max{c, d} if c and d are compa-
rable. Hence G is a directoid with respect to · . For every g, h, l ∈ G we
have (g + h) · (g + l) = (g + l) + (g + h− (g + l)) · 0 = (g + l) + (h− l) · 0 =
g + (l + (h− l) · 0) = g + h · l so G is a directoid group. �

It will be noted that commutativity of addition is explicitly used in
the proof just given. One could modify the de�nition of directoid group by
removing abelianness, but there are non-abelian torsion-free directed groups
which do not admit such a structure (see [10],Examples, 6.1).
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A directed group is both up- and down-directed and just as a lat-
tice group has both meet and join, so too in a directoid group we have an-
other binary operation de�ned by (a, b) 7→ −((−a) · (−b)) which assigns lower
bounds. We shall normally call this operation ◦. Thus a◦b = − ((−a) · (−b))
and a · b = − ((−a) ◦ (−b)). We have a + b = a · b + a ◦ b ([4], Proposition
2.6 (i)) and this resemblance to the operation de�ning quasiregularity in ring
theory motivates our choice of notation.

2 Ideals

The class of directoid groups is a variety. Moreover, as 0 · 0 = 0, directoid
groups are multioperator groups (see, e.g., [9] or[15]). Adopting the usage
of multioperator group theory we shall call a kernel of a directoid group
homomorphism an ideal. It is convenient to recall the characterization of
ideals.

Proposition 2.1 ([4],[10]). Let G be a directoid group, H ⊆ G. The follow-
ing conditions are equivalent.

(i) H is a subgroup of G satisfying

x− y, z − w ∈ H ⇒ x · z − y · w ∈ H

.

(ii) H is a subgroup of G satisfying

x ∈ G, y ∈ H ⇒ (x + y) · 0− x · 0 ∈ H.

(iii) H is an ideal of G.

Ideals are directoid subgroups and are convex.
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If H is an ideal and a, b ∈ H,then a · b = a · b− 0 · 0 ∈ H. Everything
else can be obtained from the cited papers.

In (abelian) l−groups an l−ideal is the same thing as a convex l−subgroup.
However, a convex directoid subgroup need not be an ideal of a directoid
group: an example was given by Jakubík [8]. (There are some misprints
in the account of that example and Professor Jakubík has indicated to the
authors that the following changes need to be made. In 2.2 Theorem (proof)
the de�ning condition for H should be d = r1 = 0,while in the paragraph
before the theorem the second case of b1 should be (0, r1 + |r2| , 0)). So the
ideals of a directoid group are among the directed convex subgroups. Since a
directoid group must be 2-torsion-free an ideal H of a directoid group G must
be 2− pure, i.e. we must have 2H = H ∩ 2G. These conditions, conversely,
guarantee that a subgroup of a 2-torsion-free directed abelian group is an
ideal for some directoid group structure with that order.

Theorem 2.2 Let G be a 2-torsion-free abelian directed group, H a directed
convex subgroup of G such that H ∩ 2G = 2H. Then G has a directoid group
structure for which H is an ideal. In fact every directoid group structure on
H extends to one on G for which H is an ideal.

It will be useful to have the following result.

Lemma 2.3 (Notation as in 2.2.)

(i) If a ∈ G and a ≡ −a (modH), then a ∈ H.

(ii) If a, b ∈ G, a > 0 and b < 0,then a ≡ b (modH) if and only if
a, b ∈ H.

Proof (i) simply says that G/H is 2-torsion-free, and this is equivalent to
2H = H ∩ 2G as G is 2-torsion-free.

(ii) We have b < 0 < a , so 0 < −b < a − b. If a − b ∈ H, then by
convexity −b ∈ H so b ∈ H and thus a = a− b + b ∈ H. �
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Proof of 2.2. The conditions imposed tell us that G/His a 2-torsion-free
abelian directed group with an order induced by that of G. As in 1.2 let M̃
be a set in G/H such that

G/H = {0}∪̇M̃ ∪̇{−x : x ∈ M̃}

and M̃ contains all the positive elements. Let N be a similar set for H. Then

G = {0}∪̇(H \ {0})∪̇(G \H) =
{0}∪̇N ∪̇{−n : n ∈ N}∪̇{g : g + H ∈ M̃}∪̇{g : −g + H ∈ M̃}.

If g ∈ G \H and g > 0, then g + H > 0 so g + H ∈ M̃ . Let M =
N ∪ {g : g + H ∈ M̃}. Then G = {0}∪̇M ∪̇{−m : m ∈ M} and M contains
all positive elements of G. Also, if m ∈ M \N and m ≡ m′(modH) then
m′ + H = m + H 6= 0 so m′ ∈ M .

Suppose we are given a binary operation · which makes H a directoid
group. We seek an extension of · to G and by the proof of 1.1(iii) we only
need to de�ne m · 0 for all m ∈ M (as n · 0 is already de�ned for n ∈ N).

Let a be in M \ N . If a + H contains a positive element, we may
assume a > 0. Then we set a · 0 = a and for h ∈ H let

(a + h) · 0 =

{
a + h if a + h > 0
a + h · 0 otherwise.

Now for h, k ∈ H we have ((a + h) + k) · 0− (a + h) · 0
= a + h + k− (a + h) or a + h + k− (a + h · 0) or a + (h + k) · 0− (a + h) or
a + (h + k) · 0− (a + h · 0)
= k or h+k−h·0 or (h+k)·0−h or (h+k)·0−h·0 ∈ H......................................(1)

If every element of a + H is incomparable with 0 (a still being in
M \N) we can let a · 0 be any suitable upper bound of a and 0 and then let

(a + h) · 0 = (a · 0) + (h · 0)
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for each h ∈ H. Then for h, k ∈ H we have ((a + h) + k) · 0− (a + h) · 0
= a · 0 + (h + k) · 0− (a · 0 + h · 0)
= (h + k) · 0− h · 0 ∈ H..........................................................(2)

We can now extend our directoid operation to G by the procedure in
the proof of 1.1(iii). We have also veri�ed 2.1(ii) for members of M \N .

Returning to a positive a ∈ M \N , if h, k ∈ H we have (using (1) at
the appropriate point) (−a + h + k) · 0− (−a + h) · 0
= (−(a− h− k)) · 0− (−(a− h)) · 0
= (a− h− k) · 0− (a− h− k)− (a− h) · 0 + (a− h)
= (a− h− k) · 0− (a− h) · 0 + k ∈ H......................................................(3)

If a ∈ M \N and a + H contains no positive elements (so that by
2.3(ii) all its elements are incomparable with 0) then for h, k ∈ H we have
(−a + h + k) · 0− (−a + h) · 0
= (−(a− h− k)) · 0− (−(a− h)) · 0
= (a− h− k) · 0− (a− h− k)− (a− h) · 0 + (a− h)
= (−h−k)·0+k−(−h)·0 ∈ H..........................................................................(4)

(We have used (2).) Now (1) - (4) give us 2.1(ii) for all elements of
non-zero cosets, i.e. for all elements of G \H. But of course this condition
is trivial for elements of H, so the proof is complete. �

In abelian l-groups we have transitivity of normality : l-ideals of l-
ideals are l-ideals. This cannot be generalized to directoid groups, however.
In our account of an example demonstrating this (and elsewhere) the follow-
ing result will be useful.

Proposition 2.4 Let G be a 2-torsion-free abelian directed group, g ∈ G
and g‖0. If g ≤ b and 0 ≤ b, then G has a directoid group structure for
which g · 0 = b.

Proof.Let M be a subset of G as in 1.2 with G = {0}∪̇M ∪̇{−m : m ∈ M}.
Then g ∈ M or −g ∈ M and with a minor adjustment we can assume g ∈ M .
As in the proof of 1.1(iii) we can make g · 0 = b. �
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Now for the example.

Example 2.5

Consider Z×Z×Z with the standard componentwise order, H = Z×Z× 0,
K = Z × 0 × 0. Let M be a subset as in 1.2. Then(−1, 0, 1)‖(0, 0, 0) and
as in 2.4 we can assume that (−1, 0, 1) ∈ M and de�ne a directoid group
structure on Z× Z× Z by setting

(−1, 0, 1) · (0, 0, 0) = (1, 1, 1)

and

(a, b, c) · (0, 0, 0) = (a, b, c) ∨ (0, 0, 0) for all other (a, b, c) ∈ M .

Then (1, 0,−1)·(0, 0, 0) = (−1, 0, 1)·(0, 0, 0)+(1, 0,−1) = (1, 1, 1)+(1, 0,−1) =
(2, 1, 0)
and otherwise (−a,−b,−c) · (0, 0, 0) = (a, b, c) · (0, 0, 0) + (−a,−b,−c)
= (a, b, c) ∨ (0, 0, 0)− (a, b, c) = (−a,−b,−c) ∨ (0, 0, 0).(Thus x · 0 = x ∨ 0 if
x 6= ±(−1, 0, 1).) For every u, v ∈ Z we have

[(−1, 0, 1) + (u, v, 0)] · (0, 0, 0)− (−1, 0, 1) · (0, 0, 0) =
(u− 1, v, 1) · (0, 0, 0)− (−1, 0, 1) · (0, 0, 0) = (∗, ∗, 1)− (1, 1, 1) ∈ H

and

[(1, 0,−1) + (u, v, 0)] · (0, 0, 0)− (1, 0,−1) · (0, 0, 0) =
(u + 1, v,−1) · (0, 0, 0)− (1, 0,−1) · (0, 0, 0) = (∗, ∗, 0)− (2, 1, 0) ∈ H.

Here the asterisks indicate irrelevant values. Taking any other (r, s, t), we
get

[(r, s, t) + (u, v, 0)] · (0, 0, 0)− (r, s, t) · (0, 0, 0) = (r + u, s + v, t) · (0, 0, 0)−
(r, s, t) · (0, 0, 0) = (r + u, s + v, t) ∨ (0, 0, 0)− (r, s, t) ∨ (0, 0, 0) ∈ H
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unless (r + u, s + v, t) = (−1, 0, 1) or (1, 0,−1). In the former case the
di�erence is still in H as both terms have third component 1. On the other
hand if (r + u, s + v, t) = (1, 0,−1), then

(r + u, s + v, t) · (0, 0, 0) = (2, 1, 0)

and

(r, s, t) · (0, 0, 0) = (r, s,−1) · (0, 0, 0) = (∗, ∗, 0)

so again the di�erence is in H. By 2.1(ii) H is an ideal of Z× Z× Z.

Now H is an l−group and K a direct factor, whence an l−ideal and
so an ideal of H qua directoid group (e.g. because l− groups form a variety
of directoid groups;in any case, direct factors of multioperator groups are
ideals). However,

[(0, 0, 1) + (−1, 0, 0)] · (0, 0, 0)− (0, 0, 1) · (0, 0, 0) =
(−1, 0, 1) · (0, 0, 0)− (0, 0, 1) · (0, 0, 0)
= (1, 1, 1)− (0, 0, 1) = (1, 1, 0) /∈ K,

so K is not an ideal of Z× Z× Z.

Of course if we use the product-of-l−groups structure of Z × Z × Z,
then K is an ideal. More generally, it will be fairly clear that the freedom of
choice which we have in setting up a directoid group structure, while allowing
us to "make into an ideal" a given directed convex subgroup, can make it
just as easy to disqualify the subgroup. Nevertheless, in the context of trying
to make directoid groups an "equational substitute" for directed groups it is
natural to seek out ideals which work as such in a directed group regardless of
the directoid operation considered. The (ideal de�ning the) minimum lattice
congruence, for example, might be one to look at. It turns out, however, that
such "absolute ideals" are quite uncommon.

Proposition 2.6 Let G be a 2-torsion-free abelian directed group, H a proper
subgroup of G. The following conditions are equivalent.
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(i) H is a directoid subgroup for every directoid group structure on G.
(ii) H is linearly ordered.

Proof. ¬(ii) ⇒ ¬(i): Let a be in H with a‖0. Let b be an element of G
with a, 0 ≤ b. By 2.4 G has a directoid group operation · for which a · 0 = b.
Were H to be a directoid subgroup, we'd have b ∈ H. But for every positive
c ∈ G we also have a, 0 ≤ b + c so similarly b + c ∈ H, whence c ∈ H. Thus
we'd have G = H, as G is generated by its positive elements. The converse
is clear. �

Theorem 2.7 Let G be a 2-torsion-free abelian directed group, H a subgroup
such that

(i) {0} ⊂ H ⊂ G (proper inclusions) and
(ii) H is an ideal in every directoid group on G.

Then G is linearly ordered. Conversely every convex subgroup of a linearly
ordered 2-torsion-free abelian group is an ideal in the unique directoid group
on that group.

Proof. Let G and H be as described. First suppose that there are elements
g ∈ G \H, h ∈ H \ {0} with (g +h)‖0. Let ∗ be a directoid group operation
on G. Then by 2.1(ii),

(g + h) ∗ 0− g ∗ 0 ∈ H

Now take any a ∈ G with a > 0. Then 0, g +h ≤ (g + h) ∗ 0 < a+(g +h)∗0
and we can now (by 2.4) de�ne a new directoid group on G with an operation
] for which

(g + h)]0 = a + (g + h) ∗ 0.

Now g 6= (g + h) and if −g were g + h we'd have 2g = −h ∈ H so (as H is
an ideal) g ∈ H - a contradiction. Hence we can put both g and g + h in a
set M as in 1.2, and this allows us to de�ne ] so that g]0 = g ∗ 0 if g‖0. But
if g ≥ 0 or g ≤ 0, then g]0 = g = g ∗ 0 or g]0 = 0 = g ∗ 0 respectively. We
now have
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(g + h)]0− g]0 = a + (g + h) ∗ 0− g ∗ 0

and since H is an ideal with respect to both ] and ∗ it follows that a ∈
H. Since a is anything > 0 this means that G = H. From the resultant
contradiction we conclude that

for every g ∈ G \H and every h ∈ H \ {0}, either g + h > 0 or g + h < 0.

Now 2.6 tells us already that H is linearly ordered. If g ∈ G \H and h ∈
H \ {0 then g − h ∈ G \H and g = (g − h) + h, so by the above argument
g > 0 or g < 0. Thus G is linearly ordered.

Conversely, if G is a linearly ordered group, H a convex subgroup and
the unique directoid group operation on G is called ·, then for g ∈ G, h ∈ H
we have

(g + h) · 0− g · 0 =


g+h-g=h if g + h, g ≥ 0
g+h-0=g+h if g + h ≥ 0, g ≤ 0
0-g=-g if g + h ≤ 0, g ≥ 0
0-0=0 if g + h, g ≤ 0.

But if g ≤ 0 ≤ g + h, then 0 ≤ −g ≤ h so −g ∈ H and thus g + h ∈ H,while
if g + h ≤ 0 ≤ g then h ≤ −g ≤ 0 so −g ∈ H. Thus H is an ideal. QED

Corollary 2.8 The minimum l−group congruences on all directoid groups
on G coincide if and only if G is linearly ordered (so that there is only one
directoid group and the congruence is zero).

We end this section by examining the relationship between the cat-
egories of (2-torsion-free abelian) directed groups and directoid groups, the
morphisms in the former case being the order-preserving group homomor-
phisms and in the latter the directoid group homomorphisms. We precede
the characterization of the directoid group homomorphisms among the order-
preserving ones with two simple but useful results. The �rst is analogous to
2.2 but much more straightforward.

Proposition 2.9 Let H be a directed subgroup of a 2-torsion-free abelian
directed group. Then every directoid group structure on H extends to one on
G making H a directoid subgroup.
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Proof. Let G = {0}∪̇M ∪̇{−m : m ∈ M}. Then

H = {0}∪̇(M ∩H)∪̇{−m : m ∈ M ∩H}.

All we need to do is assign appropriate values for m · 0, m ∈ M , taking
care that m · 0 is de�ned by the existing directoid structure on H whenever
m ∈ M ∩H. �

If G is a partially ordered group, f : G → H a group homomorphism
with convex kernel, then we can make H a partially ordered group by de�ning
h1 ≤ h2 if and only if there exist g1, g2 ∈ G such that g1 ≤ g2, f(g1) = h1

and f(g2) = h2. As there does not seem to be a standard name for it, we
shall call this induced order on H the quotient order de�ned by f .

Proposition 2.10 Let f : G1 → G2 be a surjective homomorphism of direc-
toid groups. Then the order of G2 is the quotient order de�ned by f .

Proof. If c ≤ d, f(r) = c and f(s) = d, then f(r · s) = f(r) · f(s) = c · d = d
and r ≤ r · s, so we can take a = r and b = r · s. Conversely, if f(a) =
c, f(b) = d and a ≤ b, then a · b = b so

d = f(b) = f(a · b) = f(a) · f(b) = c · d

and thus c ≤ d. �

Theorem 2.11 Let G1, G2 be 2-torsion-free abelian directed groups, f : G1 →
G2 an order homomorphism. Then G1 and G2 carry directoid group struc-
tures for which f is a directoid group homomorphism if and only if the re-
striction to Im(f) of the order of G2 is the quotient order de�ned by f and
Ker(f) is directed.

Proof. Let f be a directoid group homomorphism for directoid groups on
G1, G2. Then Ker(f) is an ideal and so is directed. The other required
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property of f is given by 2.10 (as Im(f), of course, is a directed subgroup
of G2). Conversely, if f satis�es the stated conditions, then Ker(f) is both
convex and directed and so by 2.2 there is a directoid group structure on G1

for which Ker(f) is an ideal. We denote its directoid operation by ·. Let ≤
denote the given orders on both G1 and G2. If a, b ∈ G1 let t ∈ G be such that
a, b ≤ t. Then f(a), f(b) ≤ f(t) so Im(f) is directed. For each c, d ∈ Im(f)
set c · d = f(r · s) for any r, s ∈ G1 for which f(r) = c and f(s) = d. If
f(r) = f(r′) = c and f(s) = f(s′) = d, then r − r′, s − s′ ∈ Ker(f) so (as
Ker(f) is known to be an ideal) r · s − r′ · s′ ∈ Ker(f) and thus · is well-
de�ned. But if a, b ∈ G1 then f(a) · f(b) = f(a · b). From this it follows that
Im(f) is a directoid group and f induces a directoid group homomorphism
G1 → Im(f). By 2.9 we can extend the directoid operation of Im(f) to G2

and f : G1 → G2 then becomes a directoid group homomorphism. QED

3 Examples.

We now present a gallery of examples of directoid groups, which will be used
to illustrate concepts and results from earlier sections.

Example 3.1

Let G be a 2-torsion-free abelian group which is directed with respect to an
order ≤ and let r, s be relatively prime positive integers. We de�ne a new
order � on G as follows.

a � b if and only if b = a + rg + sh, g, h ∈ G, g ≥ 0, h ≥ 0.

We denote the positive cones of G with respect to ≤,� by G+(≤), G+(�)
respectively. Note that G+(�) = {rg + sh : g, h ∈ G+(≤)}. Let m, k be
integers such that mr + ks = 1. If a ∈ G+(≤), then a = rma + ska ∈
G+(�)−G+(�). If c ∈ G we have c = a− d for some a, d ∈ G+(≤) whence
c ∈ G+(�)−G+(�). Hence G is directed with respect to �. We consider
a special case: G = Z, (r, s) = (n, n + 1) for some n ∈ Z+. We shall call
the resulting directed group Z(n). For every a, b ∈ Z with a ≥ b we have
a− b ≥ 0 so n(a− b) � 0, i.e. na � nb. Hence � is linear on nZ so regardless
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of the directoid group operation we put on Z(n), nZ(n) is a linearly ordered
directoid subgroup.

The identity homomorphism Z(n) → Z (where Z has the standard
order) is order-preserving but not a directoid group homomorphism (for any
operations on Z(n), Z) as the order on Z is not the quotient order (even though
the kernel is trivially directed (2.11).

Example 3.2

Let Z0 denote the integers with the discrete order (i.e. equality) and let Z∗Z0

denote the lexicographic product, where Z (as opposed to Z0) carries the
standard order. Thus (m, k) ≤ (m′, k′) means m < m′ or m = m′ and k = k′.
We can make Z ∗ Z0 into a directoid group by setting (0, a) · (0, 0) = (a, 0)
and (0,−a) · (0, 0) = (a,−a) for all a > 0. (If (m, k)‖(0, 0) then m = 0.)

The natural homomorphism Z ∗ Z0 → Z preserves order, and the
natural order on Z is the quotient order. However the kernel Z0 is not
directed, so the map can't be made a directoid group homomorphism by
2.11.

Example 3.3

Let Zn be the group of integers modulo n, Zn
0 this group with the discrete

order, H(n) the lexicographic product Z ∗ Zn
0 This is directed.

As in the previous example, the natural map Z ∗Zn
0 can't be made a

directoid group map by 2.11.

Example 3.4 (Generalized Ja�ard group).

For a positive integer n, let

Jn = {(a, b) ∈ Z× Z : a ≡ b (mod n)}
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If a ≡ b (mod n) and c ≡ d (mod n), then (a−c)−(b−d) = (a−b)−(c−d)
so a−c ≡ b− d (mod n) and thus (a−c, b−d) ∈ Jn whenever (a, b), (c, d) ∈
Jn. Thus Jn is a subgroup of Z × Z. It is partially ordered by the product
order on Z × Z. If (a, b), (c, d) ∈ Jn, then a, c ≤ |a|+ |c| ≤ n(|a|+ |c|) and
b, d ≤ |b|+ |d| ≤ n(|b|+ |d|). Hence

(a, b), (c, d) ≤ (n(|a|+ |c| , |b|+ |d|)) ∈ Jn

and Jn is directed. (The case n = 2 is an example of Ja�ard [7] which is
treated as a directoid group in Example 2.10 of [4].)

Let f : Jn → Z be given by f(a, b) = a. If r, s ∈ Z and r ≤ S, then
e.g. r = f(r, r), s = f(s, s) with (r, r) ≤ (s, s) so Z has the quotient order.
We have Ker(f) = {(a, b) : a ≡ b (mod n)} and a = 0} = {(0, b) : n|b},
and this is directed. If (0, nc) ≤ (x, y) ≤ (0, nd), then 0 ≤ x ≤ 0 so x = 0
whence (as (x, y) ∈ Jn) n|y. This shows that Ker(f) is convex, so by 2.11 f
can be made a directoid group homomorphism and Ker(f) will then be an
ideal. Note that the latter can also be deduced from 2.2; we just oint out
the proof of 2-purity. If (o, nc) = 2(a, b) = (2a, 2b), then a = 0, so n|b. Let
b = nb′. Then (0, nc) = 2(0, b) = 2(0, nb′).

If G is one of the groups in Examples 3.1-3.4, then nG is linearly
ordered and consequently G satis�es identities such as

(nx · ny) · nz ≈ nx · (ny · nz).

This observation is important for the study of varieties of directoid groups,
which we shall pursue elsewhere.
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