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Abstract

Graphs and various objects derived from them are basic essential tools that have
been actively used in various branches of modern theoretical computer science. In
particular, graph grammars and graph transformations have been very well explored
in the literature. We consider finite state automata defined by directed graphs, char-
acterize all their congruences, and give a complete description of all automata of this
type satisfying three properties for congruences introduced and considered in the
literature by analogy with classical semisimplicity conditions that play important
roles in structure theory.
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1 Introduction

Graphs and various objects derived from them are basic essential tools that
have been actively used in various branches of modern theoretical computer
science. In particular, graph grammars and graph transformations have been
very well explored in the literature (see, for example, [3]). It makes sense to
consider new ways of defining classical finite state acceptors using graph label-
ings, and determine how properties of the acceptors depend on the properties
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of the original graph labeling. Our paper contributes to this direction and con-
tinues the investigation initiated in [5], where the concept of a graph algebra
has been used in order to define finite state automata. In the present paper
we study congruences of these automata.

Congruences of automata are important tools for the investigation of the struc-
ture of automata, efficiency of their applications, optimization algorithms, and
issues that arise in implementing automata. In this paper we consider three
properties of automata congruences that have been known and used in the
study of other types of objects for a long time. These properties are natural
analogues of classical semisimplicity conditions playing key roles in structure
theory as crucial concepts for describing several classes of objects. The research
devoted to structural descriptions using methods relying on these properties
has developed into a large area involving general considerations in the frame-
work of category theory (see, in particular, [4]). In the case of finite state
automata these concepts have been first addressed in [9]. Instead of trying to
be complete in discussing achievements and branches of this direction, we refer
the reader to [10] and [11] for the history of this topic, detailed explanations
of roles of these semisimplicity conditions, known facts obtained earlier, and
a few introductory references to relevant papers of other authors. The exact
definitions of these properties (O1), (O2), and (O3) are given in Section 2.

We use standard concepts of automata and languages theory, following [7] and
[14]. Let X be an alphabet. A language over X is a subset of the free monoid
X∗ generated by X. Throughout the word graph means a finite directed graph
without multiple edges but possibly with loops. In this paper we consider
graphs and their algebras as means to define language recognizers.

Graph algebras have been investigated by several authors (see, for example, [2],
[6], [8], [12], and [13]) in relation to various problems of discrete mathematics
and computer science. The graph algebra Alg(D) of a graph D = (V, E) is the
set V ∪ {0} equipped with multiplication given, for all x, y ∈ V , by the rule

xy =

 x if (x, y) ∈ E,

0 otherwise.

Let Alg(D)1 be the graph algebra with identity 1 adjoined, T a subset of
Alg(D)1, and let f : X → Alg(D)1 be any mapping. Consider the graph algebra
automaton Atm(D, T ), where

(A1) the set of states is Alg(D)1;
(A2) 1 is the initial state;
(A3) T is the set of terminal states;
(A4) the next-state function is defined by left multiplications of elements of the
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graph algebra, i.e., a · x = f(x)a, for a ∈ Alg(D)1, x ∈ X.

To illustrate the definition we include an easy example (see Figure 1).

f : x 7→ a, y 7→ b, z 7→ c
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Fig. 1. Directed graph and its automaton

The language recognized or accepted by Atm(D, T ) is {u ∈ X∗ | 1 · u ∈ T}.
To illustrate let us mention that if D is a null graph, then all products in
Alg(D) are zero, and in this case the language recognized by Atm(D, T ) is
f−1(1)∗f−1(T ) if 0 6∈ T , and X∗f−1(T ) ∪X∗(X − f−1(1))X∗(X − f−1(1))X∗

if 0 ∈ T .

Let D′ be the subgraph induced in D by the set V ′ = V ∩ f(X) of vertices.
Consider the automaton Atm(D′, T ), defined by the graph D′ and the same
function f . It is easily seen that Atm(D′, T ) recognizes the same language
as the original automaton Atm(D, T ). Thus throughout we may assume that
V ⊆ f(X).

All languages recognized by the graph algebra automata have been described
in terms of regular expressions and combinatorial properties in [5]. This de-
scription has answered several natural questions concerning the class G of
languages recognized by graph algebra automata. For example, it has been
shown that this class contains certain fairly large subclasses, and that it is a
proper subclass of the class of regular languages. Besides, it has been proven
that the whole class G is closed under the Kleene ∗-operation and comple-
ment. Although G is not closed for union, intersection, and product, it can be
represented as a union of two classes one of which is closed under intersection
and left derivative, and another is closed under union and right derivative.

Our main theorem describes all graph algebra automata satisfying the con-
ditions (O1), (O2), and (O3) for congruences, and shows that in this case
all three properties are equivalent (see Theorem 1). Two of our technical
lemmas used in the proof are of independent interest. For each automa-
ton Atm(D, T ), they describe all congruences (Lemma 2) and the Nerode
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equivalence (Lemma 3).

2 The Main Theorem

A few definitions are required for the main theorem. An equivalence relation %
on the set of states compatible with the next-state function defines the quotient
automaton in a standard fashion. Since the initial state 1 is adjoined to every
graph externally, in order to make sure that the quotient automaton is also
a graph algebra automaton, we have to restrict our attention to equivalence
relations such that the class containing 1 is a singleton. In this case we say
that % is an equivalence relation of the automaton Atm(D, T ).

The quotient automaton recognizes the same language if and only if the rela-
tion saturates the set T of terminal states, i.e., T is the union of some classes
of the relation. Equivalence relations of this sort will be called congruences
on the automaton Atm(D, T ). This ensures that the quotient automaton is
also defined by a graph. More formally, an equivalence relation ρ on the set
of states is called a congruence of Atm(D, T ) if and only if it satisfies the
following three conditions:

(C1) (a, b) ∈ ρ implies (a · x, b · x) ∈ ρ, for all a, b ∈ Alg(D), x ∈ X;
(C2) if (a, b) ∈ ρ and a ∈ T , then b ∈ T ;
(C3) the class containing 1 is a singleton.

Denote by Con(D, T ) the set of all congruences on Atm(D, T ). Given con-
gruences ρ, δ on Atm(D, T ), the meet ρ

∧
δ and join ρ

∨
δ denote their inter-

section and the transitive closure of their union, respectively. It is well known
and easy to verify that the set of all congruences on any automaton forms a
lattice with respect to

∧
and

∨
. Therefore Con(D, T ) is a sublattice of the

lattice of all equivalence relations on Alg(D)1 with 1 in a separate class. The
largest congruence on Atm(D, T ) is the Nerode congruence σT described by

σT = {(a, b) ∈ Alg(D)× Alg(D) | a · u ∈ T iff b · u ∈ T

for all u ∈ X∗} ∪ {(1, 1)} (1)

(see, e.g., [1]). Denote the equality relation on Atm(D, T ) by ι. A congruence is
said to be proper if it is distinct from ι and σT . A congruence ρ on Atm(D, T )
is said to be essential if, for every δ ∈ Con(D, T ), the equality ρ

∧
δ = ι

implies δ = ι. A congruence ρ in Atm(D, T ) is called a direct summand if
there exists δ ∈ Con(D, T ) such that ρ

∧
δ = ι and ρ

∨
δ = σT . In this case δ

is called a complement of ρ, and we write ρ⊥δ.

For any subset S of Alg(D)1, denote by S the set Alg(D) \ S. Note that
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S never contains 1. Clearly, an equivalence relation on Alg(D)1, with 1 in a
separate class, saturates a subset S ⊆ Alg(D) if and only if it saturates S. In
order to consider the cases where 0 ∈ T and 0 6∈ T simultaneously, we define
the following set:

T0 =

 T \ {1} if 0 ∈ T ,

T otherwise.

The in-neighbourhood and out-neighbourhood of a vertex v of D = (V, E) are
the sets In(v) = {w ∈ V | (w, v) ∈ E} and Out(v) = {w ∈ V | (v, w) ∈ E}.
We say that a subset S ⊆ Alg(D) is in-closed if In(S) ⊆ S, where In(S) =⋃
s∈S

In(s). Putting In(0) = ∅ we see that {0} is in-closed.

Let C0 be the set of all elements c ∈ T0 such that there does not exist any
vertex v ∈ T 0 with a directed path from v to c. Obviously, C0 is the largest
in-closed subset of T0, and it always contains 0. The main result of this paper
to be proven in Section 4 is the following

Theorem 1 Let D = (V, E) be a finite directed graph, and let T ⊆ V ∪{0, 1}.
Then the following conditions are equivalent:

(O1) the automaton Atm(D, T ) has no proper essential congruences;
(O2) the Nerode congruence σT on Atm(D, T ) is a join of minimal congruences;
(O3) every proper congruence on Atm(D, T ) is a direct summand;
(O4) there exists an in-closed subset M of C0 \ {0} satisfying the following four

properties:
(i) all connected components of the subgraph induced by M in D are strongly

connected;
(ii) all vertices in M with nonzero in-degrees have pairwise distinct in-neigh-

bourhoods;
(iii) for each a ∈ C0 \ {0}, there exists a′ ∈ M such that In(a) = In(a′);
(iv) for all a, b ∈ T0 \ C0 or a, b ∈ T 0, the equality In(a) ∩ C0 = In(b) ∩ C0

implies In(a) = In(b).

3 Technical Lemmas

For any subset S of T0, consider three auxiliary relations

µS,S = (S ∪ {0})× (S ∪ {0}),
µT0

S = {(a, b) | In(a) ∩ S = In(b) ∩ S and a, b ∈ T0 \ (S ∪ {0})},
µT 0

S = {(a, b) | In(a) ∩ S = In(b) ∩ S and a, b ∈ T 0}.

5



We introduce the relation

µS = {(1, 1)} ∪ µS,S ∪ µT0
S ∪ µT 0

S . (2)

Clearly, µS is an equivalence relation on Atm(D, T ), and µS = µS∪{0} = µS\{0}.
It may happen that S1 ⊆ S2, but µS1 6⊆ µS2 , for example, if D has isolated
vertices. The following lemma describes all congruences in Con(D, T ).

Lemma 2 Let ρ be an equivalence relation on Atm(D, T ). Denote by S the
class of ρ containing 0. Then ρ is a congruence on Atm(D, T ) if and only if
S is an in-closed subset of C0 and ρ ⊆ µS. In particular, for every in-closed
subset S ⊆ C0, the relation µS is a congruence on Atm(D, T ).

Proof. The ‘if’ part: Suppose that ρ ⊆ µS and S is an in-closed subset of
C0. Since µS satisfies conditions (C2) and (C3), it follows that the same can
be said of ρ. In order to verify (C1) for ρ, consider any pair (a, b) ∈ ρ and
f(x) = c where c 6∈ {0, 1}, i.e. c ∈ V .

First, if c ∈ In(a) ∩ In(b), then (a · x, b · x) = (ca, cb) = (c, c) ∈ ρ.

Second, if c 6∈ In(a) ∪ In(b), then (a · x, b · x) = (0, 0) ∈ ρ, too.

Third, suppose that c ∈ In(a) \ In(b). We claim that c ∈ S. Indeed, if a ∈ S,
then c ∈ In(a) ⊆ In(S) ⊆ S, because S is in-closed. If, however, a 6∈ S, then
ρ ⊆ µS implies that In(a) ∩ S = In(b) ∩ S, and c ∈ S again. It follows that
(a · c, b · c) = (ca, cb) = (c, 0) ∈ S × S ⊆ ρ.

The case where c ∈ In(b) \ In(a) is similar, and so we have proved that (C1)
holds. Thus ρ is a congruence on Atm(D, T ).

The ‘only if’ part: Suppose that ρ is a congruence on the automaton Atm(D, T ).
Clearly, S ⊆ T0, because ρ saturates T . To prove that S is in-closed, take any
vertex a ∈ S. Condition (C1) implies that (b, 0) = (ba, b0) ∈ ρ, for every
b ∈ In(a). Therefore In(S) ⊆ S.

In order to show that ρ ⊆ µS, pick any pair (a, b) ∈ ρ. If a, b ∈ S, then
(a, b) ∈ µS, because S ∪ {0} is an equivalence class of µS.

Furthermore, assume that a, b /∈ S. Condition (C2) shows that ρ saturates
T , and so a, b ∈ T0 \ S or a, b ∈ T 0. If there exists c ∈ In(a) \ In(b), then
(C1) implies (c, 0) = (ca, cb) ∈ ρ, and we get c ∈ S. Hence In(a) \ In(b) ⊆ S.
Similarly, In(b) \ In(a) ⊆ S, and so In(a) ∩ S = In(b) ∩ S. By the definition
of µS we see that (a, b) ∈ µS. Thus ρ ⊆ µS. 2

Lemma 3 The Nerode congruence σT coincides with µC0.
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Proof. By Lemma 2, the class 0/σT of the Nerode congruence containing 0
is in-closed. Therefore it is contained in the largest in-closed subset C0 of T0.

To prove the reversed inclusion, consider any vertex c ∈ C0 and use the equal-
ity (1). Since C0 is in-closed, we see that c ·w ∈ T0 for all w ∈ X∗. Obviously,
0 · w ∈ T0 for all w ∈ X∗, too. It follows from (1) that (c, 0) ∈ σT . Thus
C0 = 0/σT .

Lemma 2 tells us that σT ⊆ µC0 . However, σT is the largest congruence. There-
fore σT = µC0 . 2

For a subset A of Alg(D), denote by Θ(A) the equivalence relation ι∪(A×A)
on Atm(D, T ).

Lemma 4 For any A ⊆ Alg(D), the equivalence relation Θ(A) is a congru-
ence if and only if one of the following conditions holds:

(i) all vertices of A have the same in-neighbourhoods, and either A ⊆ T 0 or
A ⊆ T0 \ {0};

(ii) A is an in-closed subset of T0 and 0 ∈ A.

Proof. The ‘if’ part: If (i) holds, then Θ(A) ⊆ µ{0}. If (ii) holds, then Θ(A) ⊆
µA. In both cases Θ(A) is a congruence by Lemma 2.

The ‘only if’ part: Suppose that Θ(A) is a congruence. If 0 /∈ A, then 0/Θ(A) =
{0}, and so Θ(A) ⊆ µ{0} by Lemma 2. The definition of µ{0} shows that (i)
holds. If 0 ∈ A, then 0/Θ(A) = A, and so A is an in-closed subset of T0 by
Lemma 2, i.e., condition (ii) is satisfied. 2

A graph is said to be strongly connected if, for every vertices u 6= v, there
exists a directed path from u to v.

Lemma 5 Let M be an in-closed subset of the set V of vertices. Then the
subgraph of D = (V, E) induced by M is strongly connected if and only if M
is a minimal nonempty in-closed subset of V .

Proof. If M is a singleton, then the assertion is trivial, and so we assume
that |M | > 1. For any vertex v ∈ V , denote by In∗(v) the set of all vertices
u ∈ V such that there exists a directed path from u to v. Obviously, In∗(v) is
the smallest in-closed set containing v. It is easily seen that, for every in-closed
subset M of vertices, the subgraph of D induced by M is strongly connected
if and only if M = In∗(v), for every v ∈ M . Let us verify that the latter fact
is equivalent to M being a minimal in-closed subset of V .
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To prove one implication, suppose to the contrary that M = In∗(v), for every
v ∈ M , but there exists an in-closed proper subset N of M . Then, for each
vertex v ∈ N , the set In∗(v) is contained in the in-closed set N , contradicting
M = In∗(v).

For the converse implication, suppose that M is a minimal in-closed subset
of V . Take any v ∈ M . Obviously, In∗(v) ⊆ M since M is in-closed. Since
the set In∗(v) is in-closed, by the minimality of M we get M = In∗(v). This
completes our proof. 2

4 Proof of the Main Theorem

Proof of Theorem 1. (O2)⇒(O1): Suppose that σT is a join of minimal
congruences αi on Atm(D, T ), where i ∈ I. Consider a proper congruence
ρ on Atm(D, T ). For every i ∈ I, either αi ⊆ ρ, or αi

∧
ρ = ι. If all the

αi are contained in ρ, then ρ = σT , a contradiction with ρ being proper.
Therefore there exists i ∈ I such that αi

∧
ρ = ι. Thus ρ is not essential, and

so Atm(D, T ) has no proper essential congruences.

(O3)⇒(O2): Denote by αi, where i ∈ I, all minimal congruences on Atm(D, T ).
Suppose to the contrary that α =

∨
i∈I

αi is properly contained in σT . By (O3)

there exists a congruence δ 6= ι such that α⊥δ. Choose a minimal proper con-
gruence δ′ ⊆ δ. Then δ′ ⊆ α, and so δ′ = α

∧
δ′ ⊆ α

∧
δ = ι. This contradiction

shows that σT =
∨
i∈I

αi.

(O4)⇒(O3): Assume that there exists an in-closed subset M of C0 \ {0} sat-
isfying properties (i) to (iv). Take any proper congruence ρ on the automaton
Atm(D, T ).

First, consider the easy case where M = ∅. Condition (iii) implies that C0 =
{0}. Lemma 2 shows that an equivalence relation is a congruence if and only
if it is contained in µ{0}. By Lemma 3, σT = µ{0}. Denote by Ki, where i ∈ I,
all µ{0}-classes not equal to {0}. Evidently, every class Ki is a disjoint union
of some ρ-classes: Ki =

⋃
j∈Ji

Kij, for some Ji. In this notation all classes of the

congruence ρ are {0} and the Kij, where i ∈ I, j ∈ Ji. For each i ∈ I, pick
one element aij in each Kij. The equivalence relation τ =

⋃
i∈I

Θ({aij | j ∈ Ji})
is a congruence, because τ ⊆ µ{0}. It is easily seen that ρ⊥τ . Thus condition
(O3) holds.

Second, consider the case where M 6= ∅. If a vertex v of T0 has in-degree 0 and
does not belong to M , then it is an isolated vertex of the subgraph induced
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in D by M ∪ {v}, and so we can adjoin it to M . Therefore without loss of
generality we may assume that M contains all vertices of T0 with in-degree
zero. We are going to define a congruence δ which is a direct complement to
ρ. To this end we have to introduce notation for certain subsets in C0 and
classify the classes of ρ in relation to these sets.

Denote by M1, . . . ,Mn the sets of vertices of all connected components of
the subgraph induced by M in D. By (i) all these components are strongly
connected. Lemma 5 says that M1, . . . ,Mn are minimal in-closed subsets of
C0 \ {0}. Take any minimal in-closed subset M ′ of C0 \ {0}, which does not
consist of a single vertex with in-degree 0. Since the subgraph induced by M ′

is strongly connected by Lemma 5, we get In(a) 6= ∅, for any vertex a ∈ M ′.
Therefore (iii) implies that In(a) = In(b), for some b ∈ Mi, where 1 ≤ i ≤ n.
Since both M ′ and Mi are in-closed, we get In(a) ⊆ M ′∩Mi, and so M ′ = Mi,
because they are minimal. Thus M is a disjoint union of all minimal in-closed
subsets of C0 \ {0}.

If Mi consists of a single vertex with in-degree zero, then put Ni = Mi. Oth-
erwise, denote by Ni the set of all vertices a in C0 such that In(a) = In(a′),
for some a′ ∈ Mi. Condition (iii) implies that C0 \ {0} is a disjoint union of
the Ni, i = 1, . . . , n.

For any i, put Pi = Ni \Mi. Note that Out(a)∩C0 = ∅, for every vertex a of
n⋃

i=1
Pi. Indeed, if (a, b) ∈ E, for some b ∈ C0, then by (iii) there exists b′ ∈ M ,

such that In(b) = In(b′), and so (a, b′) ∈ E, which is impossible, because M
is in-closed.

Denote by S the class 0/ρ. By Lemma 2, S is in-closed, and so S ∩ M is
in-closed, too. Moreover, since M is a disjoint union of all minimal in-closed
subsets of C0, we see that both the sets M \ S and M ∩ S are disjoint unions

of some minimal in-closed subsets Mi of M . Assume that M ∩S =
k⋃

i=1
Mi and

M \ S =
n⋃

i=k+1
Mi, and that every set M1, . . . ,Ms, Mk+1, . . . ,Mt consists of a

single vertex with in-degree zero, where 0 ≤ s ≤ k ≤ t ≤ n. For i = s+1, . . . , k,
let P ′

i = Pi ∩ S. The set C0 and its subsets are illustrated in Figure 2. Note
that C0 is a disjoint union of some ρ-classes. The class S is the disjoint union

{0} ∪ (
k⋃

i=1
Mi) ∪

k⋃
i=s+1

P ′
i .

We claim that each ρ-class K ⊆ C0 such that K 6= S has one of the following
four types:

Type 1: K ⊆ Pi, where i = t + 1, . . . , n, and all vertices of K have the same
in-neighbourhoods.
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0

Fig. 2. C0

Type 2: K ⊆ Mi ∪ Pi, where i = t + 1, . . . , n, |K ∩Mi| = 1 and all vertices
of K have the same in-neighbourhoods.

Type 3: K ⊆ (Ps+1 \P ′
s+1)∪ . . .∪ (Pk \P ′

k)∪Mk+1∪ . . .∪Mt and K ∩M 6= ∅.

Type 4: K ⊆ (Ps+1 \ P ′
s+1) ∪ . . . ∪ (Pk \ P ′

k).

Indeed, first suppose that K contains a vertex a of Ni, where i ∈ {t+1, . . . , n}.
Take any b in K. By the definition of Ni we get In(a) = In(a′), for some
a′ ∈ Mi. Since the in-neighbourhoods of all vertices in Mi are nonempty, we
see that ∅ 6= In(a) ⊆ Mi. By Lemma 2, In(b) ∩ S = In(a). If b ∈ Nj, then
In(b) ⊆ Mj, and so j = i. Hence b ∈ Ni. It follows that In(b) = In(a). Thus
K ⊆ Ni, and the in-neighbourhoods of all vertices of K are equal to In(a).
Now, if K ∩Mi = ∅, then K is of Type 1. Otherwise, if K contains a vertex
of Mi, then (ii) shows that |K ∩Mi| = 1, and so K is of Type 2.

Suppose now that K contains a vertex a in the union

(Ps+1 \ P ′
s+1) ∪ . . . ∪ (Pk \ P ′

k) ∪Mk+1 ∪ . . . ∪Mt.

Take any b ∈ K. Lemma 2 shows that In(b)∩S = In(a)∩S. We have In(a) ⊆
Ms+1 ∪ . . . ∪ Mk ⊆ S, and so In(b) ⊆ S. Observe that b 6∈

n⋃
i=t+1

Ni, because

otherwise ∅ 6= In(b) ⊆
n⋃

i=t+1
Mi, which is impossible, because S ∩

n⋃
t+1

Mi = ∅.
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Therefore b ∈
t⋃

i=1
Ni. Since S ∩K = ∅, we get K ⊆ (Ps+1 \ P ′

s+1) ∪ . . . ∪ (Pk \
P ′

k)∪Mk+1∪ . . .∪Mt. Now, if K ∩ (Mk+1∪ . . .∪Mt) 6= ∅, then K is of Type 3.
Otherwise, K is of Type 4.

Let us mention that using Lemma 2 it is possible to show that every partition

of C0 such that one class is a disjoint union {0}∪ (
k⋃

i=1
Mi)∪

k⋃
i=s+1

P ′
i , and other

classes are arbitrary subsets of Types 1, 2, 3, or 4, is the restriction on C0 of
some congruence on Atm(D, T ).

In order to define the required δ, we first construct its class containing 0. Let
Q1 be the union Mt+1 ∪ . . . ∪ Mn. In each ρ-class of Type 1 pick a vertex
v belonging to some set Pi, where t + 1 ≤ i ≤ n, and denote the set of
chosen vertices by Q2. Choose one vertex with in-degree zero in each ρ-class
of Type 3, and denote the set of these vertices by Q3. We claim that the set
Q = Q1 ∪ Q2 ∪ Q3 is in-closed. Indeed, take a vertex a ∈ Q. If a ∈ Q1, then
In(a) ⊆ Q1, because Q1 is a union of in-closed sets. If a ∈ Q2, then a belongs
to a set Pi, for some i ∈ {t + 1, . . . , n}, and there exists a vertex a′ ∈ Mi such
that In(a) = In(a′) ⊆ Mi ⊆ Q1. If a ∈ Q3, then In(a) = ∅. Thus In(a) ⊆ Q,
in all cases. Therefore

δ1 = Θ(Q ∪ {0})
is a congruence by Lemma 4.

Next, in each ρ-class of Type 4 we pick a vertex u, which belongs to some
Pi \ P ′

i , where s + 1 ≤ i ≤ k, and denote the set of these vertices u by U . For
each u ∈ U , by (iii) there exists a vertex u′ ∈ Mi such that In(u) = In(u′).
Hence Θ(u, u′) is a congruence by Lemma 4. Denote by U ′ a minimal set
of all vertices u′ ∈ M such that, for each u ∈ U there exists u′ ∈ U ′ with
In(u) = In(u′). Define a congruence

δ2 =
∨

u∈U

Θ(u, u′).

It is routine to verify that the family of all classes of δ2 consists of all classes

Hu′ = {u′} ∪ {u ∈ U | In(u) = In(u′)}, (3)

where u′ runs over U ′.

Furthermore, let Ki, i ∈ I, be all σT -classes not equal to C0. Since σT is
the largest congruence, every class Ki is a disjoint union of some ρ-classes:
Ki =

⋃
j∈Ji

Kij for some Ji. Therefore all classes of ρ lying outside of C0 are Kij,

where i ∈ I, j ∈ Ji. For i ∈ I, pick one element aij in each Kij and consider
the equivalence relation τi = Θ({aij | j ∈ Ji}). For each i ∈ I, all the elements
aij, j ∈ Ji, belong to the same σT -class Ki. Hence In(aij)∩C0 is the same for
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all j ∈ Ji in view of Lemma 3. Condition (iv) implies that all the elements aij,
where j ∈ Ji, have the same in-neighbourhood. Therefore τi is a congruence
by Lemma 4. Put

δ3 =
⋃
i∈I

τi.

For any i1, i2 ∈ I, i1 6= i2, we see that the only possibly non-singleton class
{ai1j | j ∈ Ji1} of τi1 does not intersect the class {ai2j | j ∈ Ji2} of τi2 . It
follows that δ3 is an equivalence relation. Since all the τi are congruences, it
follows that δ3 is a congruence, too.

Finally, define

δ = δ1

⋃
δ2

⋃
δ3.

Since (U∪U ′)∩Q = ∅, we see that the relation δ1∪δ2 is transitive, and therefore
it is a congruence. By construction, all non-singleton classes of δ1 ∪ δ2 lie in
C0, while all non-singleton classes of δ3 lie outside of C0. It follows that δ is a
transitive relation and, moreover, a congruence.

Now, we are going to verify that ρ⊥δ. Take any pair (c, d) ∈ ρ
∧

δ. First,
assume that (c, d) ∈ δ1. By the definition of δ1 and because Q∩S = ∅, we get
either c = d or c, d ∈ Q. In the latter case we see that In(c) and In(d) are
nonempty since Q ∩ S = ∅. Now (c, d) ∈ ρ implies In(c) = In(d), because Q
is in-closed. Therefore c = d by (ii). Second, suppose that (c, d) ∈ δ2. Then
c = d, or c, d ∈ Hu′ , for some u′ ∈ U ′. The definition (3) of the class Hu′ shows
that in the latter case In(c) and In(d) are nonempty and by (ii) c = d, too.
If (c, d) ∈ δ3, then (c, d) ∈ τi, for some i ∈ I, and the definition of τi yields
c = d. Therefore ρ

∧
δ = ι.

In order to prove that ρ
∨

δ = σT , take any pair (c, d) ∈ σT . If c, d ∈ T0 \ C0

or c, d ∈ T 0, then c, d lie in some σT -class Ki. Let c ∈ Kij1 and d ∈ Kij2 ,
for some j1, j2 ∈ Ji, and let c′ ∈ Kij1 and d′ ∈ Kij2 be the elements which
were chosen in these ρ-classes when we defined τi. Then (c, c′), (d, d′) ∈ ρ
and (c′, d′) ∈ τi, which yields (c, d) ∈ ρ ◦ τi ◦ ρ ⊆ ρ

∨
δ. Finally, assume that

c, d ∈ C0. It is enough to verify that (c, 0) ∈ ρ
∨

δ. To this end, consider the
ρ-class K that contains c. Note that the set Q contains one element in each
ρ-class of Types 1, 2, and 3 contained in C0. Therefore if K is of Type 1,
2, or 3, then (c, 0) ∈ ρ ◦ δ1. If K is of Type 4, then there exist u ∈ K ∩ U
and the corresponding u′ ∈ Ms+1 ∪ . . . ∪ Mk such that (u, u′) ∈ δ2. Hence
(c, 0) ∈ ρ ◦ δ2 ◦ ρ. Thus in all these cases (c, 0) ∈ ρ

∨
δ.

Therefore σT = ρ
∨

δ. We have proved that ρ is a direct summand.

(O1)⇒(O4): Assume that the automaton Atm(D, T ) has no proper essential
congruences. If C0 = {0}, then conditions (i) to (iv) are vacuously true for
M = ∅. Thus we may assume that C0 6= {0}. In particular, σT 6= ι by Lemma 3.
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Let M1, . . . ,Mn be all nonempty minimal in-closed subsets in C0\{0}. Clearly,
they are pairwise disjoint, and n ≥ 1. The union M = M1 ∪ . . . ∪Mn is in-
closed. Besides, it contains all vertices of C0 with in-degree zero. We are going
to verify that M satisfies (i) to (iv).

The connected components of the subgraph induced by M in D are the sub-
graphs induced by M1, . . . ,Mn. By Lemma 5, each subgraph of this sort is
strongly connected. Thus (i) is satisfied.

Suppose that (ii) does not hold, i.e., there exist two distinct vertices a, b of
M with nonzero in-degree such that In(a) = In(b) 6= ∅. Since all the Mi are
in-closed, it follows that a and b lie in the same set Mi.

Denote by Out∗(Mi) the set of all vertices u ∈ V such that there exists a
directed path from some vertex of Mi to u. Consider the set

H = C0 \ Out∗(Mi).

Since M \Mi is in-closed, there do not exist any directed paths from vertices
of Mi to vertices of M \Mi. Therefore

M \Mi ⊆ H.

We are going to prove that µH is a proper essential congruence.

In order to verify that µH is a congruence, by Lemma 2 it suffices to check
that the set H is in-closed. To this end, take any u ∈ H, and suppose to
the contrary that there exists v ∈ In(u) \ H. Since C0 is in-closed, we get
v ∈ C0. Then v ∈ Out∗(Mi), and so there exists a directed path from some
vertex x ∈ Mi to v. Completing this path by the edge (v, u) we get a directed
path from x to u; whence u ∈ Out∗(Mi). This contradicts the choice of u and
establishes that µH is a congruence.

By (2) and the definition of µH , we get (a, b) ∈ µH . Hence µH 6= ι. Besides,
µH 6= σT , because σT = µC0 ⊇ {0} ×Mi and µH ∩ ({0} ×Mi) = ∅. Thus µH

is a proper congruence.

It remains to show that µH is essential. Take an arbitrary congruence δ 6= ι.
We need to verify that µH

∧
δ 6= ι. Denote by S the equivalence class of δ

containing 0. By Lemma 2, the set S is in-closed.

First, consider the case where S 6= {0}. Choose a minimal in-closed subset S ′

in S \{0}. We have S ′ ⊆ M . If S ′ = Mi, then (a, b) ∈ µH
∧

δ. If S ′ 6= Mi, then
S ′ ⊆ H, and therefore Θ(S ′ ∪ {0}) ⊆ µH

∧
δ. Hence µH

∧
δ 6= ι in this case.

Second, suppose that S = {0}. Pick any pair (c, d) ∈ δ with c 6= d. Lemma 2
tells us that (c, d) ∈ µ{0}. We get In(c) = In(d).
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If In(c) = ∅, then either c, d ∈ T 0 and (c, d) ∈ µH , or c, d ∈ M . Note that
neither c nor d belong to Mi, because every vertex of in-degree zero forms a
minimal (singleton) in-closed subset in M and |Mi| ≥ 2. Hence c, d ∈ M\Mi ⊆
H, and so (c, d) ∈ µH .

Further, assume that In(c) 6= ∅. It can be easily seen that c ∈ Out∗(Mi) if
and only if d ∈ Out∗(Mi) because In(c) = In(d). Now, suppose that one of
the vertices, say c, belongs to H. Then In(c) ⊆ C0, because C0 is in-closed.
Since (c, d) ∈ µ{0}, we get d ∈ T0. Assume that d ∈ T0 \ C0. Since C0 is the
largest in-closed subset of T0, there exists x ∈ In(d) \ C0, which is impossible
because In(d) = In(c) ⊆ C0. Hence c ∈ H if and only if d ∈ H. Therefore
(c, d) ∈ µH , again.

Thus, in the second case, we get δ ⊆ µH , and so (µH)
∧

δ = δ 6= ι, as required.
Hence the congruence µH is essential. This contradicts (O1) and shows that
(ii) holds.

(Note that in the special case where H = ∅ our proof above remains valid and
can be simplified.)

Next, let us verify (iii). If Mi consists of a single vertex with in-degree zero,
then put Ni = Mi. Otherwise, denote by Ni the set of all vertices a in C0

such that In(a) = In(a′), for some a′ ∈ Mi. Since the Mi are in-closed, we see
that the sets N1, . . . , Nn are pairwise disjoint. The set N = N1 ∪ . . . ∪ Nn is
in-closed, because In(a) ⊆ M ⊆ N , for every vertex a ∈ N .

We claim that µ{0} ⊆ µN . Indeed, take any pair (a, b) ∈ µ{0}. Since the
definition of µ{0} is more demanding then the definition of µN are the same
on T 0, we only have to consider the case where a, b ∈ T0 \ {0}. The definition
of µ{0} implies In(a) = In(b). If a, b ∈ T0 \ N , then (a, b) ∈ µN . Further, we
may assume that one of these vertices, say a, belongs to Ni. First, suppose
that a has in-degree zero, and so is the only vertex of some Ni = Mi. Then b
is also a vertex with in-degree zero, hence b ∈ C0, and so b ∈ M ⊆ N , too.
This means that (a, b) ∈ µN , as required. Second, suppose that | In(a)| > 0.
By the definition of Ni, there exists a′ ∈ Mi such that In(a) = In(a′). Then
In(b) = In(a′) ⊆ C0, hence b ∈ C0, and so b ∈ Ni ⊆ N , again. Thus in
both cases a, b ∈ N , and hence (a, b) ∈ µN , by the definition of µN . Therefore
µ{0} ⊆ µN , as claimed.

Suppose that N 6= C0 \ {0}. Then µN is a proper congruence. By (O1), µN

is not essential. Hence there exists a congruence δ 6= ι such that µN
∧

δ = ι.
Denote by K the class of δ containing 0. If K = {0}, then δ ⊆ µ{0} ⊆ µN .
This contradiction shows that K 6= {0}. By Lemma 2, K is an in-closed subset
of C0, and we can choose a minimal in-closed subset Mn+1 in K \ {0} that
does not intersect N . This contradicts the definition of M and shows that
N = C0 \ {0}. Thus (iii) holds.

14



It remains to prove (iv). Suppose to the contrary that there exist two elements
a, b, which both belong either to the set T0 \C0 or to the set T 0, and In(a) ∩
C0 = In(b) ∩ C0, but In(a) 6= In(b). Consider the equivalence relation ρ on
Atm(D, T ) which has the same classes as σT with the only exception: we divide
a/σT into two new classes,

{c ∈ a/σT | In(c) = In(a)} and {c ∈ a/σT | In(c) 6= In(a)}.

Since a 6∈ C0, it follows from Lemma 2 that ρ is a congruence on Atm(D, T ).

We prove that ρ is essential. Assume that ρ
∧

δ = ι for some congruence δ.
Then 0/δ = {0}, because 0/ρ = C0. Take any (c, d) ∈ δ. If c /∈ a/σT , then
c/ρ = c/σT ⊇ c/δ; whence (c, d) ∈ ρ. If d /∈ a/σT , then (c, d) ∈ ρ and so further
we assume that c, d ∈ a/σT . Since 0/δ = {0}, Lemma 2 yields In(c) = In(d).
If In(c) = In(a), then both c and d lie in a/ρ by the definition of ρ, and there-
fore (c, d) ∈ ρ. Similarly, if In(c) 6= In(a), then c, d lie in b/ρ, and (c, d) ∈ ρ,
again. Thus (c, d) ∈ ι in all cases. Thus ρ is essential. This contradiction shows
that (iv) is satisfied, which completes our proof. 2

The authors are grateful to two referees for several corrections to our proof
and improvements to the text of this paper.

References

[1] J. Berstel, Finite automata and rational languages: an introduction, in: Formal
Properties of Finite Automata and Applications, Lect. Notes Comp. Sci. 386,
Springer, New York, 1989, 2–14.

[2] K. Baker, G.F. McNulty, H. Werner, Finitely based varieties of graph algebras,
Acta Sci. Math. 51 (1987), 3–15.

[3] H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg (Eds.), Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 1, 2, World
Sci. Publishing, River Edge, NJ, 1999.

[4] B.J. Gardner, Radical Theory, Longman, Pitman, 1989.

[5] A.V. Kelarev, O.V. Sokratova, Languages recognized by a class of finite
automata, Acta Cybernetica 15 (2001), 45-52.
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