i

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 9, 839-841 (1979}

Implementing Strings in Pascal—Again

ARTHUR SALE
Department of Information Science, University of Tasmania, Tasmania

SUMMARY

Following an earlier proposal that strings be realized in Pascal using the existing sequence
abstraction, two simulating implementations which support the concept via a package have
been written. This short paper addresses two important questions regarding such imple-
mentations which are not fully covered by Bishop’s paper.®

FULL VS PARTIAL IMPLEMENTATION OF STRINGS

In an earlier paper,! it was proposed that Pascal compilers could be modified to permit a
type string, defined as
type string = file of char

with some relaxation of the restrictions placed on file types by the Pascal Report.® This
proposal prompted two Pascal users to write packages, consisting of procedures, functions
and declarations, which could be included in programs and run under existing compilers to
achieve a nearly equivalent effect. In both cases® * an important aim was the possibility of
simply altering the syntax of programs written to use a package to run equivalently under a
reat string implementation.

There are two serious problems with such package implementations which shouid be
emphasized. This note aims to bring them to the attention of users, in the hope that the
problem areas will be detoured in practice, rather than being subtly used with consequent
loss of portability.

UNDEFINITION OF FILE 5TATE

In the earlier paper, a distinction was drawn between the scquence abstraction itself (the
conceptual data structure) and its realization in Pascal as the file structuring method. A
Pascal file has, in addition to its sequence, additional data known as the file buffer variable
and the file state. These allow Pascal programs to move efficiently through the sequence
accessing or constructing one component at a time. However, I argue that these accretions
are not intrinsic to the sequence concept, but are part of a particular access method effective-
ly attached to a file by the execution of a reset or rewrite operation,

Obviously, it is possible to think of a sequence object as having a value without any
defined buffer or state, and strings of characters are an obvious example. However, in
introducing strings into Pascal implementations, it would create an incensistency to disallow
these features for one particular type of Pascal file. Consequently, the definition of string
operations was earlier stated to leave the value of the file buffer and the file state (read or
write) undefined.

0038-0644/79/1009/0839$01.00 Recetved 4 January 1979
© 1979 by John Wiley & Sons, Ltd.

839

840 ARTHUR SALE

Tennent® has arpued that the file status ought to be completely defined after a whole-
sequence operation, equivalent to a reset if the string has simply been accessed, and posi-
tioned at end-of-file in write-status if the string has been created. Treating these attributes
in this way creates consistency problems for comparisons and other operations. For example,
comparison of two strings should imply comparison of the two sequences (and is the obvious
interpretation if the accessing is seen as ‘separate’ from the abstraction), whereas the
acceptance of attributes as an intrinsic part of the file structure implies that two files may
only be equal if their buffers and file-states are equal, with some doubt as to whether the
whole of the sequences are to be compared or from the current position to end-of-file,
depending on the axiomatization chosen.

The implications of this distinction for users of string packages are that calls to package
procedures should not be interleaved with sequential accessing unless separated by interven-
ing reset or rewrite calls. Fortunately, most users of string facilities will only want to call the
string manipulation procedures, and whatever definition a particular package gives to the
access attributes will then be irrelevant.

A more secure version of Bishop's package could be created by inserting undefinition
statements at the close of the relevant whole-sequence procedures, i.e. gets, puts, resets,
resvrites or eofs, for each external string variable accessed during the call, These statements
should assign the value nofyet to the file attribute openstatus, and an ‘undefined value’ to the
character buffer, if such a value exists. Otherwise a space could be used; it already substitutes
for ‘undefined value’ in the buffer-variable of text files positioned at end-of-line,

Two allied insecurities still exist. . .

ASSBIGNMENT AND VALUE PARAMETERS

Since writers of string packages use existing Pascal structuring to create a simulation of a
string type, it follows that assignment is a legal operation upon whatever structure represents
a string variable.
Bishop uses a record which is an extended string descriptor to represent a string variable,
with text chunks chained off it. Consequently, the unwary user of this package who writes
sti= 52
instead of
assign (51,62) ;
acquires instead a second copy of the descriptor. The strings s1 and 2 are now linked, and
operations on s1 may affect (a) the new descriptor and (b) the text chunks themselves. The
net result 1s an appalling mess.
An improvement which does not remove the problem, but limits the mess to controllable
proportions, is to represent a string variable by a pointer to a descriptor:
type string = ‘record.
st char; {window)
start, curvent! Tchunk;
length, position, chunkno: natural;
opensiatus: (forreading, forwriting, notyet)
end;
Accidental assignments then simply copy the pointer. The two strings are still linked, but
only one descriptor will exist (unless a diabolical package subverter deliberately manufactures
another). The package procedures will naturally require minor alterations, and access to the
fie buffer will become 51 1.5 instead of ¢l.s in the original package.

IMPLEMENTING STRINGS IN PASCAL 841

With care, accidental string assignments can be avoided by users, and the assign proced-
ure is avaifable to achieve the desired purpose. However, if a string variable is used as an
actual parameter to a formal value parameter, the same preblem recurs in more insidious
guise, Since the assignment in a value parameter is implicit, there is absolutely no way that a
package can simulate the value-parameter passing mechanism for a string so as to hide the
differences between the simulation and the real thing. (A preprocessor could handle it, of
course.}

Bishop suggests that value parameters are useful with her package, but gives an example of
a function internal to the package which could be rewritten. Also, the argument relies on the
function given (length) leaving the file attributes discussed earlier untouched, Since length
is a whole-sequence operation on a string, it ought to leave the file attributes undefined, as
argued earlicr.

Since there is little practical use for value parameters when strings are simulated {rather
than fully implemented) and serious insecurity, 1 sugpest that

(a) Users of string packages never use the value mechanism for strings, and

(b) the pointer-to-descriptor implementation be preferred.

The first recommendation will enhance portability, and allow for transference to a full
implementation of strings. The second recommendation eliminates the possibility of dis-
agreeing descriptors, and makes both parameter mechanisms have an identical effect for
simulated strings, provided that the user does not tamper with the pointer values deliberate-
ly. Any slips can then be patched up later without altering the effect.

REFERENCES

1. A. H.]. Sale, ‘Strings and the sequence abstraction in Pascal’, Software-Practice and Experience, ®,
671683 {1979).

2. K. Jensen and N. Wirth, Pascal User Manual and Report, 2nd edn., Springer-Verlag, Berlin, 1972,

3. J. M. Bishop, ‘Implementing strings in Pascal’, Software-Practice and Experience, 9, 776-788 (1979).

4. J. 5. Parry, “The Pascal string library notes', Information Science Student Report, University of
Tasmania, 1978.

5. R, Tennent, private cornmunication.

59

