Volume 7, number 6

INFORMATION PROCESSING LETTERS

October 1978

AN O(171*) ALGORITHM FOR FINDING MAXIMUM FLOWS IN NETWORKS

V.M. MALHOTRA, M. Pramodh KUMAR and S.N. MAHESHWARI
Computer Science Program, Indian Institute of Technology, Kanpur 208016, India

Received 12 January 1978; revised version received 5 May 1978

Maximum flow, flow network, flow potential, reference node, reference potential

1. Introduction

We consider a flow network to be a directed graph
G = (V, E), where V is the set of nodes and F is the
set of directed arcs (arcs). The set of nodes ¥ includes
two distinguished nodes s and ¢ called the source and
sink respectively, and with each arc (¢, v) in E is asso-
ciated a non-negative real number ¢(u, v) called the
capacity of arc (4, v). A function f that maps each
arc (u, v) in E into a non-negative real number f(u, v)
is said to be a flow if 0 < f(u, v) < c(y, v) for all
(4, v)in E, and

2 fu,w)—= 2 fou)=0

(u,w)EE (v, W)EE
foralluin V — {s, t}.

The value of the flow is equal to X g f(5, V), ie.,
the net flow out of s.

The problem of how to determine the maximum
flow in a network starting from a feasible flow is
well understood [S]. The best known algorithms fol-
low Dinic [2] in breaking the augmentation process
into stages. For a detailed exposition the reader is
referred to Dinic [2] or Even and Tarjan [4]. For
our purposes it suffices to say that the per-stage flow
problem can be formulated as follows: Given an
acyclic flow network G = (V, E) in which all the
paths from s to f have the same length, determine a
flow f'such that on any path from s to ¢ there exists
an arc (u, v) for which f(u, v) = c(u, v).

Dinic’s algorithm requires O(| V] - |E|) computa-
tions to obtain such a flow. Karzanov [7] improved

the bound to O(|¥1?). For a readable English version
of Karzanov’s algorithm readers are referred to Even
[3]. We give another algorithm, which is conceptually
simpler than Karzanov’s, to solve the per-stage flow
problem in O(| V1?) steps.

In what follows the flow network G = (V, E) is
always understood to be the per-stage flow network.

2. Proposed method
Consider the flow network G = (V, E) with some

flow f. With each v in V" we associate a flow potential
p(v), given by

pr)=min{ 27 (@ w) -, w),
v, w)EE

2 (cu, v) = flu,v))} (WH*s,vF1)

(uV)EE

p®)= 2 (6 w)— s W),
(s, w)EE
and

o= 23 (el £)— [l 1).
(w,t)EE

Intuitively, the flow potential is the maximum
extra flow that can be forced through a node. We
call a node r in V the reference node and the asso-

277

Volume 7, number 6

ciated flow potential the reference potential, if
pr(r) = min {pAv)} .
f(vevV f()

The importance of the reference node follows from
the following lemma.

Lemma. Let ¥ be the reference node in a flow network
G = (V, E) with flow f. Then the flow f can be aug-
mented by pg(r) to result in a flow f' such that

pr (@) =0,

Proof. We need only show this for the case when

r =s; every other case is reducible to this one. Clearly,
pr(s) amount of flow can be distributed among the
outgoing arcs of s. The extra flow now reaching no-
des that are a unit distance away from s can be dis-
tributed among their outgoing arcs in any order be-
cause pA(v) = py(s) for all v in V. For the same reason,
the extra flow reaching nodes at distance i away from
s is less than or equal to their flow potential, and so

it can be distributed among their outgoing arcs.

The algorithm for the per stage flow problem is
based on the lemma. At any iteration, the reference
node is determined and, starting from the reference
node flow equal to the reference potential, is forced
both towards the source and the sink. The flow is
pushed from the reference node to the sink by pro-
cessing the nodes from the reference node to the sink
in topological order. When processing a node, the
incoming flow is routed through outgoing arcs, sat-
urating them one-one, so that at most one outgoing
arc has flow added to it but remains unsaturated. The
process is similar for pushing flow backwards from
the reference node to the source. All the saturated
arcs can be deleted from the network, since flow in
them will not be affected by later iterations. Likewise,
nodes that have had either all their incoming or put-
going arcs deleted can be deleted. Deletion of a node
causes the deletion of all incoming or outgoing arcs.
Since at any iteration all the incoming or the out-
going arcs at the reference node will become saturated
there can be at most | V] iterations.

If information about incoming and outgoing arcs
at a node is kept in linked lists then the amount of

278

INFORMATION PROCESSING LETTERS

October 1978

effort in distributing the flow during the /th iteration
is O(|V1 + |E;1), where |E;| is the number of arcs
deleted and |¥] is the number of arcs receiving extra
flow but not saturated (maximum of one per node).
Therefore the total effort is of the order of

O(27 (IV1 + IEiD)) = O(IV1? + |ET)

=0(|71?).

It should be noted that recomputation of flow poten-
tial at each node can be done while nodes and arcs
are being deleted; here it requires no extra effort.
Identification of the reference node, however, implies
finding the minimum of at most |V] numbers per
iteration. Therefore the total effort is bounded by
O(I"1?). Since, while determining the maximum flow
in a network there will be at most |V] — 1 such stages
[2], it follows that the maximum flow can be ob-
tained using the method in O(|V]?) steps.

Recently Cherkasky [1] and Galil [6] have reported
maximum flow algorithms of complexity O(|V]? -
[EI*?) and O(IV1°/3 - |E|?/3) respectively. These algo-
rithms are more complex and on dense graphs have
the same complexity as the proposed algorithm.

References

[1] B.V. Cherkasky, Algorithm of construction of maximal
flow in networks with complexity of "l)(flr’l2 : IE[l o
operations, Math. Methods of Solution of Econ. Prob-
lems, 7 (1977) 117-125.

[2] E.A. Dinic, Algorithm for solution of a problem of
maximum flow in a network with power estimation,
Soviet Math. Dokl. 11 (1970) 1277-1280.

[3] S. Even, The max flow algorithm of Dinic and Karzanov:
An exposition, MIT Laboratory for Computer Science
Technical Report No. MIT/LCS/TM-80 (1976).

[4] S. Even and R.E. Tarjan, Network flow and testing
graph connectivity, SIAM J. Comput. 4 (1975) 507-518.

[5] L.R. Ford and D.R. Fulkerson, Flows in Networks
(Princeton University Press, Princeton, NJ, 1962).

[6] Z. Galil, A new algorithm for maximal flow problem:
preliminary version, Dept. of Mathematical,Sciences,
Tel-Aviv University, Tel-Aviv, Israel (1978).

[7] A.V. Karzanov, Determining the maximal flow in a net-
work by the method of preflows, Soviet Math. Dokl.

15 (1974) 434-437.

