F

e et }

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 9, 671-683 {1979

Strings and the Sequence Abstraction in Pascal

A. H. J. SALE
Department of Information Science, University of Tasmania, Tasmania

SUMMARY

This paper examines the sequence abstraction known in Pascal as the ‘file’, and shows how
sequences of characters (‘strings’ in the SNOBOL sense) may be cleanly fitted into Pascal-like
languages. The specific problems of providing the suggested facilities as an experimental
extension to Pascal are examined,

KEY WORDS Pascal Strings Sequence abstraction

‘Both men and ships live in an unstable element, ate subject to subtle.and
powerful influences and want to have their merits understood, rather than
their faults found out,

‘It is not what your ship will not do that you want to know to get on
tetms of successful partnership with her; it is, rather, that you ought to
have a precise knowledge of what she will do for you when called upon to
put forth what is in her by a sympathetic touch.’

. Joseru Conrap, The Mirror of the Sea

1. INTRODUCTION

As is well known, the programming language Pascall is designed to give programmers
access to data-types which are based on good abstractions. One of these is the packed array
of characters, whose size is compile-time determined. This type is usually thought of as
the only one available to Pascal programmers for handling sequences of characters as in
command recognizers and other applications, and while it is adequate for these purposes,
there have been some unfortunate consequences of this attitude. One of these is the regret-
table lack of quality in many Pascal implementations which limit the significant characters in
identifiers to the first eight, ten or twelve characters.

Whatever the cause for this state of affairs, there has been some pressure from imple-
mentors and users of Pascal for facilities for handling strings of characters of variable length.
No doubt several such schemes have been implemented; one such was undertaken by
Professar Ken Bowles’ group at the University of Califernia at San Diego, and another at
the University of Tasmania.

This paper was stimulated by contact with the UCSD implementation, and by the
realization by the author that variable-length character strings could be put on a firm
axiomatic and abstract basis within the Pascal framework. The paper displays the end-result
of this realization,

0038-0644/79/0809-0671 $01.00 Recetved 9 October 1978
© 1979 by John Wiley & Sons Ltd.

671

672 A. H. J. SALE

2. TERMINOLOGY

In Pascal, there is a data structuring method which appears as
file of thing

This is singularly poerly named, given the plethora of meanings attached to the word file in
computing circles. While I shall continue to use the Pascal terminology in the paper,
readers should note that the underlying abstraction is more clearly expressed as a

sequence of thing

The abstraction consists of a variable number of objects of identical type, arranged in a
sequence. Disks, end-of-line markers and other features are not relevant to the underlying
abstraction,® though they may be relevant to some implementation details,

In addition, the Revised Report defines the lexical token

(stringy 1:="{character) {{character>}

and goes on to specify that this token may be a constant of the type char, or of the types
packed array[l...n] of char (where n>1). Since this is likely to give rise to endless con-
fusion, I shall refer to these tokens only as string comstants. The term string will be reserved
for a type which denotes a sequence of characters whose length varies during execution, in a
similar manner to the cotresponding concept in SNOBOL.

3. THE BASIC ABSTRACTION

No more than a few moments of thought suffices to convince anyone, once presented with
the thought, that an appropriate abstraction for a string is a file of char. It is self-evidently
obvious, once the distracting notions have been disposed of.?

“The indications are simple: the file is the only Pascal structuring method which allows for
variable-size contents, apart from variant records (which require explicit enumeration of the
possible variations). The only feasible alternative is to consider a string as a varying-length
array of char; this can readily be shown to be a direct subversion of the basic design
principles of Pascal, and to lead to many ramifications in the implementation,

The basic abstraction of a file is that of a type of potentially infinite cardinality, composed
of objects of identical type arranged in a linear sequence, and with several useful operations
defined upen the abstraction. Amongst these are those of reading through the sequence, of
building up a sequence by concatenating elements together, of concatenating existing
sequences, of examining the properties of the sequence and so on.

Within Pascal, however, the basic abstraction has been added to, and hedged in with
restrictions, so as to make the abstraction capable of efficiently matching real physical world
computer files.? Hence the name. These accretions to the basic concept include the intro-
duction of a file buffer variable (having evolved from the conceptually simpler file window),
the get and put operations, and a series of restrictions on the use of file structuring. In
addition, the pre-declared type text is a funny sort of file of char which is line-organized
according to the following EBNF gyntax

{{character} line-marker) end-of-file
In many ways, this pre-declared type might have been better thought of as being

type
text = packed file of packed file of extendedchar;

where the type extendedchar includes the line-marker (but type char does not}.

SEQUENCE ABSTRACTION IN PASCAL 673

However, the important point to realize is that the file, as embedded in Pascal, has
acquired some of these barnacles. They are not an essential part of the sequence abstraction,
and I shall have to slough some of them off to achieve my purpose of exposing another use of
the abstracticn.

4. THE STRING TYPE

I propose that there may be a new Pascal pre-declared type in some implementations

type
string = file of char;
which has some properties which are not common to other file types.
The first additional property is to remove the implementation restriction on the assign~
ment of files. I therefore allow

var
S1, 82 : string;
begin
Sl =824

The semantics of assignment are straightforward: the entire file 52 is copied to S1,
replacing any previous value of §1. State information associated with either file (read/write
status, file window positioning) is not defined after the assignment. Note that this is the only
sensible way to treat assignment with its underlying abstraction. (The few Pascal implemen-
tations which allow general file assignment but interpret it simply as a copying of the file
descriptor clearly do not recognize the underlying abstraction.)

Given that file-assipnment is well defined, it then makes sense to permit files of type string
10 be passed as value parameters (which involves an implicit assignment) as well as the
variable (var) parameters now permitted. It is also sensible to relax the common implemen-
tation restrictions on incerporating and manipulating objects of type string within other
structuring methods, and also on creating objeets containing strings via the new procedure.
Examples of legal constructs:

3

var
SR, SR1 : record
processed : baolean;
command : string;
end;
SA4 : array[weekdaytype] of string;
SP : |string;
begin

new(SP);
SP} 1= SA[Tuesday];
SR := SR1;

The second major restriction to relax is that forbidding comparison of structured types.
The operators <, €, =, >, > and # are defined for comparisons between objects of
string type. The semantics are more complex than for assignment:

674 A. H. J. SALE

(a) Two strings are equal only if their lengths are equal, and the char components are
one-for-one equal,

(b) The order of two unequal strings is determined by the ordering of the first item in
which they differ; or if there is no such item, the shorter string precedes the longer
string which it begins.

All other comparison operations can be framed in terms of these two rules; in every case

the associated file states are left undefined (as for assignment).

It is important to realize that the semantics of assignment and comparison include the
empty string. This is not an erroneous value, nor yet an undefined value or an implemen-
tation-dependent one, but a proper value for an object of string type.

One final change is needed to complete the essential components of the string type
properties: the ability to have constants of the type. Fortunately, much of the necessary
mechanism already exists in embryo form. Section 4 of the Revised Report says:

‘Sequences of characters enclosed by quote marks are called strings. Strings consisting of a
single character are the constants of the standard type char (see 6.1.2). Strings consisting of
n {>1) enclosed characters are the constants of the types (see 6.2.1)
packed array [1..#] of char
Note: If the string is to contain a quote mark, then this quote mark is to be written twice.
{string) :: = *{character) {{character>}’

Clearly, the object described is really a sequence, and its pressed use for these types is less
natural than as a sequence. Consequently, if I substitute ‘string constant’ for ‘string’, allow
empty string constants, and rewrite the definition, then the necessary constants of type
string fit naturally into the Pascal framework. The relevant section of a revised Report
should then read:

‘Sequences of characters enclosed by quote marks are called string constants, and are constants
of the pre-declared type string.

{string congtant) ;: = ‘{{character>}
Note 1: If the string is to contain & quote matk, then this quote mark is to be written twice.
Note 2: The empty string constant consists of two successive quote marks,
In appropriate contexts, string constants may bhe coerced to be constants of the standard type
char (see 6.1.2) if they consist of a single character, or constants of the types

packed array [1. .n] of char
if they consist of 7 (n 3> 1) enclosed characters (see 6.2.1), Note that this coercion occurs only for
string constants, nof for variables or values of type string.’

This definition will handle practically all programmer intentions in a simple manner,
even anonymous comparisons like

if ‘CAT’ > ‘MOUSE’ then ...

A few expressions would be handled differently (with the same result); for example, the
following statement

if ‘4’ >9 then ...
would involve the comparison of two one-character strings, whereas according to the
existing Report it involves the comparison of two characters. A good optimizing compiler,
however, may make the transformation, or indeed may evaluate the expression at compile-

time. Appendix B discusses some of the reasons for rejecting zlternative formulations of
string constants and their handling.

-l

SEQUENCE ABSTRACTION IN PASCAL 675

5. PRE-DECLARED PROCEDURES

The foregoing rules for a pre-declared type based on the underlying sequence abstraction

suffice to give a type of considerable utility, which yet conforms to rigorous axioms.t

However, although these changes are sufficient, it is desirable (for efficiency reasons) to

have a few pre-declared procedures which carry out commonly needed operations on strings.

These procedures may be described in standard Pascal (thereby defining their semantics),

but an implementation may well implement them in a different manner from the description.
A first useful function is one which returns the length of a string

type
natural = 0 .. maxint; {frequently used types}
cardinal = 1 .. maxint;
function length(s : string) : natural,
var i : natural;
begin
reset(s); 1 := 0
while not ¢of(s) do begin
get(s);i:=i+1;
end;
length :=1;
end;

Since users may construct their own procedures having string parameters, all that is
needed is to provide a small basic set of pre-defined procedures which can be regarded
as primitives. The following brief descriptions show a set which could be so regarded;
definitions in terms of standard Pascal can be found in Appendix A. The character positions
in a non-empty string are defined by putting the characters into one-to-one correspondence
with the cardinal numbers (1, 2, 3, ...).

procedure append(var sl : string; s2 : string);
{the string 51 is extended by copying 52 onto its tasl)

procedure extract(var dst : string; src : siring;
from : cardinal; Ingth : natural);
{the substring consisting of the characters in sfc starting at the position ‘from’ and
continuing for ‘Ingth’ characters are transferred to dst and replace its previous contents}

procedure insert(var dst : string; src : siring; after : natural);
{the dst string has the characters of the src string tnserted between the characters previously
having ordinal positions (after) and (after + 1). If (after = 0) or (after = length(dst)) the
insertion is equivalent o appending}

procedure delete(var dst : string; from : cardinal; Ingth : natural);
{the dst string is modified by removing the characters whose ordinal positions are (from)
to { from + Ingth — 1} inclusive} '

function find(s1, s2 : string) : natural;
{the string s\ is searched for occurrences of the string 52 as a substring, and the function
value returned is the ordinal number of the first character of such an occurrence. If no
occurrence ts found, or if s2 is empty, zero is returned}

676 A. H. J. SALE

6. READING AND WRITING

Since strings are to be allowed as parameters in user-defined procedures and functions, and
the type is a pre-declared one, it is necessary to examine the role played by strings in the read
and write procedures which are defined on text variables. Firstly, examine the operation

write(f, s)

where f denotes a text variable, and s denotes a string variable. The obvious interpretation
of this is that the characters in s are copied across to f. This neatly dovetails with

write(f, ‘THIS IS A MESSAGE")

and it can be seen that the parametric typing previously necessary no longer is: this operation
is a write of a constant of type string.
The operation

read(f, s)

is more of a problem. However, recall that the line-marker in a file of type text is not in the

type chat, and therefore is unrepresentable in a string. The most appropriate interpretation

is thus to transfer any characters on f into s up to, but not including, the next line-marker.
Formatted writes

write{f, 5 : w)

should be consistent with the existing rules of Pascal. If (length(s} < w) then the string s is
preceded by (e — length(s)) spaces; if the string has length equal to it is simply transferred ;
and if (length(s) > w} then the space allocated is expanded to Jength(s).

Interestingly, the same interpretation of string-constants as of type string given in the
write example above legitimizes the CDC-specific pre-defined procedure message. This
procedure, as defined in the CDC-specific part of the User Manual,! takes a parameter
which is any-sized packed array of ckar. Now it can be seen as a respectable Pascal
procedure having the heading

procedure message(s : string)

and thus conforming te all the strong typing rules.

7. FUNCTIONS

Since I have relaxed a number of rules which refer to the file structure, consideration
should also be given to relaxing the prohibition on having functions of structured type. In
the general case, this is a difficult step to take because it adds to the existing insecurities of
Pascal without adding expressive power. The strongest argument against functions of any
structured type is that it may be possible to write functions which return partially undefined
values: results which have some components defined and others not. To add such an
insecurity to Pascal would be indefensible; compilers could not easily detect situations in
which this might happen. Therefore, since allowing functions of any structured type would
only save the programmer from inventing a result variable to use with a corresponding
procedure, they have not been allowed.

Would, however, functions of the specific type string make any sense ? An obvious
candidate to use the facility is the extract procedure shown earlier

SEQUENCE ARSTRACTION IN PASCAL 677

procedure extract(var dst : siring; src : string;
from : cardinal; Ingth : natural);

which could be recast into function form:

function extract(src : siring; from : cardinal;
Ingth : natural) : string;

Given the likely frequency of use of strings, this would indeed be useful; and, as it turns out,
the structuring properties of the sequence imply that it is impossible to have a partially
defined result: files are always totally defined or totally undefined. Note also that an empty
file is quite different from an unopened file {one on which no reset or rewrite has yet been
issued). The only way of creating a file with undefined-value holes in it would be by writing
an undefined-value to it, as in the following program fragment

ft:="E; put({);

put(fy; {f1 is undefined, see Report 10.1,1.}

fhi="D"; put(f);
Usually the term ‘undefined value’ is taken to mean that use of this value is an error, and the
above program fragment would be regarded as illegal. Some implementations check this
interpretation at run-time.

Consequently, there is a quite defensible position from which one can argue that Pascal
functions should be permitted to take on string type. Whether this is restricted to a few
pre-defined functions, or extended to user-written functions, is a matter of judgement, not
axioms.

There is also a-counter-argument, which is based on arranging the types and structuring
methods of Pascal into a sort of hierarchy, as shown below, with all types below a given level
having some common properties

file of ...
assignment

array of ...; record ... end
comparison

packed array[l..n] of char
exXpressions

set of ..
function values
real; pointer types; integer
index uses
Boolean; char; enumerated types;
subrange fypes

If the ordering is accepted, allowing string (= file of char) to be a function value cuts
right across the hierarchy: there are no expressions of string type. This argument is not
conclusive and there are a number of holes in it. For example, there are not really any
expressions of pointer type, nor is it obvious that the structuring methods of Pascal should
be arrangeable into a linear hierarchy.

Therefore, without prejudice to the general issue of allowing structured functions, I
conclude that functions of string type do not harm the general principles of Pascal, and their
utility necessitates their inclusion. The extract procedure mentioned earlier has therefore
been cast inte function form in the Appendix.

48

678 A. H. J. SALE

8, ENCODING AND DECODING

Many users of non-standard versions of FORTRAN are familiar with the extensions known
as ENCODE and DECODE (or INREAD and INWRITE), which essentially allow the
FORTRAN programmer to use the formatting facilities to construct and interpret internal
arrays of characters. Without conceding to the pressure from ex-FORTRAN programmers
who want everything they had in FORTRAN to be in Pascal too, it can easily be seen from
our new perspective that Pascal already implicitly has such facilities!

There is no requirement for a variable of file type to be attached to a named external
object unless named in the program parameters; there is no requirement for part of its
representation to reside on a mass storage device. All that 5 required is that it obeys the
rules laid down for the sequence sbstraction, and the practical additions in Pascal which
have such things in mind. Consequently, a compiler could deduce that a particular file
variable was never large enough to require disk space, or it could never claim disk space until
a suitably sized internal buffer was full, or a compiler option (or a pragmat) could inform it
that a particular file variable was intended to be represented in main memory. In any of
these cases, the file is a true Pascal file, obeying all the Pascal zxioms, and consequently
reads and writes on it may do all the formatting things one would expect. As I noted before:
the ENCODE and DECODE facilities are implicit.

The introduction of type string has a very simple implication for this viewpoint: if
one were to invent a file-type for the purpose, it would look very like the string type.
Consequently, programmers may use the read and write interpreting and formatting to
assist in manipulating strings, or for any of the other genuine uses of the facility such as
reinterpreting input lines.

The one problem with this use is that readln, writeln and eoln are not applicable to a file of
string type since linemarkers are not representable in them. The possible ambiguity as to the
meaning of

write(s, x)
is easily resolved. It is a write of x onto s (s being a file), and not a write of s and x onto

output. The only lesson to learn is that the optional elision of the file-names 1nput and output
in Pascal is a regrettable feature.

9. IMPLEMENTATION AND PRAGMATIC VARIATIONS

Full implementation of string types requires dynamic memory management to maximize
use of main memory, because the ultimate length of a string variable cannot be known, The
necessary details are well known, and can be handled by any competent implementor, either
by using the heap or some other memory allocation scheme {for example, a new segment per
string variable on segmented-memory machines).

Hewever, by limiting the abstraction ever so slightly, another simple implementation
becomes possible which does not require dynamic memory management. This implemen-
tation is outlined here because it may be of use in micro-processor systems, or where no
dynamic memory management scheme is available. It is clearly inferior to complete imple-
mentation conforming to the abstraction. The variation is to allow the programmer to state
at compile-time the maximum size he expects the string variable to reach. The compiler then
allocates sufficient space for this size. The only problem arises with procedure and function
parameters of string type which are passed by 2 value mechanism; however, this case is
identical to that of adjustable-bound arrays and can easily be resolved.

SEQUENCE AESTRACTION IN PASCAL 679

Clearly, the user-declaration of a maximum size is no part of the abstraction of a sequence,
and it does not affect the rules applicable to string type except for one thing. If the number
of characters in a string variable would exceed the limit at any time, the program is in
error because it cannot conform to the axiomatic requirements, and it should be suitably
terminated, Notice that because I have a clear idea of the abstraction to be modelled, the
action on overflow is also clearly indicated: it is not truncation of the result, nor yet assuming
the unrepresentable tail to be spaces, but termination.

This is effectively the implementation technique used in the UCSD compiler. Each
association of string type to a variable is followed by a special piece of non-standard syntax
{the vogue word is pragmai} to indicate the maximum length ’

var
s1, s2 : siring[80];
pattern : string[212];

The details of this form of implementation are relatively easy to fill cut. The structure
which represents a string type must have a representation for the file window (buffer) and
for the file status (open for reading, writing or closed). It also needs to be able to hold the
actual length of the file at any particular time, and a maximum length. A possible structure
could be as follows, where maxstr is the maximum string length:

type
stringstructure = {by no means standard Pascal}
packed record

slength : O, .maxstr,

status . {closed, readable, writable);

sindex : 1. {maxsir +1);
s : packed array[l. . maxstr] of char;
end;

Using an extended Pascal as a documentation aid, it is then possible to describe the action
of the pre-defined procedures (append, extract, length, etc.) in implementation terms, and
similarly for the standard procedures reset, rewrite, and eof. For example,
procedure reset(ss : string alias sss : stringstructure);
begin
sss.status : = readable;
sss.sindex 1= 1,
end;
procedure rewrite(ss : siring alias sss : siringstructure):
begin
sse.status = writable;
sse.sindex 1= 1;

sss.slength 1= 0;
end;
function eof(ss : string alias sss : stringstructure) : Boolean,
begin

if (sss.status # closed) then
eof 1= (sss.sindex > sss.slength)
else
terminatetheprogram,
end;

680 A. H. J. SALE

10. CONCLUSIONS

This paper is easily organized into three parts. The prelude, in Sections 1-3, examines the
properties of file structuring in Pascal, and lays the foundations for the central introduction
of a pre-defined string type in Section 4. In the remaining sections (5-9) it is only necessary
to trace out the logical consequences of the decisions made in Section 4.

The fact that the key decisions necessary to integrate strings of characters into Pascal can
be kept in on¢ small section is a convincing argument that the approach is a good one. The
number of new concepts is thereby minimized, and an extended Pascal with these features is
arguably no less well structured than a standard Pascal. Indeed, it can be argued that it is
better structured, for several pre-defined procedures can be better described in terms of the
extensions, and some restrictions on file types (necessary for pragmatic reasons) can be lifted
for string variables.

I conclude that if any extensions to Pascal are going to address the string processing area,
then the scheme outlined in the paper offers the best fit between problem and abstraction,
and is founded on firm axiomatic principles. The alternatives, which include generalizing
the array to have run-time variable bounds, lead to much greater damage to the strong
typing principles of Pascal.

ACKNOWLEDGEMENTS

The ideas incorporated here owe much to many people. They were firstly provoked by the
participants at the University of California Pascal Workshop in July 1978, and by contact
with the UCSD implementation of Pascal. However, the stimulus for the effort arose
directly from the forceful advocacy by Professor K. Bowles of UCSD for the absolute
necessity of having some sort of facility for handling strings of characters in a Pascal frame-
work. My thanks must also go to Bill Price of Tektronix for provocative cornments which
stimulated thought, to Jim Miner of the University of Minnesota for honest scepticism and
to Judy Bishop for support.

APPENDIX A: DEFINITIONS OF PRE-DEFINED PROCEDURES

This appendix serves to define the semantics of the set of procedures which are suggested as
a minimal set for handling string variables. The procedure capy is introduced to simplify the
descriptions, but should be considered as hidden from the user. Implementations of the
procedures should be semantically equivalent to these definitions

procedure copy(var sl : string; 52 : string);
{expects s1 to be open for writing, and copies s2 onto s1, leaving s1 in a stete for continued
writing)
begin
reset(s2);
while not ¢0f(s2) do begin
s11 0= 521, pui(sl); gef(s2);
end;
end;
procedure append(var sl : string; s2 : string);
var st : string;

SEQUENCE ABSTRACTION IN PASCAL 681

begin

rewrite(st); copy(st, sl);

capy(st, s2);

rewrite(s1); copy(sl, st);
{the file status and file window of s1 ave left undefined}
end;

function extract(sre : string; from : cardinal; Ingth : natural) : string;
var i : cardmal;
dst @ string;
begin
if (length(src) < {from -+ Ingth— 1)) then terminatetheprogram;
reset(sre); rewrtte(dst);
for i :=1to (from—1) do get(src);
for i :=1 to ingth do begin
dst] = srct; pui({dst); pet(sre);
end;
extract 1= dst; {non-standard, but unavoidable}
{the file status and file window of the result are undefined)
end; .

procedure insert(var dst : string; src : string; after : natural);
var { : cardinal;
sE @ string;
begin
if (length(dst) < after) then terminatetheprogram;
reset(dst); rewrite(st);
for i : =1 to after do begin
sty 1= dsth; put(st); get(dst);
end;
copy(st, sre);
while not eof(dst) do begin
sth = dsth; put(st); get(dsf);
end;
rewrite(dst); copy(dst, st);
{the file status and file window of dst are left undefined}
end;

procedure delete(var dst : string; from : cardinal; Ingth : natural);
var ¢ : cardinal;
§t @ string;
begin
if (length(dst) < (from + Ingth— 1)) then terminatetheprogram;
veset(dst); resorite(st);
for ¢ :=1to (from—1) do begin
st} 1= dsth; put(st); get{dst);
end;

682 A. H. J. SALE

for i :=1 to Ingth do get{dst);

while not eof(dst) do begin
st = dst}; put(st); get(dst);

end;

resorite(dst); copy(dst, s1);

{the file status and file window of dst are left undefined}

end;

function find(s1, s2 : string) : natural;
var M, N : natural;
i : cardinal;
state : (scanning, found, notfound);
begin
M 1= length(s1);
N ;= length(s2);
if (N = 0) or (M < N) then begin
Jind :=0;
end else begin
o=l
state : = scanning ;
while (state = scanning) do begin
{The followwing if uses a non-standard string comparison and a string function
defined earlier)
if (extract(sl, i, N) = s2) then begin
state ;= found; find : = i;
end else begin
fi1=i41;
if (M —{+1)< N) then begin
state : = notfound; find := 0;
end;
end;
end; {of while loop}
end; {of if testing lengths}
end; {of find}

APPENDIX B: JUSTIFICATION OF SOME DECISIONS

Undefinition of the file state

In this paper, it is stated that the file state information associated with a string variable
was left undefined after every string operation: assignment, value parameter passing,
comparison, etc. Why ? Why should §2 have its state undefined in

51:=.52?

The conflict arises basically from the difference between the string operations defined in
the paper which treat the string as an entire object, and the get and put operations which
aperate on the detail structure of the file. Abstractly, the entire operations might define a
state for the detail, or they might do as I suggest: leave the state undefined.

The problems with defining the state after all string operations are not trivial. Are some
operations not to disturb a state ? The right-hand side of an assignment, the actual argument

SEQUENCE ABSTRACTION IN PASCAL 683

to a value parameter, or a string involved in a comparisor, for example ? In what state are
assigned strings to be left ? Writeable and at end-of-file, or exact copies of the source ? The
choice between these possibilities is difficult; there are good arguments for each particular
course of action.

However, it seems to me that this is over-specification: entire-variable operations should
not be involved or intermixed with substructure fiddling. Making the state information
(readfwrite/open status and the file window positioning) undefined for all entire-variable
uses of files neatly makes the problem disappear, A programmer may not then insert ¢ntire-
variable operations inte the middle of some structure fiddling without resetting or rewriting
subsequently.

String constant coercion

At an early stage of these investigations, it was suggested that there should be no constants
of the string type, but that there be an automatic coercion from char type, and from packed
array of char generic types into string type. This suggestion was rejected, together with some
other variations, and it is important to see why.

Probably the suggestion arose from a desire to leave the Revised Repart in its original
form as far as possible, and this it does. The coercion is simply an extension, However, a
general principle of automatic coercions that is now widely accepted, and is incorporated in
Pascal’s design, is that they only be permitted when the coercion implies a widening of the
abstraction. Thus coercing integers into real numbers, or real numbers into a complex
number domain, are reasonable. The suggestion does not meet this criterion. A string can be
seen as an extension of the char type without too much difficulty, but it cannot easily be seen
as an extension of an array type. If anything the array type is more highly structured than the
sequence type, in that its sequencing is implicitly defined by its indextype, as are its bounds
and accessing methods.

Structure is therefore lost when coercing an array to a sequence. In the general case, of
course, an array may not be sequenced at all if its indextype was an unordered scalar type;
this shows the basic abstraction of an array as 2 mapping from one domain to another very
cleatly.

Objectively, the lexical token in Pascal which expresses a series of characters is a sequence:
it has no way of specifying any array properties except implicitly. Consequently, the initial
decision taken in Pascal to define this token as a constant of char and the packed array of
char types can be seen to simply be a consequence of the lack of a string type, and less
natural.

In defining string constants in Section 4, several different formulations were tried, with
the intention of preserving the existing uses of the token as well as the new one. These
included context-dependent types, as well as the result actually in that section. The form
finally adopted has the advantage that it limits the decisions to ones which can all be made at
compile-time, and a by-product of clarifying uses of string-constants of one character, It also
clarifies the position of string constants used as actual parameters to pre-defined procedures.

REFERENCES
1. K. Jensen and N. Wirth, Paseai—User Manual and Report, Springer-Verlag, Berlin, 1975.

2. O.]. Dzhl, E. W. Dijkstra and C. A. R. Hoare, Structured Programming, Academic Press, New York,
1972.

3. N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, New Jersey, 1975.
4, C. A, R. Hoare and N. Wirth, 'An axiematic definition of the programming language Pascal’, Acta
Informatica, 2, 335-355 (1973).

