The Basic Principles of Well-structured Code

By Arthur Sale™

This tutorial paper sets out 1o explain the hasic principles underlying the concepts of well structured
code, and the teasoning behind these principles. The alleged advantages of wellstructured coding
inclide increased programmer productivity, less debugging, etc., and it is therefore of potential
interest to a wide range of computer professionals and users. The general topic of structured
programming s also discussed to put well-structured code into perspective in the overall concept.

1. BACKGROUND

The term structured programming often evokes
extreme reactions in computer programmers, either of
active dislike or fanatical acceptance. Why this is so is an
interesting question in the history of computing, and
perhaps also important for our understanding. The roots of
structured programming lie far back in the development of
the so-called software crisis. We now recognise that the
problems of large software projects related not so much o
crisis as to impasse (unless we had mistakenly accepted a
contract for an overlarge project). and that some large
software projects were unwritable however much meney
was poured into them. The wuays to overcome this problem
seemed to lie in dramatic improvement in programmer
ability, or in greatly improved organizational technigues,
bul no-one seemed to have the answer,

The first major push towards what we now call
structured programming came from Professor Edsger W,
Dijkstra of the Technological University of Eindhoven who
suggested at the 1965 1IFIP Congress [Dijkstra, 1965] that
the goto statement should be eliminated from high-level
programming languages. This comment, repeated and
expanded later in a letter to the Communications of the
ACM [Dijkstra, 1968a], triggered off a number of
interested researchers, but had relatively little effect upon
the industry itself, The idea of avoiding the use of gotos
had of course been: around for quite some time; this early
history is well-catalogued by Knuth [1974]. Perhaps some
of the fajlure to listen can be attributed to the provocative
tone of the letter, perhaps some to the misleading and
negative title placed above the letter; but much more
importantly, it seems the idea was generally rejected
because it did not fit the accepted model of what
programming activity ought to be like. In Kuhn’s terms
[Kuhn, 1962], the existing peradigm of programming was a
view of creating intricate programs of a certain personal
beauty of complexity bound up with a skill in diagnosis of
faults. As a result, enly those persons who had personally
experienced some of the problems and perhaps were less
than entranced with the skills of the allegedly best
programmers were able to grasp that here perhaps was the
start of a new paradigm which might be employed to
motivate programmers: (o employ structure of simple kinds
in g reguiar munner to construct refiable programs.

Dijkstra meanwhile set himself to work intensively on
a self-set project:

“This working document reports on experience and

insights gained in programming  experiments

performed by the author in the last ycar. The leading

question was if it was conceivable to increase our

programming ability by an order of magnitude and

what  techniques  (mental, organizational or
mechanical) could be applied in the process of

program composition to produce this increase . .. .

[Dijkstra, 1970]

This project led to a large number of seminal papers
and quotable phrases as his ideas matured and developed
[Dijkstra 1965, 1968a, 1968b, 1969, 1970, 1971, 1972 and
othersj [Dahl, Dijkstra and Hoare 1972]. Dijkstra
undoubtedly provided the impetus and thrust which led to
the eventual recognition that there must be something
useful in structured programming,

It would be invidious here to single out all the
contributions made in the field (not least for fear of
omitting some important development), but it should be
mentioned that two other workers who contributed
considerably to the general climate of tolerance of these
ideas were Professor C.A R. Hoare and Professor N. Wirih.
Their emphasis on what can now be called scftware
engineering (without too smuch risk of understanding)
altered the programmer’s view of his activity. No longer is it
appropriate to view a programmer as a lone eccentric
pursuing an esoteric occupation {though this misconception
persists amongst the young), but rather as a designer
attemnpting to employ his skills in creating usefu! human
constructs in association with others ... Further
bibliographies can be found in Knuth [1974] and Lecarme
[1974].

A year o1 two ago, to the surprise of those of us who
had followed the earlier developments and were thinking
about the consequences, the situation suddenly changed: it
becarme fashionable to talk about structured programming;
it was the in-thing te do. And naturally (as with all
fashions) it rapidly got distorted and gathered accretions of
bandwagon topics, for example TBM’s superprogrammer
project, and Diikstra’s own further ideas on top-down
designing. The situation exhibits all the characteristics of a
small scientific revolution [Kuhn, 1962] in progress: the
accepted paradigm is changing and we witness all the
characteristics of crisis science; dichards clinging to old
beliefs; confusion and redefinition “of terms; the
obsolescence of many text-books; and the many
proponents taking dogmatic positions.

As an almost inevitable result ol the revolution,
numercus people have elevated the discussion of structured
programming to an almost theological level, Authors are
often violently polarized one way or another and take up
positions from which it is difficult to budge them. Dijkstra
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has commented on a communication to Knuth {Knuth,
1974] that not only has he received a considerabie amount
of crank mail, but that the position in the controversy
ascribed to him is somewhat more extreme thun he cures
for.... In the process catch-phrases achieved notoriety in
attempts to gain attention, For example the very useful
word structure has almost becn devalued to meaninglessness
today, and the catch-phrase goto-iess programming has
focussed much attention on one negative aspect of what the
revolution is all about. Often this has ensured a negative
response from active programmers, for who wanis 10 be
banned from using a tcol because they’re felt to be too
irresponsible? It has accordingly become wise for you to get
any self-confessed structured programming proponent or
oppenent to define what he meuns by the terms hefore you
listen further,

2. THE QOBJECTIVES

What then is structured programming as I see it ({or
inevitably the discussion will be coloured by personal
views)? Structured programming is about swructure in
programming: its key precept is that a programmer or
system designer needs to be fillly aware of the implications
of the structures he employs in creating programs and their
nature, and ought to be able to both control and exploit
these structures in an efficient way. Viewed in this way we
can perceive several facets of this central theme, all of
which merit extended treatment {and of course further
research). For example there is the problem of perceiving
struciure in the problem itself, and of how this structure
might be reflected into the modularity of the program; or
the problem of natural or desirable data types and data
structures and their associated natural manipulations; or the
problem of coding actions together to form a program. In
this paper, concentration will be focussed on this last topic:
af how program code ought to be put together and of the
advantages of controliing the code structures employed.

I could now go into some detail to point out the
varicus advantages of und reasons for emploving these
techniques, but this would probably not convince or satisfv
those who have not met structured code before. I will
however peoint cut that the alleged benefits of structured
code are: #

*  modularity of the code is enhanced so that local
changes do not propagate effects al] over the program,
* it becomes easy to satisfy oneself of the iogical
correctness of a program with an amount of effort
which grows only linearly with the size of the program

{und does not result in an explosive increase of effort

in large programs}, and
*  maintenance and modification become simpler as the

structures employed are simple and regular.

In emphasizing the code structure aspect, [ do not
wish to play down other structuring areas, but simply to
concentrate on one isolatable component of a gooed
programmer’s toolkit. | have not space here to explore the
possibilities of data structuring and data types, nor tc write
much about the woeful deficiency of most languages in this
respect, Suffice it to say that a well-structured language will
let you specify data and operations thereon in terms of the
natural properties of the objects concerned, regardless of
the (ine details of implementation, and ought to protect
you from violating the rules implied by the objection
properties, Floating-point arithmetic is a reasonably good
example of what is wanted: yon are given natural
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operations (+, —, x and ), are fairly isolated from the
actual bit-patterns and algorithms used, and in some
computers are notified of overflow and underflow
violations. Even here there is room for improvement in
practice, as witnessed by Knuth’s comments [1969] on
arithmetic axiems and Wirth’s criticism {1972b} of CDC
6600 arithmetic. But to take a very simple example where
typical languages break down, consider the days of the
week: Monday, Tuesday, Wednesday, ..., Sunday. If we
have a variable which it to hold a value of this type, then
clearly an integer is not the best possible representation.
After all, the days of the week are circularly ordered (not
linearly} and violations of the implicit bounds will not be
reported if we try to find successors to each day. And
anyway why should d programmer have te decide whether
Monday is represented by a 0 or a 17 Or indeed whether the
week starts with Monday or Sunday? The whole mess arises
because common languages only have a few very simple
data types and structures, and very minimal checking.
Corollary: most computing langauges are dreadful: we are
only now beginning to realize quite how bad and what
ought to be done about it [Hoare 1972],

To clese this introductery section, 1 will quote a
number of other definitions of structured programming, Tt
should be clear from all these just how much confusion
exists in detail and yet how all are groping towards similar
things . . .

“The systematic use of abslraction to control a mass

of detail, and also a means of documentation which

aids program design.”
[C.A.R. Hoare in Knuth 1974}

“The major ideas that we group under the heading of

structured programming comprises: complete or

partial banishment of the goto stalement, by way of
logical constructs with nested structure; 2 novel
approach o modularity; construction of programs by
stepwise refinement; top-down programming; analytic
verification o1 proof of correctness of algorithms; and
in the use in program construction of a strict but
freely accepted discipline.”

[Lecarme 1974]

“A major function of the structuring of the program is

Lo keep a correctness proof feasible.”

[Drijkstra in Dahl, Dijkstra and Hoare 1972 |

“The purpose of structured programming is to control

complexity through theory and discipline.”

[Mills 1973]

For further comment on a rational level, see the letter
in ACM Forum by Gries [1974] .

3. CODE PRIMITIVES

Translated inio action, the key precepts of structured
pregramming imply that programs cught to be constructed
from code structures that we understand, and whose
inter-relations are themselves easy to understand,
Accordingly we are looking for code structures which are
simple, and in some semse most basic: a set of code
primitives. Note that we are noi sceking for an abselutely
fewest set of primitives from which to construct all
programs {otherwise we might land up with a Turing
machine), but rather to find a consistent set of structurcs
that achieves a balance between simplicity of structure and
interaction and naturalness of use. The necessary
compromises will naturally allow slightly different peints of
view 1o be legitimately held and argued . . .
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Let me now postulate that good programs can be
written using enly the following set as basic primitive code
structures:

*  any indivisible action which has an effect defined by
assnciated axioms, one entry point (inway) and one
exit point {outway).

*  the composition rule.

*  two enumerative combination rules:

{1) sequential,

(2) selective.
¥ two repetivie uses of code:

{1} the iterative loop, and

{2) the self-recursive procedure,

*  the complier/interpreter/table-driven program struc-
ture, which in effect defines a necw abstract
machine with new axioms for & higher level of code.
With the exception of the last construct, afl of these

have but one inway and one outway, and consequently
only one (albeit complex) action, The last construct is
different. in that it defines a new set of axioms as a basis
for a mew body of code, and the flow of control in the
mnterpreter (or compiler or whatever) has little relation and
no relevance to the flow of control in the new bedy of
code.

[n discussing these primitives, it is appropriate to begin
with the basic indivisible qetion, which we take as being
defined by the language we are using, or better, by the
natural properties of the objects being manipulated. The
cllects of such a basic action are to cause some change in
the data environment or the external environment, the
nature of this action being specified by some properties or
axioms. if a boundary assumption concerning the action is
violaied, we have a right to expect that we be notified
immediately of the fault, and if the violation is not
detected until run-time, that cither the execution is
terminated or some other remedial action can be brought
inte play. Some simple examples of basic indivisible actions
in a hopetully selfevident language are:

RESULT <A x(BV+ 1)

PRINT RESULT, “CONVERGED”

At this point it might be appropriate to mention that
some people scem Lo have a mental block for words like
proof and axiom, probably due to some unfortunate
experiences during early mathematical learning, Although 1
shall continue to use these words (they have meaning for
me and have the merit of being short), you are quite at
liberty to mentally substitute ‘satisfy oneself of the logical
correctness of” for ‘prove’, and ‘principles of operation’ for
‘axiom’ wherever these words oceur. You will miss no
nuances of meaning.

The composition rule, which I introduce next, simply
states that any given code construct with one and only one
inway and one and only one outway, may be treated as a
basic action for the purposes of creating larger structures,
however complex the given construct may be internally.
You arc undoubtedly {amiliar with this rule as it crops up
in most commaon programming languages in two guises: that
of nesting (which direcily encloses a construet within
another} and that of procedure calls {which effectively
achieve the same centrol effect). Macros are yet another
manifestation of the sume rule. the differences between
these implementations of the composition rule lie primarily
in the different treatment of the data- and
external-environments. A nested construct (for example a
loop within a loop) has access to all the data-objects
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available to the outer construct, whereas in the case of a
procedure (or function or subroutine or subprogram) access
to the data-objects of the invoking code may be restricted
or directed, A macro of course differs from a procedure
primarily in its run-time attributes of time and spuce, at
least in normal usage.

The importance of the composition rule is that all the
code constructs I shall consider will satisfy the required one
inway and one outway properties, and consequently the
composition rule can be used to make structures of
considerable complexity and widely different substructure,
This rule probably requires little more explanation as it is
so widely known, and the following few examples should
suffice:

Nesting:
LOCPFORJ <1 TON
LOOPFORK <1 TON
ARRAY [JK] « JxN+K
END LOCP
END LOOP

Procedure:
PROCEDURE LOGBASETWO(X, RESULT)

RESULT « LOG(X)/ LOG(2.0)
END PROCEDURE
PROCEDURE MAINPROGRAM

LOGBASETWO(XC-CELLSIZE, LDELTA}
END PROCEDURE

Macro:
MACRO ACCUMULATE(A B)

B<B+A
END MACRO
PROCEDURE MAINPROGRAM

ACCUMULATE(NETPAY, SALARYBILL)
£ND PROCEDURE

4, ENUMERATIVE CONSTRUCTS

The enumerative constructs are rules for assembling
basic actions into larger assemblies of a regular structure.
They are characterized by the necessity of enumerating and
examining each of the effects of the composing actions
one-by-one before the total action of the consiruct can be
comprehended. Consequently the complexity of an
enumerative construct depends upon the number of actions
making it up. An example will make this clearer,

The most familiar enumerative construct is that of
seguential combination: of actions executed sequentially
one after another. Practically all computing languages
permit this form of combination, and undoubtedly you are
fardiliar with it. Clearly to understand the effect of a piece
of sequential code you need to understand what the first
action does to the environment, then what the second does,
and so-on until the last action is considered and the total
action of the piece of code is understood.

The topological dual of serial combination of actions
is that of combination in parallel, and were I considering
actions in a more general sense, it would be necessary to
consider the claim of fully parallel actions (in time) as a
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primitive. However most programming takes place in a
mode  where there is a single flow of control
(uniprogramming) and only one action at a time is
activated. If in this case we have actions where in fact we
do not care about the order of execution of the actions, we
cannot execute them in parallel, but must combine them in
some more or less arbitrary serial order. This state of affairs
is now so commonplace that programmers are unused to
thinking of actions in parallel, or even of considering which
serially combined actions do not in fact interact,

There is however one situation where topologically
parallel control paths find a place in a uniprogramming
environment: where one and only one of the actions is
selected for execution according to some predelermined
decision. This is the selection rule, and is poorly treated in
many common languages. Perhaps the commonest forms of
the selection rule are to be found in the if-then and
if-then-else constructions made popular by Algol 0.
Consider the if-then-else construct represented as follows
(in an invented language):

IF logical-expression
action-1
ELSE
action-2
ENDIF

Depending on the value of the logical expression, cne
and only one of action-1 or action-2 is executed; action-1
being selected if the logical expression has the value true,
As we know logical expressions have only two possible
values (true or false} and there are therefore two ways of
looking at this construction. Both are computationally
equivalent, but they differ in how we view extension of the
principle. The first view sees the logical expression as
producing one of two values which selects one of two
actions; the second view sees the logical expression as
producing either a value (true) which selects the first
action, or any other value (which we know here must be
false) as the second default action.

The second view corresponds most exactly to the
subconscious view held by most programmers, and is
perhaps marginally richer if we look -at extensions of the
selection rule. The first we might look at is the common
restriction to an apparent selection of one action: the
if-then. 1f no action is necessary for the default case, then
many langnages permit a contraction of the construction to
the equivalent of:

IF logical-expression
action-1
END IF

Here it is understood that the default action is nult: do
nothing but carry on. That this view is commonly held is
shown by the fact that the apparently symmetrical case
(with the other viewpoint) of an if-else construct is almost
never met: programmers prefer to reverse the direction of
their logical condition.

Much more interesting though is the extension to
richer selections. There is no good reason why a selection
should stop at two-way; after all serial combination of
arbitrary numbers of actions is commonplace. It has been
sometimes argued that since n-way selections can be built
up of two-way selections (if-then-else), that it is therefore
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somehow jmmoral 10 use n-way constructions. This
argument is very weak for the same is true using one-way
selections {if-then) and no-one seems 1o argue that we be
restricted to them. .. In any casc the argument is of the
same sort as the insistence in some ol the New Maths that
addition is a binary operator despite the common
counter-evidence of column addition sums in their own
textbooks, In view of the fact that not many languages have
fully faced up to the selection question for logical
expressions, we will not be surprised to find that they are
woefully deficient in n-way selection. We need however the
facility of being able to write something like this:

SELECT expression

CASE constant-1
action-|

CASE constant-2
action-2

CASE constant-3
action-3

ELSE
action-4

END SELECT

Ir: this form (which is even now not the most general
in specifying the selection) the expression selects one of the
actions action-1, action-2 or action-3 if it evaluates to
match one of the appropriate case constants, or if it does
not match, it selects the default action following the ELSE.
Like simpler constructs the ELSE may be omitted, and any
number of CASEs is permitted. It is possible then to view
the if-then-else as a convenient shorthand for:

SELECT logical-expression
CASE true
action-1
ELSE
action-2
END IF

Despite the relative unfamiliarity of the selection
construct, it should be clear that it too requires

enumerating the effects of all alternative actlions before the

total effect of the construct can be understood. The effort
involved, as before, grows with the number of alternative
actions. Both sequential and selective combination rules can
be shown well in flow-charts as the necessary
flow-of-control properties arc well modelled, and Fig. 1
iliustrates the two structures.

5.  LOOPS AND RECURSION

foops and recursion play an important part in
computing, for they permit code fragments to be
repeatedly used. Indeed, beginning programmers often seem
to go under the impression that the smallest interesting
procedure worth writing must have at Ieast one loop.
Personally, 1 can think of many useful and complex
loop-free procedures that 1 have written and no doubt you
can too; however this feeling has a germ of truth for it is at
least true that to understand a loop you require quite
different techniques from those used with the combining
rules. In fact the way that we understand the operations
performed by a loop goes by the technical name of
marhematical induction, which I shall discuss briefly later.

The most primitive loop (with the fewest
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(a)

' (b)

Figure 1 The enuvmerative combination rules:
{a) sequential, and (b) selective.

complications such as flow junctions) is illustrated in Fig 2:
the test-atJoop-start version, often characterised in the
literature as the do-while loop. Following the notation I
have been using, such loops could be written in one of the
following two forms:

LOOP IF logical-expression LOOP UNLESS logical-expression

action
END LOOP

action
END LOOP

The only difference between these two forms is of
course in the inversion of the logical expression of the
looping condition. Since I am gencrally more interested in
the conditions for escaping from a loop than the conditions
for continuing in it, [ prefer the second form for clarity.
Whether this is true of other programmers or not is
uncertain; the commonly suggested do-while form of the
consiruct suggests otherwise. However since the evaluation

i20

of the logical expression is of no consequence in.
understanding the action ol the loop iraversal (in the
absence of side-effects it makes no changes in the

data-environment), and the expression is therefore
primarily of use to the programmer in
(1) determining  an assertion  about  the

data-environment that can be made at that point,
and

{2) determining the escape condition,
there is room for both points of view.

Most languages have a built-in count-loop construct
such as BASIC’s FOR and FORTRAN's DO; indeed many
languages have no other explicit loop construct. Obviously
count-loops are imporiant, and it is satisfying to find that a
typical count-loop can be viewed as simply a convenient
mucro-form for specifying a 1ype of do-while loop. Thus
the following expansion contains the essence of count-loop
action.

J<M
LOOP FOR)J+«MTON LOOP UNLESS I >N
aclion action
END LOOP J<I1+1
END LOOP

There are often annoying and unnecessary
implementation and/or language details which obscure or
limit the mapping, but these usually involve the manner of
handling the data-environment, or the manner of evaluating
the loop parameters. In some cases the restrictions placed
are such as to simply act as a safeguard: restricting a
count-loop to counting so that much more complex usage
do not masquerade under this guise. For example it would
probably be generally agreed by persons who have
examined the prablems of count-toops in languages that:
{1} the counting variable ought not to be otherwise

changed during the execution of the loop, either in

value or in reference;

(2) the limits and step size of the count ought to be fixed
similarly throughout the joop execution (so that it
truly counts);

(3) the counting variable ought to be either fully defined
in value after completion of the loop in a normal way,
or else totally inaccessible after completion {thereby
evoking a compile error if a subsequent attempt is
made to access it); and

Figure 2 The most primitive loop: do-while
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(4) the loop test should be logically at the head of the
loop so that it is tested before entry into the loop.
Notice that all these act so as to limit the count loop

to its intended purpose and prevent unexpected effects,
Some proponents of structured coding, including

Dijkstra and Wirth, have implied that the only loop simple

enough to be used in handwritten code is the do-while loop

(and the count-loop). I believe this to be an extreme and

unitenable position, as an examination of the code produced

by good programmers soon shows. Frequently a situation
arises where one of the most natural ways to program is to
create a loop which has fwo (or more) conditions for
escape from the loop, often at different points in the code

for the loop action [Peterson, Kasami and Tokura 1973],

To be sure, such needs can be met by a simple do-while

leop, but this will normally call for the introduction of

auxiliary (logical?) variables whose sole purpose is io hold
informatien until the one termination condition of the
do-while loop is encountered. Such additional burden on
the state description of the loop is only warranted if in fact
loops with several points of termination from the loop are in
fact too complex to understand. And in fact they are not,
at least up to a moderate level of complexity. Accordingly,
we need to be able to describe loops with termination
conditions at the start of the loop, or at the end of the
loop, or somewhere in the middle, or some mixture of all of
these. To permit this, [ will introduce (a) the ESCAPE
statement which causes control flow to terminate the
immediately enclosing loop and transfer to the code just
after the END LOOP Marker, and (b} s a convenience 1F
znd UNLESS clauses may be attached to any one of the

loop marker, the END LOOP marker, or an ESCAPE. A

more complex loop might then leok something like:

LOOP
ESCAPE IF A # B
ENDLOOPIFJ+ 13N

To understand the action of 2 loop, it is necessary to
establish two basic facts or assertions, Firstly it is necessary
to show that if some property of the data-environment is
true when a loop traversal is about to commence, then it
follows that it is true immediately after the loop traversal.
Secondly it must be established that this property is true on
entry to the loop. This atlows us 1o employ the reasoning
technique which goes under the technical name of
mathematical induction: the property is true before the
looping starts (by assertion 2), and it is-therefore true after
the first traversal {by assertion 1), and true after the second
traversal (by assertion 1 again), etc. It remains only to
apply the special conditions of the loop termination
condition in the light of the loop assertion to determine the
state of the data-environment when the loop is complete
and whether it does ever terminate. For obvious reasons the
assertion about the data-environment which does not
change during the execution of the loop is known as the loop
invarigat. Since loop invariants can be quite complex, most
of the difficulty of understanding a loop lies in identifying
just what the loop invariant is. An example will be shown
later.

So far 1 have concentrated upon loops as the structure
most familiar to readers, and ignored recursive procedures,
Recursive procedures are simply another way to repeat
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code controlled by an escape condition and it 1s regrettable
that they have become surrounded by an aura of mystery
for the ordinary programmer. Since loops and recursion
have much in cemmen, 1 could cut the discussion of
recursion short at this point were it not for the fact that the
problems of recursive procedures do not appear to have
been discussed anything like as fully as loops and many
miscongeptions still remain,

In their own way, languages that permit unrestricted
use of recursion (such as Algol 60) open the way to a
spagetti-bowl style of programming quite as nasty as that
composed by unrestricted use of gotos (typical of
FORTRAN programs). The anly thing thal generally saves
the situation is that free use of recursive procedures is not
common, perhaps because they are not required in most
programs, or perhaps becausc they are not understood. As a
result the problem of poorly structured recursion rarely
arises. When it does, the results can be extremely
mystifying as the creation and deletion of local
data-environments with recursive procedures can destroy
much of the evidence of malfunction. . .

In principle there is nothing objectionzble in a
procedure (subprogram) that calls iiself 1o evaluate or
analyse a sub-program that it has analysed: this is much the
same usage as that of a loop, except that the local
data-objects are recreated alresh for the new activation of
the code (thus partially isolating the new activation from
the old). [ shall call such procedures self-recursive.
Self-recursive  procedures ar¢  certainly  well  enough
structured for us to admit them to our set of primitives:
they have to have a termination condition for recursion, a
recursion invariant, and require the technique of
mathematical induction to understand their effects. In fact
self recursive procedures are as alike to loops (and therefore
can be regarded as a slightly dilferent implementation form
of the basic principle of reusable code) us procedures are to
nested code. It is true for example that any recursive
computation can be performed iteratively by a loop, and
vice versa (Cooper 1966 and Barron 1968).

Having stated that self-recursive procedures are
well-structured since they can be considered in isolation, [
should examine (he other usages that are commonly

- lumped under the umbrelia of recursion. The first, which is

innocuous, invelves a reactivation of 4 piece of code (before
its first activation is complete) to analyse a completely
different data-environment. A typical example is that of a
double integration in numerical work, where the work of
evaluating the outer integral involves calling the integration
routine to evaluate a quite different problem, Such usages
are legitimate and better thought of as reusable or
re-cntrant code rather than a recursive, even though the
same implementation structure may be used. The danger in
recursion lies rather in procedures which are at least
mutually recursive, or involve more complex calling
structure. A common example that springs to mind is a
syntax-analyser for a high-level language which permits
quite complicated expressions. Ff there is say an
arithmetic-expression analyser routine, and a
logical-expression analyser routine, then if logical
expressions can be embedded in arithmetic expressions and
vice versa, the two routines may call each other to analyse
sub-expressions. Such a situation immediately causes the
problem of correctness of the routines to be bound up
together: it can never suffice to show that each routine is
correct on the assumption that the other is, but the pair
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must be considered together. A very simple example is
presented in the appendix to illustrate this point since it
does not seem to be widely known,

Of course this is precisely the situation in which gotos
force increased effort of understanding and difficulty of
proof of correctness. It may therefore be appropriate for
those who decry the use of gotos but who delight in recur-
sion to re-examine their principles, the situation may not be
as black-and-white as was first supposed, [f leaping into and
out of loops should be banned then so should mutual
recursion (for ali recursive uses can be formed from
self-recursive procedures); if however mutual recursion is
somelimes valuable there may even be a case for the
occasional goto. . .

6.  ABSTRACT MACHINE CREATION

The effect of the composition rule and procedures in
particular is to extend the available code actions to a more
suitable set for the higher level programming task. Consider
a situation where, by some mechanism or other, a complete
set of new actions has been defined, and the higher level
code is written entirely in these actions and not in the
lower level actions of which they are made up.
Imperceptibly, we have moved from a position of extension
of the code structures to that of redefinition of available
code structures: the creation of a new abstract machine.

While there are sometimes cases where it is difficult to
decide whether a programmer is extending a machine or
creating a new one, there is more often no doubt that the
creation is real. Notice that my usage of the term machine
embraces the term lenguage, with the additional
connotation that not only can we write code for the
machine (language) but that it can also be executed. The
importance of this mode of coding is that by creating a new
set of axioms and actions which are more suitable for the
deseription of the problem, the problem itself becomes
casier, and perhaps better defined. The trick of designing of

+|

course involves a good choice of what new level to
construct, and what properties it ought to have. Some
programmers may be of the opinion that this sort of
programming is reserved for esoteric applications, but this is
not wholly correct. To illustrate the different types of
application and implementations, 1 shall briefly discuss
macro- and subroutine packages, compilers and interpreters,
and table-driven programs.

1t is quite commen to find instances of extensive sets
of subroutines provided for some particular application (for
example FORTRAN routines for commercial data
processing applications) which require the writing of driver
programs which consist entirely of calls to routines. In
another case, macros are used to define a new language
which is then used to write a program. This approach has
been put forward by Waite [1970a, 1970b] as a partial
selution to the portability problem. En each case the user of
the system uses a language which involves objects more
directly useful and familiar to him (though the same may
not be true of the notational devices).

A more whole-hearted approach is of course to create
a whole pew code environment, including actions, syntax,
data-obiects, etc. This is exemplified in emulators
{microcode creation of fake machines as for example IBM
370s), in simulators and interpreters (apparently direct
execution of higher-level languages), and in compilers
(manipulation of the higher-level language to make it more
palatable to the lower level execution device). And we all
know of cases of compilers compiling other compilers,
which perhaps run on machines which are themselves
emulated by a host processor, . .. Clearly the heirachical
mature of these levels is very desirable, as each level can be
considered in isolation from the others [Dijkstra 1969] .

However this type of coding is also of use (and
common) in simpler situations: typically of the so-called
tabledriven programs, Examples that spring to my mind are
the syntax tables of many compilers (such as the WATFQR

i}

i’
_

L -

Figure 3 Character syntax for floating-point numbers (see text for explanation of conventions)
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compiler) and decision tables. The way of thought involved
is sufficiently important to warrant an example,

Consider the problem of recognising floating-point
numbers as typically presented to FORTRAN, BASIC,
Algol and PL/l systems, either in the scurce code as
constants or in the input data. One way of recognising
cotrect floating-point numbers is to sit down and carefully
work through the syntax rules, finally writing a
well-structured program (full of if-then-elses and do-while
loops) to explore all the possible cases. This approach was
followed in  Algorithm 239  published in the
Communications of the ACM [McKeeman, 1964]. The
result can be inspected and while it generally conforms to
the rules of well-structured programs, it is unnecessarily
large and difficult to understand, running to some 61
non-comment lines ol Algol 60. An alternative approach is
to create a fixed data-structure {lable} which reflects the
syntax structure, and then to write a program that simply
‘interprets’ the table by making appropriate tests and
conditionally changing its state to a new point in the table.
Such an approach leads to an executable code body which
may be much shorter {in a trial implementation: 27 lines of
Algol-like code), and is much different. [t of course
implements a quite different problem from the first, and its
flow-chart affords no certain guide as to the action of the
total procedure. The essence of the design is to concentrate
its control in the table, which is therefore a higher level
description of the desired action. You can understand, too,
the advantages of this implementation in adaptation to the
differing vaguries of syntax in Algol and FORTRAN, etc.

To illustrate this {urther, Fig 3 shows graphically a
typical table structure which specifics the syntax of a
floating-point number in some language. Each node censists
of characters to be tested against the current input string
character {* means + or —, and d means one of the digits 0
to 9, and £ and . mean themselves), and two pointers to be
taken dependent on the success of the match: right across
the page if a match oceurs (whence move on to the next
character in the input string}, and downwards if no match
oceurs (se keep trying). In trying to match a string if you
reach the right hand side you have analysed a number, and
if you reach a downwards missing link then the string is
syntactically not a floating-point nuniber. Of course many
other equivalent syntax structures are possible for this
problem.

7. TO GOTO OR NOT TO GOTO

One of the tenets of structured programming is then
that any desired program action can be and ought to be
implemented without excessive efficiency loss using only
the code primitives discussed earlier. That all possible
programs can be implemented in this set is very easy to
prove, one loop and one wide selection suffices to
implement all programs though with poor efficiency and
quite unzcceptable loss of structure related to the problem,
In general, the claim of only marginal loss of efficiency (if
any) is reasonably true: the structures available fit most
propgramming usages. Remember though that some
proponents of structured programming advocate a much
more restricted set of primitives than | have discussed: a
somewhat greater efficiency loss may be the result. Slower
running may however not be the normal penalty for writing
structured code since most complex constructions beloved
by tricky programmers turn out to be of negligible
importance in overall program execution time; the
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innermost loops of programs which consume most of the
time usually turn out to be pretty simpie things,

What then about the goto, familiar to every
FORTRAN, BASIC and assembly language programmer?
Has it any role left? a1 this stage, the answer must be clearly
ves, on two counts. The first can be disposed of guite
quickly: the goto or jump or branch has a very important
role to play in machine instruction sets as it is such a
powerful and economical implementation technique for
changing control flow. Machine designers will be loth to
give it up, and they need not. Obviously therefore the goto
may similarly crop up in intermediate object codes, and in
low-level assembly languages (though there is a case for
encouraging structured code even in dic-hard assembler
programmers). No; the goto has a place deep in machines: it
is misuse by humans that is objected to.

The second role for the goto is much more
controversial. Some programming practices turn out to he
not very easily accommodated by the primitives proposed
carlier. Examples that come to mind are escapes from many
levels deep in nested leops (the loop primitive was
restricted to one level of escape), and goios on special
exception conditions (error discovery, or end-of-file).
Should such usages be regarded as poor programming and
other constructions be substituted? Or should the usages be
tidied up by a better form (an event notice has been
suggested [Knuth 1974]). Or is the goto here the best
implementation? No-one really knows as yet, and until the
question is resolved, the goto remains a convenient
mechanism for occasionally constructing a complex code
structure or for attaining efficiency improvements in
time-critical code,

1t is important to keep perspective on these issues:
structured programming is about designing and perceiving
structuze in programs and in relating that structure to the
problem and its related sub-problems, |t is useless
conforming to ali the rules of structured code if the
resulting program is not clear and well-designed: program
structure  can  hide as well as iilluminate problem
structure. .. In short, it is possible to write terrible
programs with structured code as it is with gotos; only we
hope much less likely!

8. CORRECTNESS PROOFS

[ can now turn to discussing some of the benefits of
structured code, One of the prime benetits claimed is that
of being able to prove that program segments are correct; of
being able to logically atgue through the operation of the
code; and of being abie to do this with effort that is not
disproportionately large compared to the effort of writing
and debugging the code. It is claimed that this approach
leads to code which is better understood (hopefully
correct), and consequently to far fewer serious bugs and
errors, and much less debugging. Dijkstra succintly summed
up this approach 1o program writing in the often-quoted:

“Testing shows the presence, not the absence of bugs.”

When you pause to think about it, it is clear that he is
correct: no amount of testing can assure us that a large
program is in fact completely correct. Your own experience
of lurking bugs in compilers, operating systems and
manufacturer’s software (and perhaps your own software?)
should suffice to prove this. To take a simple example
however, consider the flow chart of Fig 4. It is not
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over-complex as a sub-program, and yet there are {310 + 39

+ 38 + ...+ 31 + 1) = 88573 different control flow paths

through this small program! Even without considering the

possible data interactions, complete brute force testing of
anything but the most miniscule program is not likely.

Noj; it is essential to use your knowledge of structure
in designing and testing programs. Even naive beginners
soon learn to do this: for example they assume that if a
loop works correctly once it will always work correctly.
The natural corollary is however not to test a written
program with great effort to ensure that it works correctly,
but to write it correctly in the first place and understand it
while you are writing it. If then in testing the segment turns
out to be incorrect, it is likely to be due either to & clerical
error (which is relatively easy to detect, and which
compilers can often flag) or to an errorin assumption about
the program, In the latter case the correction may cure the
protlem for all time, rather than as so often happens, cure
it temporarily by slapping a patch over a mysterious flaw,

How do we go about proving things about programs?
The key ideas can perhaps be summed up as follows:

*  Programsin-execution can be divided into two
basically different parts: an invariant part which does
not change during execution, and which is made up of
code, constants, fixed tables, etc., and a part which
varies during execution, made up of data, the
operating environment, etc.

¢ If code-like sections of the fixed part have identifiable
start and finish points, then it should be possible to
make some assumptions about the state of the
data-part at the start of the section and to prove from
the axioms of the actions and the properties of the
code-construct that some consequent assertions hold
at the end of the section.

*  To prove a program correct, it is necessary to show
that the starting assumptions of each code section
match up with the assertions of the code section
immediately preceding or enclosing it, and that the
ovesall program assertion matches up to the defined
problem specification.

Most of us do something like this intuitively. The
contribution of structured code is to make us aware of
what it is we do, and to encourage the use of code
constructs that are well-suited to understanding.

A simple example might make these points clearer.
Consider the problem of finding the smallest number in a
vecter of numbers (or if you prefer, the alphabetically first
name in a set of names: the twe formulations are not much
different). A common method for doing this is to scan each
element of the set one-by-one comparing it with a currently
smallest known element, This algorithm, which is in some
senses an optimal algorithm for the problem, might be
coded something like this:

SPECIFY LENGTH, MINVALUE: INTEGER

DECLARE INDEX, TRIAL: INTEGER

TRIAL ¢ VECTOR []]

LOOP FOR INDEX « 2 TO LENGTH
IF TRIAL < VECTOR [INDEX|

TRIAL < VECTOR [INDEX]

END IF

END LOOP

11 MINVALUE « TRIAL

12 END PROCEDURE

._.
L A N O

724

1 <10 TIMES

.

Figure 4 Example of a flow-chart

(Note that the line numbers are there simply for
convenience in referring to points in the program.} Lines 1
to 4 are primarily specification code and serve to set up the
conditions for the executable code proper. For example the
above program is concerned with only integer numbers and
has access 1o non-local objects VECTOR, LENGTH and
MINVALUE, as well as the local objects TRIAL and
INDEX. Assume that at the program start the variable
LENGTH has defined value 2 1, and that the array
VECTOR also has defined values for all elements from 1 to
the value of LENGTH inclusive. No other assumptions are
needed. This is then the state of my assertions about the
program state just before line 5: whenever we are about to
enter line 5 we know such-and-such about LENGTH and
VECTOR, and nothing about the values of TRIAL, INDEX
and MINVALUE.

It would be pointless to work sequentially through the
program steps trying to prove this program works, for we
would not know what was coming next, Rather we either
have to work from the outside in towards the innermost
nested constructs, or from the innermost constructs out (or
both), knowing or having a fair idea what we are trying to
show, In this case 1 will choose to work outwards and [
shall therefore first consider the IF construct (lines 7-9)
within the loop. This IF construct alters the variable

PROCEDURE FINDMIN (VECTOR,LENGTH MINVALUE)
SPECIFY VECTOR: ARRAY [1 TO LENGTH] OF INTEGERS
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TRIAL only. Assume at the start ol the [F (before line 6)

that TRIAL has some integer value, then the iest provides

for two cases:

*  TRIAL < VECTOR [INDEX], in which case TRIAL
takes the same value as VECTOR [INDEX], or

*  TRIAL > VECTOR [INDEX], in which case nothing
isdone.

Accordingly at the end of the segment TRIAL has a
value which is the smaller of that it had before and that of
VECTOR {INDEX).

The next enclosing construct is the loop (lines 6.10),
for which a quite different proof technique is required
(remember that selection requires enumeration of the
actions while loops require inductive reasoning). Assume
that we know the properties of count-loops, for it would
indeed be laberious to prove that every count-loop in fact
counted! Then we need to show two things: that each
iteration of the loop carries out an action consistent with
the target. and that the appropriate initial conditions are
right. And it is here that the ingenuity of the programmer
comes in for it is not always easy to determine what must
be asserted as the action of an iteration. In this case T will
assume that before the j-th iteration (an arbitrary one) the
variahle TRIAL holds the value which is the least found in
all the elements VECTOR {1]| to VECTOR [I - 1]: for
that is what we want. | can then show that if this is so, then
it is also so after the j-th iteration, for the action of the
bedy of the loop is to make TRIAL keep the least value of
its previous value and the jth element (see above). Further,
and this is important, just before the first iteration TRIAL
holds the minimum value of zall the elements preceding the
first index value (i.¢. the value of VECTOR [1]). Therefore
since my assumption holds for betore the first ileration, it
holds after the first and before the second, after the second
and befere the third ... and so on until the loop
terminates. In this case it does so by reaching the element
VECTOR [LENGTH] which is supposedly the last element
to be considered, and therefore at this point TRIAL will
have the value of the smallest element in VECTOR.

And that is all bar the shouting. Line 11 simply passcs
this value back into the external environment, so that 1 can
assert that at procedure exit both VECTOR and LENGTH
are unaltered, and MINVALUE has the desired value. I have
hit this trivial program with a sledge-hammer of course, but
it is an example which is worth looking over carefully. It
illustrates  proof techniques applied to selective
combination (the IF)}, and to loops. It also illustrates
composition, for notice that In using this procedure in &
larger program we need not even know about the internal
variables TRIAL and INDEX; indeed INDEX could well
have been local to the loop within FINDMIN (it was never
used anywhere else). You will realize that the amount of
work required to analyse a complete program depends
basically upon the number of constructs in the program and
their complexity, and not on the total number of paths
through the program.

Provided the accuracy of the measure is not taken too
seriously, it is possible to construct a control complexity
index (CCI) which is a measure of the difficulty of proof of
correctness of a program. Assume then that a basic action
has a complexity of 1: it takes one unit of effort to
comprehend it, The enumerative actions have complexities
equal to the sum of the complexities of all sub-actions.
while loops have complexity equal to their body
complexity plus some extra component dus to the
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reasoning involved, The situation is shown in Fig 7.1. Since
none of these measuzes involve any function growing faster
than a sum, the CCI grows approximately linearly with the
size of its associated program (not explosively, as normal
soflware managerial experience tends to assert). Further
provided that the complexity of any individual component
is not too great (such as a very diverse selection) the
complexity of a program is localizable: it is possible to
work on a fragment ignoring much irrelevant detail. This is
the important principle of modulairty shorn of its folklore:
that working on one part of a program can be independent
of work on another. Divide and rule!

9. CONCLUSION

[t was the intention of this paper to set a {ramework
for subsequent discussions of the practical consequences of
structured programming for industry programmers. In
introducing the basic primitives and the use that can be
made of such constructs in understanding programs, [ hope
to have shown that there is perhaps some merit in writing
code which is well-structured and in the popular
catchphrase goto-less. 1 hope too to have indicated that
there is a lot more to structured code (and structured
programming) than goto-lessness, and that indeed the last
word has not been written on the topic. While it would be
generally agreed that rats’ nest styles of programming are to
be abhorred, it is recognized by some that the go to and
similar constructs do have some role 10 play in high-level
languages in unusuatl situations.

In concluding, [ might remark thal it is often very
hard Lo convert cxisting programmers to a structured way
of thought, or to get them to recognize meril in some of
these new developments. Two reactions are common: (1}
“I've been doing this all along, so I'll read no further. Go
teach your grandmother to suck eggs!” and (2} *“Yes, but |
find that there are two many exceptions...”. Wc are
conditioned by our expericnces: as Dijkstra is reporied to
have said, “No one survives carly education withoul some
scars. .. .. It is a requirement for my applicants that they
have no knowledge of FORTRAN. . ..” [n practice this
means that even though we may consciously know about
other ways of working, our thought-patterns may stil be
running in obsolete channels, forcing continual translation
and non-optimal programming habits. Things are quite
otherwise when training newly hatched programmers:
altogether a much easier task since constructions will occur
to them (within their paradigm of structured programming)
that seldom occur to old-style programmers.
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misunderstandings:
integer procedure factoriala(n),
integer n; value n;
factariala:= (if n = O then 1 else factoriala(n — 1)
xn);
integer procedure factorialb{n);
integer n; value n;
factorialb:= (if n = 5 then 120 else factorialb(n +

1)+ n);

Both procedures are asserted to.compute the factorial
functionof n{n! =nx{n — N x{n- 2}x..x2x1)for
values of n lying in the range O to 5 inclusive. No other
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convinee you that both procedures are in fact correct (they
terminate and do so with the correct value}, differing only
in efficiency. The procedure factoriala is faster if small
values of n predominate, while factorialb may be preferable
if values near 5 predeminate.

Suppose now that we make some minor changes. We

KUHN, T.5. {1970): “The Structure of Scientific Revolutions”, 2nd
edition, The University of Chicago Press.

LECARME, (. (1974): “Structured Programming, Programming
Teaching and the Language Pascal”, SIGCSE Bulietin, Vol. 6,
2, June 1974 pp9-15, (also in SIGPLAN Notices, Vol 9 17,
July 1974, ppl15-21.

McKEEMAN, W.M. (1964): “algorithm 239 — Free Field Read”,
Communications of the ACM, Vol. 7, B, August 1964,
pp4B1482.

MILLS, H. (1973): “Mathematical Foundations of Structured
Programming ", IBM Technical Report,

PETERSON, W.W., KasaMml, T. & TOKURA, N, (1973): “On the
Capabilities of While, Repeat and Exit Statcments”,
Communications of the ACM, Vol. 16, 8, August 1973,
pp503-512.

WAITE, WM. (1970); “Building a Mobile Programming
System” Computer Journal, Vol 13, 1, February 1970,
pp28-31.

WAITE, W.M. {1970): “The Mobile Programming System — STAGE
2", Communrications of the ACM, Vol. 13, 7, July 1970,
ppd15-421.

WIRTH, N. (19713 “The Design of a Pascal Compiler”, Software
Practive and Experience, Vol, 1, 4, pp309-333,

WIRTH, N. {1972): “The Programming Language Pascal (Revised
Report)”, Berichte der Fachgruppe Computer-Wissenschaften
5, Eidgenossische Hochschule, Aurich.

WIRTH, N. (1972): “‘On Pascal, Code Generation and the CDC
6600 Computer”, Computer Science Department €5-72-257,
Stanford University.

WIRTH, N. (1973): “Systematic Programming: An Introducticn”,
Prentice-Hall, Englewood Cliffs.

know that factoriala and factorialb compute the same
thing, so suppose we alter the executable body of factorialb
to read:

factorialb:= (if n = 5 then 120 else factoriala (n+ 1) +

ny
then c%o the two procedures still correctly compute the
required values? Further if we also make the corresponding
change in factoriala io:

factoriala:= (if n = 0 then 1 else factorialb (n — 1) x

n};

what then? If we make the assumption that factorialb is
correct then it fallows that factoriala is too; conversely
assuming that factoriala is correct then factorialb must be.
And yet if only one of the lines are changed both
procedures are correct, but if both are changed the whole
thing falls apart (and in this constructed example fails to
terminate), Where has it all gone wrong? Essentially by
changing the two procedures to be mutually recursive we
have created a circular argument, and to show that either of
the procedures is correct il becomes necessary to consider
both together. Tn this very simple example the error is of
course in not ensuring that the mutuat calls result in some
consistent progress towards termination. Much more elusive
errars are possible.
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