mmmm SHORT TUTORIAL

The
RISC style
of architecture

A.H.J. Sale
Electrical Engineering & Computer Science,
University of Tasmania.

In this short tutorial paper the RISC style of
computer architecture is discussed. Consequences of
the style are brought out, together with the reasons
Jor iis refatively recent appearance in commerciully
available processors.

Keywords and phrases: RISC, computer architecture.
CR caiegories: C-1-2, C-3.

Copyright © 1989, Austratian Compuier Society Inc. General
permission to republish, but not jor profit, all er part of this
mateviaf is granted. provided thar the ACJS's copyright netice is
given and that reference is made to the publication. to iis date of
issue, and o the fact thai reprinting privileges were granted by
permission af the Awstralian Computer Sociery Inc

Manuscript received Februury 1989, revised Sepicmber 1989,

WHAT IS A RISC?

Most people who have encountered the term know
that RISC stands for Reduced Instruction Set Com-
puter. It is not difficult to deduce that RISCs. such as
the Motorola 88100 and the Am29000, have fewer
kinds of instructions than the ones with which they
are contrasted. These are labelled Complex Instruc-
tion Set Computers (CISC). Most processors in the
commercial marketplace (ranging from super-
computers through to microprocessors) are classified
as CISCs, for example the Cray-1, Cyber 205; 1BM
§/38 and 9000 series; Digital PDP-11 and VAX
ranges; the Motorola 68020, Intel 30386, Zilog Z-80
and related processors. What is less well-known is
why fewer kinds of instructions should now be con-
sidered good. and what the consequences of RISC
architecture are.

First consider the previously dominant architec-
tural style: CISC. As CISCs evolved, new instruc-
tions and addressing modes were added to
architectures to support commonly required high-
level languages. The aim was to reduce the gap be-
tween the hardware and its system software by using
increasing transistor counts on a chip to build more
sophisticated processors. The conventional wisdom
was that by migrating frequently used operations
into hardware, programs become faster io execute.
Readers may recall advertisements for microproces-
sor chips where the number of different instructions
on the advertised processor is held out as a figure of
merit.

Several computer designers began to challenge this
approach during the 1980s. In this they were influ-
enced by the increasing difficulty of designing correct
chips, and the longer and longer lead times to bring a
new processor to market. The reducing size of tran-
sistors and thus increasing transistor count in VLSI
chips caused rapidly escalating design effect, and the
consequence of lower and lower confidence in a com-
plex design being correct first-time (or ever). But to
what functions shouid the silicon area be devoted, if
not to supporting complex instruction sets? With this
question, RISC architecture really begins.

The question highlights an important architectural
point: each included feature carries with it a cost as
well as a benefit. For example, an-instruction set
which caters for different instruction execution times
must have a more complex clock, and this may result
in a slight slowing down of the basic clock frequency,
as well as consuming some exira chip area. Similar
considerations apply to instruction sets whose in-
structions are of different lengths. Note that these are
some of the costs: the benefits of the two features
mentioned are to let simple instructions cxccute
faster than the slowest instruction, and to economize

THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 2, AUGLIST 1989 97



I /5 57y

on program size.

RISC architecture emphasizes identifying the most
common features and implementing them very fast,
so that we may end wp with a faster computer than
its competitors. Each operation which is a candidate
for inclusion has to be examined to see if its inclu-
sion will increase or decrease the overall execution
speed. For example an early RISC machine
[Katevenis, 1985] incorporated a barrel shifter in its
data path. Subsequent evaluation suggested that
while this speeded up a few operations, the overall
slowing down of all other machine cycles (even by as
little as 5%) far outweighed the gain.

This re-examination of operations eventually re-
sults in a small number of instructions (say 16-32),
all of the same size, which control a very simple and
very fast data-path and ALU. All instructions exe-
cute in the same time and operate on registers, so the
control logic 1s simple. Complex operations are
achieved by executing a sequence of simpler opera-
tions, so that RISC machines execuie more instruc-
tions to achieve the same resuit as a CISC machine,

One problem that has been glossed over is the
matching of the raw speed of RISC instruction exe-
cution {say 20-50 ns) with that of the external
memory {80-100 ns). This first shows up in retriev-
ing data values from memory, A RISC instruction
may initiate a memory transfer such as a read, but
stalling its completion until the transfer is complete
will waste possibly useful machine cycles. Faced with
this mismatch, conventional responses fall into three
categories:

*Put up with the wasted time,
eInsert a cache between the processor and the
memory 50 that the average cache access time is
well-matched to the processor cycle time.
eInitiate a memory transfer and continue instruc-
tion execution, providing hardware to stall any in-
struction which attempts to access a register which
is the destination of a transfer until the data ar-
rives.
RISC architecture rejects all three approaches. A
typical RISC machine will initiate the transfer and
continue execution, but there will be no hardware
interlock. The compiler is responsible for generating
code which ensures that the destination register of a
read is not accessed until the value has arrived. To
do this, firstly it must know the timing characteris-
tics of the processor and the memory, and secondly
it must be able to insert useful work in the gap
between the imitiation and completion of a memory
operation, There is a transfer of responsibility from
the hardware to the software.
Further, RISC architectures tend to have many
repisters (say 128-512). Such a large register set can

S8THE AUSTRALIAN COMPUTER JOURNAL, VOL 21. No 2, AUGUST 1589

minimize memory accesses through twoe mecha-
nisms.
*Data does not have to be moved into or out of
registers simply to free up some temporary space.
sMany objects can be allocated register space rather
than memory space for the whole of their lifetimes,
for example temporary results, stack {rames, local
and global variables, parameter pointers.
Again the compiler has the responsibility for allocat-
ing these objects. A large register set is an ideal can-
didate to fill up silicon area with useful hardware
since it is regular and easily designed.

CONSEQUENCES
The major consequences of RISC architecture are
easy to deduce.

+Code size is probably larger than in a comparable
CISC,

*Program execution is probably faster than a com-
parable CISC.

¢Compilers for RISCs are more complex and incor-
porate sophisticated optimization schemes.

*Assembly language programmers are unlikelv to
produce code which is as good as or better than
that produced by compilers, except for trivial pro-
Srams.

*(bject code may not be portable across models or
even configurations of the same model since it may
include timing dependencics.

Two other consequences are less obvious. The first is
a direct attack on the ‘range’ concept, at least at the
object cade level. As technology changes, a different
instruction set architecture may become optimal.
Compatibility between RISCs must be sought at a
higher level, One possibility is to provide only high-
level language (HL.L) compatibility, but a more usual
approach is to provide compatibility at the level of
an intermediate level language (ILL) into which all
HLL programs are translated. A machine-specific
optimizer and code-generator then translates the ILL
form into object code for a specific machine and
configuration. The optimizer becomes a very import-
ant intellectual property for the manufacturer, since
the performance of the machine depends so much on
it, :
Secondly, a RISC machine requires to fetch more
instructions than a CISC machine, and at a faster
rate. While it is possible to incorporate an off-chip
cache, or to build an on-chip instruction-only cache,
it 1s simpler to initiate the fetching of instructions
before they are needed. This is easy for sequentially
allocated instructions, but fails to cope with branch-
ing. On identifying a branch to be taken, the de-
signer could flush all the pre-fetched instructions,



Fortran Pascal Modula-2
i 4 4

Fortran Pascal Modula-2

Compiler Compiler Compiler

.

Intermediate level language

Optimizer

Object code

Figure 1 — Compilation for a RISC

and initiate 4 new instruction fetch at the new ad-
dress, but this would waste possibly useful cycles. As
vou expect by now, a RISC continues to execute the
fetched instructions with the branch being delaved
by the depth of the prefetch pipeline {say 2-5 in-
structions). Again, the optimizer is given the task of
finding useful work that can be done between the
branch instruction and its delayved effect.

a-1 MOVE R7, (RO}
] BRANCH B

o+l ADD =1, RS
o+ ADD =4, R91
B

Figure 2 — Execution trace with prefetch pipeline

SUMMARY

Possession of a small instruction set does not consti-
tute a RISC architecture, despite possible sales
claims. The RISC style involves a fundamental re-

RISC STy

think of many assumptions and every RISC machine
may not have all the features described here. Tt is the
architectural approach rather than any specific fea-
ture that constitutes RISC architecture.

Probably the two most consistent themes are the
migration of some hardware functions to compilers,
and the ruthless excising of any function that does
not pay its way. As yet, it is not possible to judge
whether RISCs will supplant CISCs, or whether the
two will continue to co-exist in particular niches,

FURTHER READING

GREY, G. (1988) The 88000 faces of Multibus 11, ESD: The
Elcctronic Systems Design Magazine, September 1988,
pn. 45-50.

JOHNSON, 7. (1988): Raising the stakes with optimizing compii-
ers. ESD: The Electronic Systems Design Magazine, September
1988, pp. 64-66.

KATEVENIS, M.(Gr.H. (1983): Reduced instruction set architec-
tures for VLSI. MIT Press.

PATTERSON, DLA. & SEQUIN, C.H. (1982} A VLSI RISC,
IEEE Computer. Vol 15, pp. 8-21.

RADIN, J. (1983): The 801 minicomputer, IBM Joumal of Re-
search & Development, Vol 27, pp. 237-246.

SALE, A.H.I. {1989): The Architecture of the PCM-1. The dus-
traftan Compuiter Journal, to appear in Vol. 21, No. 2.

BIOGRAPHICAL NOTE

Arthur Sale is head of the Department of Electrical
Engineering & Computer Science ar the University of
Tasmania. He was appointed to the University in
1974 as Foundation Professor of information Science.
His research interesis cover programming methodol-
oy, programming languages, silicon chip design, and
processor architecture; currently he is involved in the
design and implementation of innovative processors
Sfor executing funcrional languages.

THE AUSTRALIAN COMPUTER JOURNAL, VOL 21, No 2, AUGUST 1989 99



